
Towards Low Latency Software Routers
Torsten M. Rungea, Daniel Raumerb, Florian Wohlfartb, Bernd E. Wolfingera, Georg Carleb
a Universität Hamburg, Dept. of Computer Science, Telecommunications and Computer Networks

Email: {runge, wolfinger}@informatik.uni-hamburg.de
b Technische Universität München, Dept. of Computer Science, Network Architectures and Services

Email: {raumer, wohlfart, carle}@net.in.tum.de

Abstract— Network devices based on commodity hardware
are capable of high-speed packet processing while main-
taining the programmability and extensibility of software.
Thus, software-based network devices, like software routers,
software-based firewalls, or monitoring systems, consti-
tute a cost-efficient and flexible alternative to expensive,
special purpose hardware. The overall packet processing
performance in resource-constrained nodes can be strongly
increased through parallel processing based on off-the-
shelf multi-core processors. However, synchronization and
coordination of parallel processing may counteract the
corresponding network node performance. We describe how
multi-core software routers can be optimized for real-time
traffic by utilizing the technologies available in commodity
hardware. Furthermore, we propose a low latency extension
for the Linux NAPI. For the analysis, we use our approach
for modeling resource contention in resource-constrained
nodes which is also implemented as a resource-management
extension module for ns-3. Based on that, we derive a QoS-
aware software router model which we use to evaluate our
performance optimizations. Our case study shows that the
different scheduling strategies of a software router have
significant influence on the performance of handling real-
time traffic.

Index Terms— delay, latency, parallel processing, resource
contention, scheduling strategy, software router, simulation

I. INTRODUCTION

PROGRAMMABILITY and extensibility of commod-
ity hardware has attracted use cases [1] where soft-

ware has to be able to process network traffic with perfor-
mance equivalent to hardware routers [2]. Rapid deploy-
ment of new features in the programmable software-based
data plane is a driver of the software-defined networking
paradigm [3]. Previous works have shown different bot-
tlenecks that limit the achievable throughput of software-
based packet processing systems in terms of bits or
packets per second [2], [4], [5]. Some of these bottlenecks
can be mitigated by efficient networking software [6]–
[8]. Others require differentiated distribution of operations
to hardware resources [9]. However, new applications of
commodity hardware in routers, monitoring systems, or
next generation firewalls introduce new challenges for
packet treatment to software development. These systems

Manuscript received November 28, 2014; revised February 20, 2015;
accepted April 1, 2015. c© 2015 IEEE.

This work was supported by the German Research Foundation (DFG)
as part of the MEMPHIS project and the German Federal Ministry of
Education and Research (BMBF) under EUREKA project SASER.

have to differentiate packets and treat packet flows differ-
ently if they are critical in terms of Quality of Service
(QoS) parameters like throughput, delay, jitter, packet
loss, or connection establishment time [10].

This paper is an extended version of our previously
presented work [11]. We investigate different scheduling
strategies for low latency packet processing in software
routers by making use of the underlying hardware. There-
fore, we analyze the usage of dedicated Rx rings to
reduce packet latencies of specific traffic by applying
our low latency support for software routers. In Sec-
tion II, we discuss the related work. Section III explains
packet processing steps in a software router and shows
approaches for performance improvements. In Section IV
we propose an efficient and resilient architecture for a
QoS-aware software router. In Section V, we create a
detailed model of the proposed architecture that allows us
to evaluate our low latency concept based on simulation
results. The software router model is used in a case study
in Section VI to show how software router performance
can be improved. We summarize the paper and highlight
our contributions in Section VII.

II. RELATED WORK

With Netmap [6], PF Ring [7], and Intel DPDK [8]
three techniques exist that optimize the software side
of PC-based packet processing. These frameworks sig-
nificantly increase the packet processing performance
through avoiding unnecessary context switches between
the kernel and the user space by melting driver, kernel,
and even application parts of the packet processing chain.

Besides, hardware features like Direct Cache Access
(DCA) [12], which has already developed into a standard
technique in servers, further help to improve the perfor-
mance. Other examples of advanced hardware features
like the Intel Flow Director feature, that filters and clas-
sifies packets in hardware based on almost arbitrary match
fields [13], can be found in current network interface cards
(NIC) like the Intel X540 [14]. By making use of these
techniques, Tanyingyong et al. presented a case study
and implemented a fast routing path, where the routing
decision for a limited number of flows (typically those
with high packet rates) is offloaded to the NIC [15].

Know-how on measurement practices was already de-
scribed in 2005 by Tedesco et al. who published a

raumer
Schreibmaschine
Author version published inJOURNAL OF NETWORKS, VOL. 10, NO. 4, APRIL 2015

technique to measure different parts of PC-based packet
processing systems with commodity hardware [16] based
on a simple understanding of software router internal
queueing: They measured mean delays of 5µs, 20µs,
and 5µs for input queueing, processing, and output
queueing using a 2.4 GHz single-core CPU at maxi-
mum lossfree load. Carlsson et al. presented a delay
measurement setup for routers as black boxes [17] that
follows RFC 2679 [18], which specifies guidelines to
measure one-way packet delay. They measured a mean
delay of 98µs for UDP traffic and 101µs for ICMP
traffic for the tested hardware routers. Compared to the
30µs obtained by Tedesco et al. [16], these delays are
significantly higher. In particular, they observed a long tail
distribution of packet delays. As software-based packet
generators are not accurate enough to deliver reliable
measurements of delays [19], thus packet generators with
hardware support (e.g. [20]) are necessary for accurate
measurements [21]. Rotsos et al. [22] utilized FPGAs
for accurate software switch delay measurements. In
2007, Bolla and Bruschi presented a detailed study of
a single core software router based on Linux kernel 2.6
and performed RFC 2544 conform tests with a special
network device testing box [23]. The dedicated device
testing box allowed to measure delays with microsecond
accuracy. Depending on the type of software router, the
configuration, and the packet size they measured delays
from 14µs to hundreds of µs. In scenarios where the
CPU was the bottleneck, the delay increased to more
than 16 ms. In 2008, Bolla and Bruschi presented a study
of architectural bottlenecks in software and hardware.
They described and evaluated different uses of multiple
Rx and Tx rings as these have been available [4]. A
newer study of software router performance [2] and a
study of performance based on different router workloads
were published by Dobrescu et al. [5]. Recently, we
studied the performance of software routers in a multi-
core setup [24].

Analytical modeling and simulation are also widely-
used in the networking research area as a cost-effective
approach to design, validate, and analyze protocols and
algorithms in a controlled and reproducible manner. Be-
gin et al. [25] developed a high-level approach to model
an observed system behavior with little knowledge about
the system internal structure or operation by adequately
selecting the parameters of a set of queueing systems
and queueing networks. Dobrescu et al. [5] described an
analytical cache model for cache misses with multiple,
well defined parallel packet flows on a multi-core software
router assuming infinite queue sizes. However, in the
research community queueing systems with finite capacity
are seen as being more precise than those with infinite
queues [26]. Chertov et al. presented a device-independent
router model that takes into account the queue size and the
number of CPU cores inside a router [27]. With specific
parameters, this model can be used for different router
types (e.g. Cisco 7602).

Nonetheless, discrete event simulations outperform an-
alytical models with respect to more detailed model-
ing and realistic traffic load scenarios which include
bursty traffic, different packet attributes (e.g packet size),
variable packet inter-arrival, and service times. There
exist a variety of commercial and open source network
simulation tools [28], [29] such as ns-2 [30], ns-3 [31],
OMNeT++ [32] and OPNET [33]. Moreover, there are
also open source system simulators such as gem5 [34],
MARSS [35], and Sniper [36]. These simulators provide
accurate results based on fine-grained node models which
are mainly used for the development of microprocessor ar-
chitectures. However, the high level of detail compromises
scalability and imposes a large modeling effort. Especially
for a network researcher, this makes it difficult to get
a high-level understanding of the system behavior with
respect to packet processing.

With nsclick [37] the router software Click Modular
Router [38] was combined with the network simulator
ns-3 [31] which enables the easy transfer of real code
from the testbed to the simulation model. Wu et al. [39]
presented a task allocation concept for packet processing
nodes where a task is represented as one-to-one mapping
of a Click element. Thus, they optimized the configuration
of a multi-core Click router during its runtime by duplica-
tion of dedicated bottleneck tasks. Kristiansen et al. [40]
proposed a node model for considering the packet pro-
cessing overhead resulting from software. However, this
model does not consider multi-core architectures. Previ-
ously, we presented a modeling approach for a detailed
node model [41] of a packet processing system based on
multi-core CPUs and other system internal components
(e.g. memory, network, I/O) that we will use to conduct
the case study in this paper.

III. SOFTWARE ROUTER ARCHITECTURE

The Internet architecture was designed based on the
best effort approach. This works well for traditional
applications of the Internet (e.g. e-mail, file transfer,
world wide web) which are less time-critical. However,
today the Internet is also increasingly used for real-
time communications such as IP telephony (VoIP), video
conferencing and online gaming. Real-time applications
are very sensitive to packet latencies but can often handle
a certain amount of packet loss without degrading the
user experience due to failure correction mechanisms on
higher layer. Thus, they have specific QoS constrains.

For instance, if the one-way latency in a VoIP telephone
conference becomes greater than 150 ms the user experi-
ence is perceived as unacceptable [10], [42] whereas the
same latency for a file transfer is unproblematic.

Real-time traffic constitutes a challenge for the existing
Internet infrastructure. In particular, Internet routers need
to distinguish between traffic classes (e.g. real-time and
best-effort) to prefer the real-time traffic with low latency
constraints. Especially, real-time packet processing be-
comes even more challenging for software routers which
are described in the following.

Figure 1. Hardware resources in a software router

A. Packet Processing in Software Routers

a) Commodity Hardware Processing: Software
routers are based on commodity hardware with general
purpose CPUs where the packet processing is imple-
mented in software routines. In contrast, hardware routers
accelerate performance-critical packet processing func-
tions (data plane processing) by using special purpose
chips. For more complex processing tasks (usually control
plane functions, e.g. routing protocols) even hardware
routers rely on a general purpose CPU. Implementing
complex processing in software is both easier to realize
and has a much shorter development cycle. Usually con-
trol plane functions are not required to process packets
in line rate and are often synthetically limited to avoid
uncontrolled overloading of the CPU. For instance, this
ensures that a router can still process an ICMP ping even
if it would be overloaded with SNMP requests.

Several improvements have been implemented for off-
the-shelf hardware to cope with high-speed networks
by efficiently exploiting multi-core CPUs. Fig. 1 shows
resources that are relevant for software routers when
processing packet flows. An integrated memory controller
(IMC) was included in the CPU which provides a Direct
Memory Access (DMA) engine to the PCIe connected
components. Even preemptive copying of data into the
caches (Direct Cache Access; DCA) [12] is common
today.

b) NIC Hardware Processing: Modern NICs pro-
vide features like receive side scaling (RSS) and seg-
mentation offloading to shift packet processing tasks from
the CPU to the NIC controller and to distribute the tasks
efficiently among the CPU cores. Packets arriving at the
ingoing interface are stored in the Rx NIC Buffer. NIC
controllers like the Intel 82599 or X540 support different
programmable hardware filters and hash-based RSS [43],
[14] which are applied in a hierarchical order.

Hardware filters of the NIC allow to match header fields
like IP/MAC addresses, ports, VLAN tags, or arbitrary
protocols and flags. On multi-queue NICs these hardware
filters can be used to enqueue incoming packets to a
certain queue for received packets (Rx ring) based on
specific packet attributes (aka. traffic classification). The
last layer of the filters is RSS, which uses a static hash on
header fields to assign packets to Rx rings and thus to the

CPU cores. With these filters NICs are able to efficiently
distribute the incoming packet processing workload across
multiple CPU cores [13]. This also ensures that each
packet of a specific flow is served by the same CPU core
which avoids packet reordering and context switches be-
tween CPU cores. After traffic classification, the packets
get transferred on behalf of the DMA engine via the PCIe
bus to the main memory. A DMA client can access a
DMA provider (software) and the related DMA engine
(hardware) to write and read data from DMA channels.
This allows the NIC as DMA client to copy data to the
main memory without involvement of the CPU.

c) NIC Driver and Linux Kernel Processing: Since
Linux kernel 2.5 the New API (NAPI) defines an interrupt
moderation mechanism for the packet reception and trans-
mission [23], [44], [45]. On packet reception, the DMA
engine triggers a hardware interrupt (IRQ) for the CPU
core assigned to the Rx ring after the packet was copied
to the Rx ring in the main memory. The Rx rings store
descriptors, which contain pointers to the actual packets
that reside in an unordered manner in the main memory.
An IRQ can be assigned to a specific CPU core which
may handle one or multiple Rx rings. If multiple Rx rings
are assigned to a CPU core then the Rx rings are handled
in a round robin manner. The IRQ schedules a so-called
“soft IRQ” net rx softirq in the OS which handles
all time-consuming tasks later. If the corresponding soft
IRQ of the Rx ring is already scheduled to process
incoming packets, then IRQs of this Rx ring are disabled.
When the soft IRQ net rx softirq gets executed by
the OS scheduler, the CPU core fetches packets from the
Rx ring (aka. polling) to process them.

Depending on the application (user or kernel space)
further copy overhead can be necessary for each context
switch. For instance, in order to forward a packet, the
router needs to perform a lookup in the forwarding
table, update the TTL (or hop count) field in the IP
header, and trigger the sending process on the outgoing
interface. If the packet is addressed to the router itself,
such as in case of routing protocol updates handled by
XORP [46] or Quagga [47], the packet processing is
more complex, however not as time-critical as in the
case of packet forwarding. After processing a certain
number of packets (aka. budget), the polling is suspended
(and the corresponding soft IRQ must be rescheduled) to
avoid permanent blocking of the CPU core. The polling
terminates when all packets of this Rx ring have been
processed. Then, the CPU core is released and the IRQ
for packet reception is reenabled.

Finally, for packet transmission, the descriptor is placed
in the corresponding queue for outgoing packets (Tx
ring) of the outgoing interface. After the NIC success-
fully transmits one or multiple packets, it generates a
IRQ which schedules a soft IRQ net tx softirq to
transmit the new packets.

For further details, we investigate the packet latency
caused by software routers based on testbed measure-
ments and simulations [48].

B. QoS in the Linux Kernel

In addition to the ring size for limiting the number
of packets in the ring, Byte Queue Limits (BQL) were
introduced with the Linux kernel 3.3.0 which defines
a limit on the number of Bytes in the Tx ring buffer.
Without BQL a Tx ring buffer contains an unknown
amount of payload data depending on the Tx ring size
and the actual packet sizes. Besides, the packet size can
also be a multiple of the maximum transmission unit
(MTU) due generic segmentation offload (GSO). The
GSO mechanism enables the NIC to split and merge
packets. Thus, there can be packets in the Tx ring which
are bigger than the MTU. By limiting the number of Bytes
in the Tx rings the application of differentiated packet
treatment is delayed to the different queueing disciplines
(qdisc). In contrast to the BQL, the qdiscs are more
flexible as they are implemented in the kernel only and
do not require any support by the driver.

TABLE I.
QDISC STRATEGIES IN LINUX

Classful Reordering Shaping
pfifo fast No No No
Token Bucket Filter (TBF) No No No
Stochastic Fair Queueing (SFQ) No fair No
Extended SFQ (ESFQ) No fair No
Random Early Detection (RED) No No dynamic
Hierarch. Token Bucket (HTB) Yes implicit implicit
Hierarch. Fair Service Curve
(HFSC)

Yes fair implicit

Priority scheduler (PRIO) Yes explicit implicit
Class Based Queueing (CBQ) Yes implicit implicit

Qdiscs are techniques for differentiated packet treat-
ment in the Linux kernel. Filtering can be applied to
ingress traffic of the Linux kernel and even more complex
mechanisms which also include reordering to the egress
or parts of the egress traffic of the Linux kernel. Table I
shows existing queueing disciplines in Linux. All classful
qdiscs can be applied to selected classes of traffic. De-
pending on the applied qdisc some packets are transmitted
earlier than if they would be transmitted with the standard
first-come-first-served (FCFS) queueing behavior. Which
techniques may change the order of packets when applied
can be seen in Table I. Some algorithms cause packet
reordering due to the goal of a fair bandwidth distribu-
tion to more competitors. The HTB and the CBQ qdisc
implicitly reorder packets depending on the configuration
as these are classful. PRIO explicitly reorders packets
due to different prioritization. However, to have the best
effect on the QoS of traffic passing a component each of
these mechanisms must be applied before the bottleneck.
Thus, with the described techniques, traffic shaping on
a software router can avoid congestion of the outgoing
Internet connection but cannot avoid service degradation
due to an overloaded software router CPU. Consequently
this is also valid for techniques like DiffServ [49] or
IntServ [50] that cannot deal with an overloaded CPU
core.

IV. QOS-AWARE SOFTWARE ROUTER ARCHITECTURE

Previous work described how software routers have
to be configured to utilize numerous Rx and Tx rings
for efficient load balancing to different cores, but did
not consider QoS differentiation [4]. Implementations
of state-of-the-art QoS differentiation techniques in the
Linux kernel (and other software routers) are well-suited
for home routers and other scenarios where the link
capacity is the bottleneck. However, we argue that these
implementations do not work well enough in scenarios
where the software router is the bottleneck rather than
the egress link. In a software router the CPU is the
main bottleneck [2], [5], [24], as other components such
as the main memory and system buses usually handle
significantly higher bandwidths than the CPU can process.
In case the incoming traffic is overwhelming the CPU,
such that it cannot process all incoming packets, as soon
as the Rx ring is filled some of the incoming packets
are already dropped before being processed by the CPU.
In this case, the approach to add traffic classification as
just another step during the general packet processing
does not work, because high-priority packets might have
already been dropped before this processing step. This
means, incoming packets need to be classified before
being processed in the CPU, in order to provide QoS
differentiation (e.g. upper bound for packet latency).

There are several possible approaches to solve this
problem: One approach is to use one or multiple cores
(as many cores as necessary to classify any type of
incoming traffic at line speed) for receiving, classifying
and forwarding the incoming traffic to the other cores for
actual packet processing. This approach can be realized
using PF RING DNA clusters [51] (where the library
libzero implements clusters to distribute incoming packets
to multiple applications or threads) or Receive Packet
Steering (RPS) [52] (which is a software implementation
of RSS).

Another approach is to reduce the required number of
CPU cycles per packet treatment by offloading the traffic
classification into the NIC with multi-queue support.
The NIC allocates dedicated Rx rings for specific traffic
classes. Additionally, each Rx ring requires a priority
corresponding to its traffic class (e.g. real-time traffic).
Finally, the corresponding soft IRQs of the dedicated Rx
rings need to be scheduled by the OS with the help of an
optimal scheduling strategy.

We favor our latter approach, because it efficiently
exploits today’s commodity hardware and can be imple-
mented in the Linux NAPI. In Fig. 2 this approach is
illustrated which is called Low Latency (LL) extension
for software routers. The receiving NIC (a) classifies
incoming packets into multiple Rx rings based on its
packet attributes (b) per core (c), which enqueues the
processed packets into a Tx ring (d) of the egress NIC
(e). An exclusive Tx ring for each combination of NIC
and core allows to omit locking mechanisms.

Figure 2. QoS-aware software router with low latency support before
the CPU bottleneck

A. Traffic Classification in the NIC

Fig. 2 shows a generic form of classifying traffic at
the receiving NIC into multiple Rx rings with different
priorities per core. RxRT,i refers to the high priority
real-time (RT) traffic rings and RxBE,i relates to best
effort (BE) rings where i denotes the CPU core to which
the Rx ring is pinned. We use two priority classes to
demonstrate our approach, however our concept in general
is not limited to two priority classes. In the following we
refer to the specific features of the Intel X540 Ethernet
controller [14] as an example, although the described
features are not new to this controller and can also be
found in older Ethernet controllers like the Intel 82599
Ethernet controller [43]. This Ethernet controller offers
more than one feature that can be used to implement our
strategy, however each of them has a different application
scenario. If the incoming traffic already comes with prior-
ity labels in their IEEE 802.1Q VLAN tags, a combination
of the data center bridging (DCB) feature with receive
side scaling (RSS) can automatically classify received
packets into multiple Rx ring queues per core. If the
incoming traffic does not carry priority tags, prioritized
packets need to be identified using header information,
such as IP addresses or port numbers. The Intel X540
Ethernet controller supports different types of hardware
filter rules, which can be used to match packet header
fields and explicitly sort matched packets into a specified
Rx ring. The packets that do not match any of these filter
rules are put into the default best effort Rx rings that
are distributed among all cores via the RSS feature. For
instance, the Intel X540 Ethernet controller can match the
following header fields: VLAN header, IP version (IPv4,
IPv6), source and destination IP address, Transport layer
protocol (UDP, TCP, SCTP), source and destination port
number, or flexible 2-Byte tuples within the first 64 Bytes
of the packet (e.g. applicable to match the TOS field).
These filters provided by the NIC are able to offload
packet matching from the CPU to the NIC and thus
increase performance [13].

B. Scheduling Strategy for Prioritized Rx Rings

In the state-of-the-art, multiple Rx rings are handled in
a round robin manner which supports no prioritized packet
processing. For our proposed prototype the Linux NAPI
has to be extended that it supports a scheduling strategy
which considers multiple Rx rings with priorities.

Without any significant computational overhead it is
possible to implement a priority that only processes
packets from an Rx ring if all higher prioritized rings are
empty. Therefore, this approach is more flexible than ded-
icating one or more cores exclusively to prioritized traffic,
which results in wasted clock cycles if the prioritized
traffic does not fully utilize all dedicated cores. Other
scheduling strategies, such as weighted fair queueing
(WFQ) can also be implemented with minimal overhead.
Thus, we do not expect a measurable decrease of perfor-
mance from our low latency extension. The configured
weight guarantees a worst case share of high priority
traffic in the maximum throughput TPmax of a software
router of at least TPmax×weight

#cores×
∑

weights
in case of skewed

distribution of high priority traffic and TPmax×weight∑
weights

if
we assume high priority traffic that is evenly distributed
to all cores.

V. MODELING SOFTWARE ROUTERS

In this section, we investigate how the performance
of off-the-shelf software routers can be improved with
respect to low latency traffic treatment. Therefore, we
introduce a model of a QoS-aware software router as it is
proposed in Section IV. This model is derived from our
general modeling approach for resource management in
resource-constrained nodes which was published in [41].

As it was already shown by us [24] and other re-
searchers [2], the CPU cores represent the main perfor-
mance bottleneck of a multi-core software router based
on commodity hardware. Therefore, the cores’ efficiency
constitutes the main performance limiting factor and
therefore has to be taken into account in great detail when
evaluating such a system.

Each CPU core has to handle one or multiple Rx
rings. In case of multiple Rx rings per core, the rings
are served in a round robin manner in the standard
Linux networking stack. This means that there is currently
no support for prioritized packet processing for specific
traffic (e.g. real-time traffic) before reaching the CPU
bottleneck. However, this is important for software routers
in high load situations during which the CPU resources
are heavily utilized (cf. Section III).

This shortcoming motivated us to extend our software
router model for prioritized packet processing by intro-
ducing dedicated Rx rings for the corresponding traffic
which will be served according to a specific scheduling
strategy (cf. Section V-C). For instance, this extension can
be applied to process those packets faster which have low
latency constraints like real-time traffic (e.g. VoIP, video
conferencing, online gaming).

RP
Core

C
1

C
2

C
k

Processing Plane

Resource Plane

TU
RT,1

Resource Management Plane

Rx
RT,1

Departing
Packet
Flows

Process RT

C
1

TU
BE,1Rx

BE,1

Process BE

C
1

TU
RT,kRx

RT,k

Process RT

C
k

TU
NIC

Classify

Memory

Arriving
Packet
Flows

...

RP
Mem

...

... ..
.

..
.

RM
Mem

RM
Core

TU
BE,kRx

BE,k

Process BE

C
k

Figure 3. Intra-node resource management model of a software router
with low latency support

A. Model of a Software Router with Low Latency Support

Based on a state-of-the-art software router (cf. Sec-
tion III) and our proposals for a QoS-aware software
router (cf. Section IV), we derive a model of a QoS-aware
software router which is depicted in Fig. 3. According to
our general modeling approach [41], this software router
model consists of three planes: the processing plane, the
resource plane, and the resource management plane.

1) Processing Plane: In the processing plane,
the actual packet processing is modeled based
on the task units TUNIC ,TURT,1, . . . ,TURT,k,
and TUBE,1, . . . ,TUBE,k. The TUNIC abstracts
NIC functionalities like traffic classification. The
task units TURT,1, . . . ,TURT,k respectively
TUBE,1, . . . ,TUBE,k represent processes or threads
in the operating system to model network stack
functionalities (e.g. IP routing table lookup) of real-time
respectively best-effort traffic. Furthermore, the Rx
rings for real-time respectively best-effort traffic are
represented as the task unit queues RxRT,k respectively
RxBE,k which are located in the resource pool RPMem.
Each task unit queue can store up to 512 packets which
refers to the default Rx ring size in a Linux system.
Thus, a task unit queue can only store a limited number
of packets.

2) Resource Plane: The limited resources of the soft-
ware router are modeled as resource objects which are
located in specific resource pools in the resource plane.
For instance, the resource pool RPCore of the CPU cores
contains k CPU core resources C1, . . . , Ck.

3) Resource Management Plane: The resource pools
are administered by the (local) resource managers

RMCore and RMMem, whereas a global resource man-
ager as introduced in our previous work [41] can be
omitted because there are no dependencies between the
two resource types.

When a packet is received, the TUNIC distributes the
incoming packet based on specific packet attributes (e.g.
TCP/UDP port). Each packet belongs to a specific packet
flow which is characterized by a source IP address, a
destination IP address, a source port, and a destination
port. Besides, the TUNIC classifies packets based on
their TOS field (Type of Service) as real-time or best
effort traffic. Based on that, the TUNIC maps each flow
to a specific task unit queue (Rx ring) of a task unit. In
consequence, every packet of a specific flow is served by
the same CPU core which is strongly recommended for
parallel packet processing on multi-core CPUs to avoid
context switches and caches misses [2].

For each packet the TUNIC requires a memory slot
in the corresponding Rx ring which is located in the
main memory. Thus, the TUNIC has to request the
corresponding RMMem to get an available memory slot
from the resource pool RPMem. Otherwise, if no memory
slot is available, then a packet must be dropped.

The replicated task units model the actual parallel
packet processing (e.g. IP table lookup, firewall) in a
multi-core software router. To process a packet, a task unit
requires a resource of the type CPU core. Therefore, it has
to request the RMCore for allocating a core resource.

For instance, task unit TURT,1 processes real-time
packets and has a higher task unit priority than TUBE,1

which processes best effort packets. Thus, the processing
of real-time packets is prioritized. Both task units share
the same CPU core resource C1 from the RPCore. There-
fore, if TURT,1 needs to process a packet, it is possible
that C1 is currently not available due to its allocation
to TUBE,1. In this case, resource contention occurs and
the RMCore has to arbiter the allocation of C1 between
the task units TURT,1 and TUBE,1 based on a resource
scheduling strategy (e.g. WFQ). After having been allo-
cated the shared core resource, TURT,1 is able to pro-
cess packets from its incoming queue RxRT,1. The task
unit functionality Process RT respectively Process BE
consumes simulated time corresponding to the required
service time depending on the packet size and type of
packet processing (e.g. IP forwarding, IPsec encryption,
etc.).

B. Model Calibration

The packet latency represents the delay of a packet
during its traversal through the software router. It consists
of waiting and service times in several system internal
components, where it is dominated by the waiting and
service time (aka. processing time) at the bottleneck
component, i.e. here the set of CPU cores. The waiting
time of a packet depends on the number of packets prior
to that packet in the task unit queue where the service
time depends on the type of packet processing (e.g. IPsec,
Routing, Firewall) and its packet attributes (e.g. packet

size, real-time or best effort traffic). We focus on the
most practice-relevant type of packet processing, namely
IP forwarding. In this case, the router’s functionality can
be classified into two main tasks: (1) packet switching
from the incoming port to the outgoing port, and (2)
packet processing, like IP routing table lookup or traffic
classification.

On the one hand, packet switching is usually packet
size dependent due to the fact that most software routers
operate on the store-and-forward paradigm while handling
packets. According to [53], we apply a simple linear
model which consists of a variable part a per Byte
(which is dependent on the packet size S) and a constant
part b, corresponding to x = a · S + b. Based on real
testbed measurements (cf. Table 3 of [2]), we derive the
calibration values a ≈ 2.34 ns

B and b ≈ 272.47 ns for
packet switching (aka. minimal forwarding).

On the other hand, in case of IP forwarding, the effort
for packet processing (e.g. updating the IP header) is
independent of the packet sizes [53]. Thus, we model the
effort for IP packet processing as an additional constant
per-packet overhead c. We also derive the calibration
value of c ≈ 225.18 ns from Table 3 of [2]. Consequently,
we model the per-packet service time x for IP forwarding
as x = a · S + b+ c.

We also have to estimate the additional latencies in-
duced by other system internal components. In many
NICs, batch processing reduces the per-packet book-
keeping overhead through handling packets in a “bulk”.
According to Dobrescu et al. [2] and Kim et al. [54],
batching and DMA transfer times increase the packet
latency. Based on the work of Dobrescu et al. [2],
we estimate that batching introduces a delay for up to
16 packets before DMA transmission which implies 8
packets on average (if we assume uniformly distributed
load). Furthermore, the processing of a packet in total
requires four DMA transfers: Two transfers from the
NIC to the memory (one for the packet and one for its
descriptor) and vice versa. We estimate a DMA transfer
at TDMA = 2.56µs. Besides they assume that batching
from and to the NIC adds TNIC = 2 × 8 × x where x
represents the service time in the core. Thus, we estimate
an additional packet latency from other non-bottleneck
components with T+ = 4× TDMA + TNIC .

In the case of routing a 1518 B packet, the service time
is x = 4.04µs. Then we assume that batching from and to
the NIC adds 64.64µs (2×8×4.04µs) on average. Based
on that, we estimate an additional packet latency from
other non-bottleneck components at 74.88µs (4×2.56µs
+ 64.64µs). This means that at offered loads below the
maximum throughput of ca. 1 Mpps (1518 B packet size,
4 CPU cores) the packet latency refers to the sojourn time
at the core bottleneck plus 74.88µs to take into account
the additional latency resulting from other system internal
components.

C. Resource Management Scheduling Strategies

Each task unit possesses a task unit priority TUP i,
i ∈ {1, 2, ..., n} which is used by a resource manager
to arbiter between task units which compete for the
same shared resource(s). Corresponding to the resource
management scheduling strategy, the resource manager
prefers a task unit with a high priority where TUP1

is the lowest priority. Therefore, in case of resource
contention, the resource manager may revoke a shared
resource from a task unit with low priority based on a
specific resource management strategy because another
task unit with higher priority is requesting the resource
at the same time. We investigate the following standard
resource management strategies.

• First-Come First-Served (FCFS): The task unit
which allocates the resource first, keeps the resource
until it has no further packets to process.

• Priority (Prio): The task unit with the highest task
unit priority gets the resource(s) immediately. This
strategy is non-preemptive which implies that a task
unit is not interrupted during the processing of the
current packet.

• Round Robin (RR): The task unit gets the resource(s)
for a constant time slice ∆t. The respective task unit
priorities are not considered, and thus, the time slice
size is constant for all task units. The task units are
served one after the other (fair queueing). Hence, no
starvation occurs.

• Weighted Fair Queueing (WFQ): The task unit gets
the resource(s) for a time slice ∆tk = ∆t· TUPk∑n

i=1 TUPi

corresponding to its task unit priority TUPk. This
implies that the time slice ∆thigh of a high priority
task unit is longer than the time slice ∆tlow of a task
unit with lower task unit priority. Similar to RR, the
task units are served one after the other.

In case of the RR and WFQ strategy, we observed
that real-time packets incurred strong latency because in
practice real-time packets are relatively seldom and thus
often have to wait at least a complete time slice to get pro-
cessed. Therefore, we extend the RR and WFQ strategy
to Low Latency Round Robin (LL-RR) and Low Latency
Weighted Fair Queueing (LL-WFQ) for improving low
latency support.

LL-RR and LL-WFQ immediately prefer infrequently
appearing low latency packets which are processed by a
high priority task unit if previously no resource contention
occurred. In case of contention, a task unit gets the
resource(s) corresponding to the standard behaviour of
RR respectively WFQ.

VI. CASE STUDY: LOW LATENCY PACKET
PROCESSING IN SOFTWARE ROUTERS

In this section, we evaluate and optimize the packet
processing performance of an off-the-shelf quad-core soft-
ware router with respect to low latency packet processing.
Therefore, we aim to find optimal resource management
scheduling strategies for software routers based on our
software router model which was introduced in Section V.

A. Simulation Scenario

The ns-3 simulation scenario consists of multiple load
generators and sinks acting as end systems and a router
serving as device under test (Fig. 4). The load generators
and the sinks have no resource constraints, but the router
possesses limited resources, namely 4 CPU cores, and a
limited Rx ring size of 512 packets per Rx ring. Our ns-3
resource management extension is applied to model the
router under test.

Figure 4. Case study simulation scenario

The load generators and the sinks are connected via
10 GbE point-to-point links to the router which are con-
sciously chosen as high-speed data rates to ensure that
the links themselves will not become the bottleneck when
applying data transmissions at a high level of offered load.
The offered load is a composition of real-time and best
effort packet flows corresponding to the mixing proportion
(e.g. 30 % real-time traffic). The real-time and best effort
traffic is classified by the software router based on the
TOS (Type of Service) field of the IPv4 header1. We
simulate uni-directional traffic from the load generators to
the sinks. A packet flow is modeled as a Poisson stream
representing a video conferencing session which requires
ca. 5 Mbit/s respectively ca. 410 packets/s. The frame size
is constant for all traffic corresponding to the MTU of
1518 B of the Ethernet protocol.

According to the CPU utilization of the software router,
the video conference packet flows may overload the CPU
of the software router for a short period of time. This
leads to an increase of the number of packets in the
corresponding Rx rings. In this case, the benefit of our
low latency extension for software routers (cf. Section IV)
can be demonstrated.

B. Simulation Results

We analyzed the mean packet latency for real-time and
best effort traffic of the modeled software router with
respect to different scheduling strategies (cf. Figs. 5, 6
and 7). As a point of reference to the state of the art, the
default Linux networking stack is also represented in a

1The distinction of real-time and best effort traffic can also be done
based on any other packet attribute (e.g. TCP/UDP port) which is
supported by the NIC controller.

situation when no resource management strategy (no RM)
is applied. In this case, only one Rx ring is mapped to a
specific core. Thus, all incoming packets are enqueued in
the same Rx ring and served according to FCFS service
discipline without any prioritization of real-time packets.

In contrast to the state of the art, our low latency exten-
sion for the QoS-aware software router uses a dedicated
Rx ring for each traffic class per CPU core. This implies
that the real-time packets and the best effort packets are
enqueued into two separate Rx rings2 as it is illustrated
by Fig. 3.

1) Real-Time Percentage: The real-time percentage is
a mixing proportion between real-time and best effort
traffic. For instance, a value of 10 % means that on
average every tenth packet is a real-time packet and all
other packets are best effort packets. Figs. 5(a) and 5(b)
show the percentage of real-time traffic of the total traffic
on the x-axis and the mean packet latency in microseconds
on the y-axis, stated with 95 % confidence intervals. Each
of the lines represents a different scheduling strategy
with respect to real-time or best effort traffic. The router
utilization of 80 % as well as the time slice sizes for
RR, WFQ, LL-RR, and LL-WFQ are kept constant in
all experiments (∆t = 50µs).

When no resource management strategy (no RM) is
used, the real-time and best effort packets incur the same
mean latency. This case represents a reference to the state-
of-the-art as described above.

In the case of the FCFS strategy, the less the amount
of real-time traffic is the more the real-time traffic suffers
from an increase of the mean packet latency because real-
time packets often have to wait until all best effort packets
are processed. This shows that FCFS is not useful for low
latency packet processing.

When applying the Prio strategy, an incoming real-time
packet (which is processed by a high priority task unit)
is always served before a best effort packet. Thus, with
the Prio strategy real-time packets are served faster at the
expense of the best effort packets. This effect is more
dominant for lower percentages of real-time traffic. With
higher percentages of real-time traffic, there are many
real-time packets in the same Rx ring which are served in
a FCFS manner. Thus, the mean packet latency of real-
time packets increases. If there is no real-time traffic (real-
time percentage is 0 %) then the mean packet latency of
best effort packets equals the latency with state-of-the-
art processing, when no scheduling strategy is applied.
The Prio strategy represents borderline cases with respect
to the mean packet latency for all scheduling strategies,
except FCFS and RR. It is the lower-bound for the real-
time packets whereas it is an upper-bound for the best
effort packets.

The RR strategy yields to an increase of the mean
packet latency for real-time traffic (whenever the real-
time percentage is small) because real-time packets often
have to wait for one complete time slice to get processed.

2In this case study, we only define two traffic classes but also multiple
traffic classes can be used which are mapped to multiple Rx rings.

 80

 85

 90

 95

 100

 0 10 20 30 40 50

M
ea

n
Pa

ck
et

 L
at

en
cy

 [µ
s]

Real Time Percentage [%]

no RM
FCFS, RT
FCFS, BE

Prio, RT
Prio, BE
RR, RT
RR, BE

LL−RR, RT
LL−RR, BE

(a) FCFS, Prio, RR, and LL-RR

 80

 85

 90

 95

 100

 0 10 20 30 40 50

M
ea

n
Pa

ck
et

 L
at

en
cy

 [µ
s]

Real Time Percentage [%]

no RM
WFQ 3:1, RT
WFQ 3:1, BE
WFQ 7:1, RT
WFQ 7:1, BE

LL−WFQ 3:1, RT
LL−WFQ 3:1, BE
LL−WFQ 7:1, RT
LL−WFQ 7:1, BE

(b) WFQ and LL-WFQ

Figure 5. Mean packet latency as function of real-time percentage for different resource management scheduling strategies

 80

 85

 90

 95

 100

 105

 110

 115

 120

 125

 50 60 70 80 90 100

M
ea

n
Pa

ck
et

 L
at

en
cy

 [µ
s]

Utilization [%]

no RM
FCFS, RT
FCFS, BE

Prio, RT
Prio, BE
RR, RT
RR, BE

LL−RR, RT
LL−RR, BE

(a) FCFS, Prio, RR, and LL-RR

 80

 85

 90

 95

 100

 105

 110

 115

 120

 125

 50 60 70 80 90 100

M
ea

n
Pa

ck
et

 L
at

en
cy

 [µ
s]

Utilization [%]

no RM
WFQ 3:1, RT
WFQ 3:1, BE
WFQ 7:1, RT
WFQ 7:1, BE

LL−WFQ 3:1, RT
LL−WFQ 3:1, BE
LL−WFQ 7:1, RT
LL−WFQ 7:1, BE

(b) WFQ and LL-WFQ

Figure 6. Mean packet latency as function of utilization for different resource management scheduling strategies

 80

 82

 84

 86

 88

 90

 92

 94

 0 50 100 150 200 250 300

M
ea

n
Pa

ck
et

 L
at

en
cy

 [µ
s]

Time Slice Size [µs]

no RM
Prio, RT
Prio, BE
RR, RT
RR, BE

LL−RR, RT
LL−RR, BE

(a) Prio, RR, and LL-RR

 80

 82

 84

 86

 88

 90

 92

 94

 0 50 100 150 200 250 300

M
ea

n
Pa

ck
et

 L
at

en
cy

 [µ
s]

Time Slice Size [µs]

no RM
WFQ 3:1, RT
WFQ 3:1, BE
WFQ 7:1, RT
WFQ 7:1, BE

LL−WFQ 3:1, RT
LL−WFQ 3:1, BE
LL−WFQ 7:1, RT
LL−WFQ 7:1, BE

(b) WFQ and LL-WFQ

Figure 7. Mean packet latency as function of the time slice size for different resource management scheduling strategies

This implies that RR is also not applicable for low
latency packet processing. However, this behavior can
be mitigated with the help of our low latency extension
(cf. Section V-C) which is applied in the LL-RR strategy.
With the LL-RR strategy, the mean packet latency of
real-time packets becomes smaller the less the percentage
of the real-time traffic is because the time slice sizes
for both traffic classes are equal and the more packets
must be handled per time slice the longer is the waiting
time. Besides, LL-RR becomes similar to RR at high
percentages of real-time traffic because it is more likely
that resource contention occurs and each task unit gets its
corresponding time slice. When the percentage of real-
time traffic is 50 %, the real-time and best effort traffic
suffer the same mean packet latency.

Fig. 5(b) illustrates the same measurements for WFQ
and LL-WFQ where the relations of the time slice sizes
between the real-time and best effort task unit are denoted.
For instance, a relation 3:1 means that the time slice
size of the real-time task unit is three times larger than
the time slice size of the best effort task unit. Like the
RR strategy, WFQ also works insufficient with respect
to the handling of real-traffic. This behavior can also be
improved by extending WFQ to LL-WFQ with the low
latency extension. The LL-WFQ strategy shows similar
behavior as the Prio strategy at low real-time percentages
because in most cases no resource contention occurs.
This implies that when a real-time packet is received
the real-time packet is immediately processed because
the corresponding task unit gets immediately the resource
CPU core (e.g. directly after the processing of the current
best effort packet).

In summary, the improvement of the mean packet
latency of the real-time traffic is achieved at the expense
of the best effort traffic with all strategies. For instance,
with the Prio strategy and 10 % real-time traffic, a real-
time packet requires ca. 81µs which is 7 % faster than the
state of the art (no RM) with ca. 87µs. This improvement
is achieved at the cost of the best effort packets where the
mean packet latency is only increased by 1 % to ca. 88µs.

At a CPU utilization of 80 %, the real-time packets
strongly benefit from the introduction of a scheduling
strategy like Prio. This effect is strengthened at higher
values of utilization. For practical use cases, we assume
a real-time percentage from 10 up to 30 %.

2) Utilization: The utilization is a metric for the degree
of occupation of a specific resource which is defined as
the relation between the busy time of the resource and
the total time of observation. In this case, the utilization
refers to the bottleneck resources which are here the CPU
cores. Figs. 6(a) and 6(b) show the utilization of the
software router on the x-axis and the mean packet latency
in microseconds on the y-axis. The mean packet latency
is stated with 95 % confidence intervals. The real-time
percentage of ca. 30 % as well as the time slice sizes for
RR, WFQ, LL-RR, and LL-WFQ are kept constant in all
experiments (∆t = 50µs).

At values less than 50 % utilization, the resource CPU
core is often idle. Here, the mean packet latency is
nearly equal for all scheduling strategies. For a high-speed
software router, we assume utilization values of 50 % and
above. When the CPU core is busy, the corresponding
task unit (and also the packets) has to wait until the
resource becomes available which leads to an increase of
the packet latency. If the utilization increases up to 100 %
then the mean packet latency increases exponentially up to
a maximum which is determined by the Rx ring size. The
mean packet latency is no longer well-defined because
arriving packets often come up with a full queue (aka. Rx
ring) and must be dropped. Hence, the stated mean packet
latency refers only to the successfully served packets.

The case for the default behavior when no resource
management strategy is applied (no RM) is shown as
a reference to the state of the art. The FCFS and RR
strategies are not helpful for the real-time packets as
already discussed above.

When applying the Prio strategy, the mean packet
latency of best effort packets exponentially increases
whereas it only linearly rises for real-time packets because
the real-time traffic is rather low and the corresponding
real-time packets are always served prior to the best effort
traffic. This effect even holds for high values of utilization
and is beneficial for resource-constrained nodes to satisfy
low latency requirements.

In case of the WFQ, if the utilization increases then the
higher the priority of the real-time task unit is (and thus
the corresponding time slice size) the less is the mean
packet latency of the real-time packets.

With LL-RR and LL-WFQ, the mean packet latency
of real-time traffic just linearly increases if the utilization
increases and is close to the Prio strategy for low values of
utilization because it is likely that no resource contention
occurs. However, if the utilization increases then in most
cases there is resource contention which causes a rise of
the mean packet latency of real-time traffic.

3) Time Slice Size: The time slice, or also called
quantum, is defined as the period of time for which a
process (or task unit) is allowed to run in a preemptive
multitasking system. Figs. 7(a) and 7(b) show the time
slice size on the x-axis and the mean packet latency in
microseconds on the y-axis. The confidence intervals are
omitted for better readability. Each of the lines represents
a different scheduling strategy with respect to real-time
or best effort traffic. The real-time percentage of 30 % as
well as the router utilization of 80 % are kept constant in
all experiments.

The time slice size is only relevant for the scheduling
strategies RR, LL-RR, WFQ, and LL-WFQ. Nonetheless,
the case for “no resource management” is also depicted
as a point of reference to the state of the art. Again, the
Prio strategy represents borderline cases with respect to
the mean packet latency for LL-RR, WFQ and LL-WFQ,
except RR. It represents a lower-bound for the real-time
packets whereas it depicts an upper-bound for the best
effort packets.

In case of the RR strategy and small time slices, the
relatively infrequent real-time packets benefit from often
getting the resource. When the time slice size increases,
then the mean latency of real-time traffic significantly
increases because it is likely that real-time traffic can
only be served if the time slice is over or all best effort
packets were processed. This unfavorable behavior of RR
can also be mitigated with our low latency extension
(cf. Section V-C).

When applying the WFQ strategy, we observe a be-
havior similar to RR but the increase of the mean packet
latency is weaker than with RR if the time slice size
increases. This increase becomes weaker the higher the
priority of the real-time task unit is (cf. WFQ 3:1 and
WFQ 7:1). Again, this behavior is eliminated with LL-
WFQ (as with LL-RR). Therefore, with LL-RR and LL-
WFQ, the mean packet latency of real-time traffic is
always better than the state of the art independently of
the time slice size.

VII. CONCLUSION

In this paper we described how PC-based multi-core
packet processing systems can be optimized for low
latency packet processing. We proposed a QoS-aware
software router architecture where the incoming packets
are classified by the NIC into dedicated Rx rings for
real-time and best-effort traffic. In combination with a
scheduling strategy, specific packet flows can be priori-
tized before reaching the CPU bottleneck. Therefore, our
approach is in contrast to classical QoS techniques such as
DiffServ and IntServ which assume that the outgoing link
is the bottleneck. This enhancement has the focus on but
is not restricted to software routers. Our architecture just
utilizes technology that is already available in commodity
servers today. We used our approach for modeling of
resource contention in resource-constrained nodes which
is also implemented as the resource-management exten-
sion module for ns-3. Based on that, we derived a QoS-
aware software router model which we used to optimize
the performance of a software router with respect to low
latency packet processing. Our case studies showed that
the scheduling strategy of a software router has significant
influence on the performance of handling real-time traffic.

In future research, we plan to carry out more fine-
grained testbed measurements to refine our resource-
constrained software router model in terms of further
performance-relevant details. For instance, a more accu-
rate modeling of the effects on the intra-node latency
resulting from other system internal components (e.g.
driver) will be one of the next steps. Furthermore, we
plan to conduct testbed measurements with a prototype of
the described QoS-aware software router. Moreover, we
will investigate further resource management scheduling
strategies with the help of our ns-3 extension. Finally, we
hope to be able to identify further performance-limiting
factors and bottlenecks of existing software routers as well
as to predict effects caused by changes and optimizations
in the router software.

ACKNOWLEDGMENTS

We would like to acknowledge the valuable contribu-
tions through numerous in-depth discussions from our col-
leagues Dr. Klaus-Dieter Heidtmann, Andrey Kolesnikov,
Alexander Beifuß, Paul Emmerich, Dominik Scholz,
Stefan Edinger, and Paul Lindt.

REFERENCES

[1] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,
A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu,
J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat, “B4:
Experience with a Globally-deployed Software Defined
WAN,” ACM SIGCOMM Computer Communication Re-
view, vol. 43, no. 4, pp. 3–14, August 2013.

[2] M. Dobrescu, N. Egi, K. Argyraki, B. Chun, K. Fall,
G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy,
“RouteBricks: Exploiting Parallelism To Scale Software
Routers,” in ACM Symposium on Operating Systems Prin-
ciples (SOSP), October 2009.

[3] B. Munch, “Hype Cycle for Networking and Communica-
tions,” Gartner,” Report, July 2013.

[4] R. Bolla and R. Bruschi, “PC-based Software Routers:
High Performance and Application Service Support,” in
ACM SIGCOMM Workshop on Programmable Routers for
Extensible Services of Tomorrow (PRESTO), August 2008,
pp. 27–32.

[5] M. Dobrescu, K. Argyraki, and S. Ratnasamy, “Toward
Predictable Performance in Software Packet-Processing
Platforms,” in USENIX Conference on Networked Systems
Design and Implementation (NSDI), April 2012.

[6] L. Rizzo, “Netmap: A Novel Framework for Fast Packet
I/O,” in USENIX Annual Technical Conference, April 2012.

[7] F. Fusco and L. Deri, “High Speed Network Traffic Anal-
ysis with Commodity Multi-core Systems,” in Internet
Measurement Conference, November 2010, pp. 218–224.

[8] Data Plane Development Kit: Programmer’s Guide, Rev.
6, Intel Corporation, January 2014.

[9] S. Han, K. Jang, K. Park, and S. Moon, “PacketShader:
A GPU-Accelerated Software Router,” ACM SIGCOMM
Computer Communication Review, vol. 41, no. 4, August
2011.

[10] M. Hassan, A. Nayandoro, and M. Atiquzzaman, “Internet
Telephony: Services, Technical Challenges, and Products,”
IEEE Communications Magazine, vol. 38, no. 4, pp. 96–
103, August 2000.

[11] T. Meyer, D. Raumer, F. Wohlfart, B. E. Wolfinger, and
G. Carle, “Low Latency Packet Processing in Software
Routers,” in International Symposium on Performance
Evaluation of Computer and Telecommunication Systems
(SPECTS), Best Paper Award, July 2014.

[12] R. Huggahalli, R. Iyer, and S. Tetrick, “Direct Cache
Access for High Bandwidth Network I/O,” ACM SIGARCH
Comput. Archit. News, vol. 33, no. 2, pp. 50–59, May 2005.

[13] V. Tanyingyong, M. Hidell, and P. Sjodin, “Using
Hardware Classification to Improve PC-based OpenFlow
Switching,” in International Conference on High Perfor-
mance Switching and Routing (HPSR), July 2011, pp. 215–
221.

[14] Intel Ethernet Controller X540 Datasheet Rev. 2.7, Intel
Corporation, March 2014.

[15] V. Tanyingyong, M. Hidell, and P. Sjodin, “Improving Per-
formance in a Combined Router/Server,” in International
Conference on High Performance Switching and Routing
(HPSR), June 2012, pp. 52–58.

[16] A. Tedesco, G. Ventre, L. Angrisani, and L. Peluso, “Mea-
surement of Processing and Queuing Delays Introduced
by a Software Router in a Single-Hop Network,” in IEEE
Instrumentation and Measurement Technology Conference,
May 2005, pp. 1797–1802.

[17] P. Carlsson, D. Constantinescu, A. Popescu, M. Fiedler,
and A. Nilsson, “Delay Performance in IP Routers,” in
Performance Modelling and Evaluation of Heterogeneous
Networks, July 2004.

[18] G. Almes, S. Kalidindi, and M. Zekauskas, “A One-way
Delay Metric for IPPM,” RFC 2679, IETF, September
1999.

[19] A. Botta, A. Dainotti, and A. Pescapé, “Do You Trust Your
Software-based Traffic Generator?” IEEE Communications
Magazine, vol. 48, no. 9, pp. 158–165, 2010.

[20] P. Emmerich, F. Wohlfart, D. Raumer, and G. Carle,
“MoonGen: A Scriptable High-Speed Packet Generator,”
ArXiv e-prints, Oct. 2014.

[21] G. A. Covington, G. Gibb, J. W. Lockwood, and N. Mck-
eown, “A Packet Generator on the NetFPGA Platform,” in
IEEE Symposium on Field Programmable Custom Com-
puting Machines, 2009, pp. 235–238.

[22] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W.
Moore, “OFLOPS: An Open Framework for OpenFlow
Switch Evaluation,” in Passive and Active Measurement.
Springer, March 2012, pp. 85–95.

[23] R. Bolla and R. Bruschi, “Linux Software Router: Data
Plane Optimization and Performance Evaluation,” Journal
of Networks, vol. 2, no. 3, pp. 6–17, June 2007.

[24] T. Meyer, F. Wohlfart, D. Raumer, B. E. Wolfinger, and
G. Carle, “Validated Model-Based Performance Predic-
tion of Multi-Core Software Routers,” Praxis der Infor-
mationsverarbeitung und Kommunikation (PIK), vol. 37,
no. 2, pp. 93–107, 2014.

[25] T. Begin, A. Brandwajn, B. Baynat, B. E. Wolfinger, and
S. Fdida, “High-level Approach to Modeling of Observed
System Behavior,” Perform. Eval., vol. 67, no. 5, pp. 386–
405, May 2010.

[26] K. Salah, “Modeling and Analysis of PC-based Software
Routers,” Computer Communications, vol. 33, no. 12, pp.
1462–1470, 2010.

[27] R. Chertov, S. Fahmy, and N. Shroff, “A Device-
Independent Router Model,” in IEEE Conference on Com-
puter Communications (INFOCOM), April 2008.

[28] J. Pan and R. Jain, “A Survey of Network Simulation
Tools: Current Status and Future Developments,” Washing-
ton University in St. Louis, Tech. Rep., November 2008.

[29] E. Weingärtner, H. vom Lehn, and K. Wehrle, “A Per-
formance Comparison of Recent Network Simulators,” in
IEEE International Conference on Communications (ICC),
June 2009, pp. 1–5.

[30] S. McCanne, S. Floyd, K. Fall, K. Varadhan, et al., “Net-
work Simulator ns-2,” http://www.isi.edu/nsnam/ns, 1997.

[31] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and
J. Kopena, “Network Simulations with the ns-3 Simulator,”
ACM SIGCOMM Demonstration, August 2008.

[32] A. Varga, “OMNeT++,” in Modeling and Tools for Net-
work Simulation. Springer, 2010, pp. 35–59.

[33] “OPNET Application and Network Performance,” www.
opnet.com, November 2014.

[34] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna,
S. Sardashti, et al., “The gem5 Simulator,” ACM SIGARCH
Computer Architecture News, vol. 39, no. 2, pp. 1–7, 2011.

[35] A. Patel, F. Afram, S. Chen, and K. Ghose, “MARSS: A
Full System Simulator for Multicore x86 CPUs,” in ACM
Design Automation Conference, 2011, pp. 1050–1055.

[36] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper:
Exploring the level of abstraction for scalable and ac-
curate parallel multi-core simulation,” in International

Conference for High Performance Computing, Networking,
Storage and Analysis, November 2011, pp. 1–12.

[37] P. Suresh and R. Merz, “NS-3-Click: Click Modular Router
Integration for NS-3,” in International Conference on
Simulation Tools and Techniques (ICST), March 2011.

[38] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek, “The Click Modular Router,” ACM Transac-
tions on Computer Systems (TOCS), vol. 18, no. 3, pp.
263–297, August 2000.

[39] Q. Wu and T. Wolf, “Runtime Task Allocation in Multicore
Packet Processing Systems,” IEEE Transactions on Paral-
lel and Distributed Systems, vol. 23, no. 10, pp. 1934–
1943, October 2012.

[40] S. Kristiansen, T. Plagemann, and V. Goebel, “Modeling
Communication Software Execution for Accurate Simula-
tion of Distributed Systems,” in ACM SIGSIM Conference
on Principles of Advanced Discrete Simulation, May 2013,
pp. 67–78.

[41] T. Meyer, B. E. Wolfinger, S. Heckmüller, and A. Abdol-
lahpouri, “Extensible and Realistic Modeling of Resource
Contention in Resource-Constrained Nodes,” in Interna-
tional Symposium on Performance Evaluation of Computer
and Telecommunication Systems (SPECTS), Best Paper
Award, July 2013.

[42] S. Abbas, M. Mosbah, and A. Zemmari, “ITU-T Rec-
ommendation G.114, One Way Transmission Time,” Lect.
Notes in Comp. Sciences, May 2007.

[43] Intel 82599 10 Gigabit Ethernet Controller Datasheet Rev.
2.76, Intel Corporation, October 2012.

[44] J. H. Salim, R. Olsson, and A. Kuznetsov, “Beyond Soft-
net,” in 5th Annual Linux Showcase & Conference, vol. 5,
2001, pp. 18–18.

[45] J. H. Salim, “When NAPI comes to town,” in Linux
Conference, 2005.

[46] “eXtensible Open Router Platform,” http://www.xorp.org/,
November 2014.

[47] “Quagga Routing Suite,” http://www.nongnu.org/quagga/,
November 2014.

[48] A. Beifuß, D. Raumer, P. Emmerich, T. M. Runge, F. Wohl-
fart, B. E. Wolfinger, and G. Carle, “A Study of Net-
working Software Induced Latency,” in 2nd International
Conference on Networked Systems (NetSys), March 2015.

[49] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and
W. Weiss, “An Architecture for Differentiated Services,”
RFC 2475, 1998.

[50] J. Wroclawski, “The Use of RSVP with IETF Integrated
Services,” RFC 2210, 1997.

[51] “PF RING High-Speed Packet Capture, Filtering
and Analysis,” http://www.ntop.org/products/pf ring/
libzero-for-dna, November 2014.

[52] T. Herbert and W. de Bruijn, “Scaling in the Linux
Networking Stack,” https://www.kernel.org/doc/
Documentation/networking/scaling.txt, November 2014.

[53] R. Ramaswamy, N. Weng, and T. Wolf, “Analysis of
Network Processing Workloads,” Journal of Systems Ar-
chitecture, vol. 55, no. 10, pp. 421–433, December 2009.

[54] J. Kim, S. Huh, K. Jang, K. Park, and S. Moon, “The
Power of Batching in the Click Modular Router,” in Asia-
Pacific Workshop on Systems, July 2012, p. 14.

Torsten M. Runge received his M.Sc. degree in Information
Technology/Computer Science from the University of Rostock
in 2006. He worked for Siemens and Deutsche Telekom (2007-
2011) where he participated in several international research
projects dealing with routing in wireless mesh and sensor
networks. Since 2012 he has been engaged in research projects
at the University of Hamburg. His research interests include
computer networks with particular emphasis on routing as well
as parallel packet processing.

Daniel Raumer is research associate at the chair for Network
Architectures at the Technische Universität München (TUM),
Germany, where he received his B.Sc. and M.Sc. in Informatics,
in 2010 and 2012. He is concerned with device performance
measurements with relevance to Network Function Virtualiza-
tion as part of Software-defined Networking architectures.

Florian Wohlfart is a Ph.D. candidate working at the chair for
Network Architectures and Services at Technische Universität
München. He received his M.Sc. in computer science at Technis-
che Universität München in 2012. His research interests include
software packet processing, middlebox analysis and network
performance measurements.

Bernd E. Wolfinger received his Ph.D. in Computer Science
(Dr. rer. nat.) from University of Karlsruhe in 1979. From 1975
until 1980 he was a member of the scientific staff at Nuclear
Research Center, Karlsruhe and became an Assistant Professor
at University of Karlsruhe in 1981. Since October 1981 he has
been a Professor of Computer Science at University of Hamburg,
where he is currently heading the Telecommunications and
Computer Networks (TKRN) Subdivision. He has been editor
of books and special issues of journals; he has published
more than 150 papers in areas such as high-speed & mobile
networks and real-time (audio/video) communications as well
as in modeling (simulation & queuing networks), measurement,
traffic engineering, performance & reliability evaluation, QoS
management and e-learning. Prof. Wolfinger has been a member
of IEEE and of Gesellschaft für Informatik (GI) as well as a
Senior Member of ACM.

Georg Carle is professor at the Department of Informatics of
Technische Universität München, holding the chair for Network
Architectures and Services. He studied at University of Stuttgart,
Brunel University, London, and Ecole Nationale Superieure
des Telecommunications, Paris. He did his PhD in Computer
Science at University of Karlsruhe, and worked as postdoctoral
scientist at Institut Eurecom, Sophia Antipolis, France, at the
Fraunhofer Institute for Open Communication Systems, Berlin,
and as professor at University of Tübingen.

