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Abstract—We currently see a shift from fixed-function network
devices with limited configurability towards network devices with
a fully programmable processing pipeline. A prominent example
of this development is P4 that provides a language and reference
architecture model to design and program network devices. The
core element of this reference model is the programmable match-
action table that defines the processing steps for the network
packets. In this paper, we demonstrate that these tables, which
we use to create our own modeling framework, are the key driver
of device performance.

P4-programmable devices come in a wide variety regarding
their underlying hardware architecture, such as CPU-based sys-
tems or ASICs, as representatives of both ends of the spectrum.
CPU-based P4 target platforms offer limited performance but are
easily extensible. ASIC P4 targets have dedicated P4 processing
pipelines with limited programmability but offer highly optimized
performance. To reflect these fundamental differences, our mod-
eling framework incorporates different approaches to accurately
model and predict the performance of P4-enabled devices.

Index Terms—Data Plane Programming, P4, Key Performance
Indicator, Model, Device Benchmarking

I. INTRODUCTION

In 2014, Bosshart et al. [1] introduced P4, a domain-specific
language (DSL) for software-programmable networking equip-
ment. Subsequently, a variety of hard- and software devices
supporting P4 emerged. Given the appropriate P4 program,
such a device can assume almost any packet processing task,
only limited by its specific hardware capabilities. This paper
analyzes the performance, i.e., latency, jitter, throughput, and
resource consumption, of such highly flexible and extensible
packet processing systems.

Dang et al. [2] and Rotsos et al. [3] use benchmarks to
determine the performance of network devices. Their results
show that network devices can be classified according to
their degree of specialization, for instance, highly specialized
ASICs built for a specific purpose or flexible software-based
devices relying on general-purpose CPUs.

Our paper investigates the performance of two distinct
representatives of both device groups. As hardware target
we analyze a purpose-built Intel Tofino switching ASIC. This
device stands out performance-wise due to a high degree of
parallelism and the absence of caches. On account of its fixed
number of programmable pipeline stages, low latency with
low jitter, properties typical for hardware targets, is achieved.
Resource limiting factors are the complexity of required func-
tionality and fitting the program to the target resources. Our
software target uses the t4p4s P4 compiler, which produces
DPDK-compatible [4] code that runs on commercial off-the-
shelf (COTS) CPU-based systems. As is typical for CPU-

based systems, t4p4s behavior is influenced by many factors,
including interrupts, memory hierarchies, and cache sizes [5].
While achieving lower throughput and higher latency, the
advantage is the virtual non-existence of limits regarding the
P4 program complexity and custom functionality.

In P4, packet processing tasks are expressed as a series
of matches and actions on packet or metadata. Being at the
center of every P4 program, the match-action performance
is crucial to the understanding of the performance of the
entire packet processing pipeline. Therefore, we analyze this
component with a special focus on the differences between
the different target platforms. Based on our measurements,
we derive performance models for the two investigated target
platforms reflecting the individual hardware restrictions of
each platform.

Contributions of this paper can be summarized as follows:
Providing a fine-grained classification of P4 targets with
regards to properties of interest for end-users. An in-depth
analysis of the match-action tables of P4 programs, and finally
the introduction of a novel modeling technique to predict the
performance of P4 devices based on its core component—the
match-action tables.

The remainder of this paper is structured as follows. Sec-
tion II discusses related work. In Section III, background
regarding P4, key performance indicators (KPIs), and par-
ticularities of target devices are discussed. Our methodology
and measurement setup are presented in Section IV and
Section V, respectively. Subsequently, Section VI elaborates
on our CPU performance model, while our ASIC resource
model is introduced in Section VII. Section VIII concludes
this paper.

II. RELATED WORK

Since the concept of benchmarking as a means to understand
performance characteristics of a networking device is well
explored, a variety of related discussions exist.

Rotsos et al. [3] introduce OFLOPS, a benchmarking suite
for OpenFlow switches. Their suite benchmarks the switch
behavior with different OpenFlow rules in place. They demon-
strate that switch performance differs significantly between
different hardware and software implementations of OpenFlow
switches. Dang et al. [2] present a similar idea of a benchmark
suite, but specialize in performance evaluation for P4 capable
devices, such as CPU or FPGA. Comparing a wide range of
P4 implementations, they remain abstract in their performance
investigations but focus on the components of P4 programs.



Adding to that, we provide insights specific to P4 tables,
focusing on the recent version of P4, that is, P416.

An in-depth discussion of the performance of different
implementations of an extern P4 function, namely crypto-
graphic hashing, is given by Scholz et al. [6]. They add
external hashing capabilities for different P4 targets, namely
a CPU, a Network Processing Unit (NPU), and an FPGA.
The performance impact of this extension is investigated
through thorough benchmarks, revealing large performance
differences on a per-platform basis. Further, they show that
this functionality only requires up to 2 % of the target’s total
resources. In their performance investigation of a Netronome
SmartNIC’s P4 implementation, Harkous et al. [7] explore
the impact of header parsing and modification as well as
influence of match-action table applications. They present
a model describing observable latencies in high throughput
scenarios. We improve on the provided insights by increasing
granularity of investigated parameters. Also, a comparison
between different targets puts individual measurements into
perspective. Geyer et al. [8] investigate P4 in the context of
avionic applications. They benchmark P4 implementations of
avionics full-duplex switched Ethernet (AFDX) on different
targets. Their investigation shows that latency differs between
target platforms, but the latency is comparable to existing
dedicated AFDX hardware.

An attractive property of P4, not only to avionics, is
its design that fosters the simplified verification of program
behavior, e.g., by the absence of loops in P4. Liu et al. [9]
and Neves et al. [10] demonstrate the verification of P4
programs using asserts to identify bugs in applications. A
different approach towards code correctness is taken by Nötzli
et al. [11]. Based on the P4 program, they automatically create
test cases to check correct program compilation. Our model
of P4 devices extends the prediction beyond correctness to
performance.

The previous examples show that performance of P4 pro-
grams is highly target-specific. Thus, our paper measures these
properties in a target-specific manner. Our modeling approach
also reflects target specificity, presenting models based on the
fundamentally different hardware architectures of the investi-
gated platforms, enabling more accurate predictions.

III. PROGRAMMABLE NETWORK DEVICES

This section provides background information on P4 as a
language, KPIs of networking hardware, and a selection of P4
targets of importance for this paper.

A. P4 Programming Language

P4 provides a novel approach to SDN allowing network
operators to program custom network device behavior. It is
a packet-centric language, focusing on applying match-action
tables. The abstract architectural model defines a sequence
of control blocks. Framed by a parser—constructing packets
from bit sequences—and its deparser counterpart, these control
blocks perform header-dependent actions and packet modi-
fications. Consequently, parser, match-action control blocks,

and deparser describe basic components of a P4 architecture.
Details, e.g., the number of available control blocks, additional
meta information, or availability of additional functionality,
vary between different networking devices. Hence, P4 intro-
duces abstract representations of hardware, summarizing its
design and functionality.

P4’s centerpiece are match-action tables. They are designed
to allow combining sets of keys, such as, particular header
fields, to determine actions. The table entries are provided
during runtime by the control plane. A sequence of different
match-action tables may be applied to a packet to realize
packet processing tasks. [1]

B. Key Performance Indicator

KPIs outline the properties of interest of networking hard-
ware. For this discussion, we differentiate two groups of KPIs:

P4 target selection properties are relevant criteria to deter-
mine P4 targets meeting an expected level of service quality.
Among these properties are resource consumption, function-
ality, and setup time. Depending on the program complexity,
resource consumption may limit the potential devices capable
of running the program. In contrast to that, functionality refers
to the device’s support for standardized P4 functionality as
well as additional features—provided via so-called P4 externs.
The ability to define custom functionality may provide an
alternative if required externs are unavailable. Lastly, setup
time is the time needed to deploy and start up a P4 program and
device. Assuming most P4 devices are provisioned seldom,
we disregard this non-functional property—including compile
time—for this discussion.

Runtime properties are defined mainly through throughput,
latency, and jitter. Typically, one aims for the highest available
throughput, which still allows the device to operate without
impairment by packet loss. In contrast to that, latency should
remain as low as possible, while variations of packet latencies,
the observed jitter, should be as minimal as possible. We
consider the latency between ingress and egress port of a
device and jitter as the fluctuations of this latency.

C. Classes of Programmable Devices

P4 is available for a variety of programmable devices.
Table I provides an overview using the KPIs defined in
Section III-B. Based on a general-purpose COTS CPU, these
systems use software implementations to provide arbitrary
functionality. While this, in general, comes at the cost of
performance, it provides flexibility in regards to functional-
ity and complexity. The CPU’s processing power limits the
throughput on these systems, interrupts and cache effects may
impact latency and jitter.

The Network processing unit (NPU) is a many-core ar-
chitecture consisting of cores optimized for packet processing.
Programmable NICs can be equipped with such an NPU. Its
optimized architecture provides high throughput performance
and consistently low latency. However, as NPUs are special-
ized hardware, available in fewer shapes than fixed-function
NICs, these benefits come at the cost of reduced flexibility.



CPU NPU FPGA ASIC

Throughput + ++ +++ ++++
Latency > 10 µs 5 µs to 10 µs < 2 µs < 2 µs
Jitter −−−− −−− −− −
Resources ++++ +++ ++ +
Flexibility ++++ +++ ++ +

Example t4p4s NFP-4000 NetFPGA Barefoot
DPDK SmartNIC SUME Tofino

Table I: Comparison of different P4 target architectures. Per-
formance categorizations are estimates for available products
based on own measurements and related work [2], [6], [7].

Programmable via hardware description languages (HDLs),
FPGAs are programmable to provide almost arbitrary func-
tionality. Limited only by basic hardware constraints such as
memory resources and timing limitations, FPGAs often sur-
pass the previous target architectures in regards to throughput,
jitter, and latency. While, in theory, being a highly flexible
architecture, programming FPGAs requires hardware-specific
knowledge and implementing network algorithms in an HDL
becomes a time-consuming task.

In contrast to all previous platforms, application-specific
integrated circuits (ASICs) have a purpose-built, but limited
instruction set. Through optimizations, e.g., a high degree of
parallelism, they excel in regards to processing, i.e., through-
put, latency, and jitter. However, limited expressiveness of
an ASIC’s instruction set also imposes boundaries on their
flexibility regarding feature implementations.

While other architectures exist, the ones above are the most
common targets in literature. In addition, they score in number
of commercial products either in development or already
available. Among the discussed targets, a trade-off between
runtime properties and cost on the one hand, and flexibility
and resource restrictions on the other becomes apparent.

IV. METHODOLOGY

We transition from a complete P4 program towards indepen-
dent components in a top-down approach. Our work focuses
on the performance of P4’s main feature: match-action tables.

A. P4 Program Components

One of the core principles of P4 is segmentation of packet
processing into disjunct programmable blocks [2], for instance,
parser, match-action pipelines, and deparser. This is reflected
in the language, as well as architecture models, defining the
stages for a concrete target. Following this strict modularity,
we investigate each P4 stage separately. We argue, that models
of individual P4 stages can later be combined to represent
complete P4 programs. Performance predictions of combined
models can be used to validate individual P4 stage models.

Our performance analysis considers multiple P4 programs
with increasing complexity. Initially, a baseline P4 program is
derived which includes as little functionality as possible while
still allowing performance measurements. Subsequently, the
baseline program is extended by a match-action table, whereby
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Figure 1: Setup

in successive tests, different properties of the table are scaled
and benchmarked. Each of these programs differs from the
common baseline program modifying a single property, e.g.,
the number of match keys or table entries. From this, we derive
a performance model for the match-action table component.
Ultimately, combining models of individual components facili-
tates modeling arbitrary programs by describing the program’s
behavior as a sum of the applied components. A consequence
of this modeling approach is that with increasing granularity of
the described component properties, precision of the resulting
model is expected to increase.

B. P4 Match-Action Table Properties

Applying the presented approach of investigating com-
ponent properties for performance modeling, the following
parameters for match-action tables were identified: (1) the
table’s match type—exact, longest prefix match (lpm), or
ternary—which determines the mode of comparison between
a packet header or metadata field value and available table
entries; (2) size of individual table entries, defined by the size
and number of keys, number of actions, and the action data;
(3) number of entries in the match-action table; (4) the total
number of match-action tables in a P4 program.

An experimental evaluation of the combination for all
parameters, e.g., testing different key widths, is not feasible.
Therefore, we identify the parameters with the largest impact
and focus on them for modeling.

V. MEASUREMENT SETUP

Measurements were conducted in an automated and repro-
ducible fashion [12]. Figure 1 shows the setup consisting
of two nodes, load generator and Device-under-Test (DuT),
which are directly connected. We use MoonGen [13] as load
generator for throughput and precise latency measurements.
Configuration of the DuT is given in the respective sections.

VI. PERFORMANCE MODEL

We use the DPDK-based t4p4s P4 switch as basis for our
performance model [14]. Running on a COTS CPU system
it has highly dynamic throughput and latency characteristics
compared to other available P4 target architectures and there-
fore requires an in-depth analysis of these KPIs. The t4p4s
P4 compiler generates target-independent C code, which can
then be linked with libraries providing target-specific code for
different platforms. One such library utilizes DPDK, which
is covered by the following discussion. We use the upstream
t4p4s version (commit 919c521 [15]) with small changes due
to performance or functionality reasons. The DuT running
the switch is equipped with an Intel Xeon CPU E5-2640 v2
clocked at 2.0 GHz and an Intel X540-AT2 NIC. For all
measurements turboboost and hyperthreading were disabled
to reduce performance jitter. We discuss CPU cyles C̃, end-
to-end latency L̃ and resources R̃.
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Figure 2: t4p4s traffic flow
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A. Resource Utilization

Memory consumption is typically no issue for P4 programs
on a CPU-based system, as modern servers can provide RAM
up to the TB range. However, the actual usage of memory has
an impact on the performance when different levels of caches
are involved. This may happen for tables with a large number
of entries, i.e., large BGP routing tables. Therefore, we use
white-box profiling measurements to analyze the impact of
memory consumption and present the results as part of our
performance model.

B. Baseline Model

We use the two-fold approach shown in Figure 2 to deter-
mine the baseline model for the CPU target. The first step
(solid blue arrow, referred to as No P4) does not include
any P4 related code, focusing solely on receiving and sending
packets using DPDK. This is to understand the performance
overhead of the underlying DPDK runtime. The second step
(dotted green arrow, referred to as Baseline) adds a minimal
P4 pipeline that each packet traverses, consisting only of a
minimal parser and deparser, setting the egress port statically
without using match-action tables. As before, the goal is
to understand the processing overhead generated through P4
boilerplate code even when no actual processing by the P4
program takes place. We use this Baseline model for all further
measurements of table components.

Figure 3 shows the scaling of processed packet rate with
CPU core frequency. At 1.3 GHz the No P4 program is bound
by the 10 GbE line-rate. Simply adding the boilerplate code
generated by the minimal P4 program reduces the packet rate
by approx. 6 Mpps. Increasing the CPU frequency on one core
or processing with multiple cores results in linear scaling,
bound by line-rate. A higher frequency equals more CPU
cycles per second, allowing more packet processing operations
in the same interval.

For the remainder of the paper we use the measured
maximum packet P̃ rate to calculate the cycles per packet
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Figure 4: Baseline latency

C̃ based on the CPU frequency F :

C̃ =
F

P̃
(1)

Overall processing of one packet requires approx. 84 and 146
cycles for No P4 and Baseline scenario, respectively, which
is in the expected range for DPDK packet processing [5]. For
all further experiments the CPU is clocked at F = 2GHz and
we assume Equation (2) as baseline CPU cycles consumption:

C̃base = 146 (2)

Median latency, shown in Figure 4, increases linearly with
the number of CPU cores. This is due to batch processing
of DPDK. While the batch size remains the same, increasing
the number of cores also increases the number of batches
processed. Maintaining a constant packet rate results in each
batch filling slower with an increasing number of cores,
resulting in longer delays. The difference in processing for the
two scenarios of 62 cycles per packet results in a latency dif-
ference of approx. 31 ns at 2 GHz. The High Dynamic Range
histogram in Figure 4b shows a typical latency distribution for
a CPU-based system. Batches are processed every 100 µs in the
worst case [15], resulting in the plateau for the 99th percentile,
system interrupts and other side effects cause the long-tail [16],
which persists throughout all following measurements.

Based on Figure 4a we use linear regression to model the
baseline median latency L̃base in relation to the number of CPU
cores c clocked at 2 GHz:

L̃base(c) = 1.5 · c+ 11.73 (3)

This baseline is used to evaluate and compare the influence
of adding P4 instructions utilizing match-action tables in the
P4 program.
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(b) Ternary Match Type
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Figure 5: Maximum packet rate, P̃ and C̃ for increasing
number of table entries

C. Number of Table Entries

The number of table entries is a key factor for many
P4 applications. As the CPU target has plenty of memory
compared to hardware targets, we can push the limits of
possible number of table entries. One real-world example are
BGP IPv4 routing tables, which have a steadily increasing
count of unique routable prefixes, reaching 800 000 IPv4
entries at the beginning of 2020 [17].

P4 supports 3 different match types: exact, ternary, and
lpm. In hardware, match types are realized using specialized
hardware, e.g., ternary content-addressable memory (TCAM)
for ternary and lpm matches. In software, different algorithms
with varying properties in regards to limitations and expected
performance are used. The second important aspect of software
is the memory required to store and access table entries, i.e.,
the influence of the memory hierarchy on the performance.

Figure 5 depicts the maximum processed packet rate for dif-
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Figure 6: L3 cache misses for exact match

ferent match types using up to 8 CPU cores. Like the Baseline
program, performance scales linearly with the number of used
CPU cores. Table entries consist of a 4× 4B match key with
the exception of lpm matches where a 1 × 4B key is used.
Caches can accelerate memory access by saving entries that
are queried with a high probability. We aim for a challenging
scenario, therefore, our traffic is generated such that every
packet hits another table entry.

a) Exact Match Type: Figure 5a shows a gradual per-
formance decrease up to 105 entries. Adding more entries
drastically reduces the performance, resulting in halving the
processed packet rate. This is due to the memory hierarchy,
in particular, L3 cache misses shown in Figure 6, requiring
access to slow main memory. Inspecting the implementation
of exact matches results in Equation (4) to model the required
resources R̃exact (in B) for an exact match table based on table
entries n, key size k (in B) and size of the action a (in B):

R̃exact(n, k, a) = 2 · 64B + (k · n)︸ ︷︷ ︸
Hash table

+(8B · n)︸ ︷︷ ︸
Entries

+(a · n)︸ ︷︷ ︸
Actions

= 128B + n · (k + a+ 8B)︸ ︷︷ ︸
Table entry size

(4)

The size of the involved table structs amounts to 2× 64B
due to cache-line alignment. Solving Equation (4) for n using
k = 16B, a = 64B (cache-line aligned), and R̃ = 20MB =
R̃L3 (L3 cache size of the used processor) results in 2.2×105

entries to fill the L3 cache (see mark in Figure 6). This
is an overestimation as the cache is not exclusively used
for table entries but also includes packet data. Similarly, the
performance drops around 3× 101 and 5× 102, a number of
entries that roughly correlates with L1 and L2 cache sizes.
However, due to access time differences between these two
caches, which is below 5 ns, the performance loss is not as
noticeable as when exceeding the L3 cache size [18].

While we generate traffic such that every packet hits an-
other entry, it is not the worst case for hash table lookups.
Theoretical search complexity in the hash table is constant on
average (O(1)), wherefore the main performance influencing
factor is memory access, in particular when exceeding the L3
cache size. Using the data of one CPU core we first derive
a model for the packet rate (shown in Figure 5 as P̃e,<type>)
using least squares curve fitting. From this we derive the cycles
per packet for exact match entries C̃e,exact (shown in Figure 5
as C̃e,<type>), in relation to the number of 4×4B table entries
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Figure 7: lpm DRAM-bound table accesses

n and CPU cores c:

C̃e,exact(n, c) =
1

c
·

{
p · ln(q · n) + r, R̃(n) < R̃L3

s
t·n+u + v, otherwise

(5)

The concrete values for the parameters p, . . . , v are listed in
Table II and are not related for the different match types.
Figure 5a shows that the model remains accurate when scaling
CPU cores.

<type> exact ternary lpm

p 9.13 4080.98 22.64
q 90.19 -0.00062 201.78
r 258.16 -3831.64 210.57
s 538706.18 - -
t -0.01 - -
u -1101.14 - -
v 743.90 - -

Table II: Derived parameters for an increasing number of table
entries using least squares curve fitting. “-” indicates that this
parameter is not applicable for the respective model.

b) Ternary Match Type: Due to the lack of specialized
hardware like TCAM, implementing ternary matches in soft-
ware is difficult. The current implementation of t4p4s simply
iterates through the list of table entries until a matching entry
is found, resulting in exponential search complexity. Due to
the lower number of table entries (< 103) in this scenario,
there is no visible impact of the memory accesses on the
performance. This can be seen in Figure 5b and our derived
model Equation (6).

C̃e,ternary(n, c) =
1

c
· (p · eq·n + r) (6)

c) lpm Match Type: t4p4s uses a DIR-24-8 data-
structure [19] for 32 bit key sizes (IPv4 lpm). While a different
data structure is used to allow 128 bit keys (IPv6 lpm), we
focus on the former. DIR-24-8 uses two different sorts of
tables, tbl24 is a single table to store the most significant
24 bit of the prefix in up to 224 entries. The second sort of
tables (tbl8) are, by default, 28 tables to store the remaining
8 bit. Prefix lengths of ≤ 24 bit can be resolved with one
lookup in the first table, longer prefixes require a second
lookup in the respective tbl8. DIR-24-8 assumes that routes
with a prefix length of greater than 24 bit are rare, optimizing
lookups for smaller prefix lengths, while limiting the number
of greater than 24 bit prefixes that can be stored [19].
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Figure 5c shows the results when using only 24 bit pre-
fixes. Inserting more than 250 000 entries takes considerable
amount of time wherefore those measurements are excluded.
The measurements show logarithmic instead of the theoretic
constant scaling. As with the exact match, cache sizes, in
particular L3 cache, are the limiting factor. Already with 200
table entries 30% of lookups are DRAM-bound, requiring
data fetched from main memory (see Figure 7). This is due
to the increased size of the DIR-24-8 structure, as already
the tbl24 requires 64 MB [19], [20]. As a consequence, the
shared L3 cache is filled with per-core DIR-24-8 structures.
These restrictions imposed by the hardware architecture result
in sub-linear scaling with the number of used CPU cores,
resulting in Equation (7) for the basic case.

C̃e,lpm(n, c) =
1

c+ 0.5
· (p · ln(q · n) + r) (7)

The influence of prefix length is shown in Figure 8. We
added a constant 256 30 bit prefixes to tbl8 such that every
table match now consists of two lookups. For less than 200
entries a performance increase is noticeable. However, this
increase is due to the static increase of 256 table entries.
When increasing the number of table entries, the cost for
the additional 256 entries amortizes, leaving the cost for the
additional lookup in tbl8. For simplicity, we do not include
the additional cost in our model (approx. 6 % loss in accuracy
for > 1000 entries).

d) Latency: Latency measurements for an increasing
number of table entries are shown in Figure 9. The behavior is
comparable to the performance results of the previous section.
Deviations from the baseline model L̃base are only noticeable
when the maximum processed packet rate has large drops
due to memory or algorithm restrictions. This is the case for
exact and lpm matches with 3 or fewer cores. Furthermore,
the median latency for ternary matches with 103 and 104

entries raises to 50 µs and above 80 µs, respectively, for a single
core. While the lower whiskers (1.5 interquartile range) remain
constant throughout all measurements with the exception of
ternary matches, upper whiskers increase with the number of
table entries. This can be explained with the increase in L3
cache misses, resulting in a higher chance that a packet is
stalled before the correct memory is accessed.

D. Increasing Table Entry Size

The size of a table entry can be increased either by increas-
ing the size or number of match keys or by increasing the
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(b) Ternary Match
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(c) lpm Match

Figure 9: Latency for selected number of table entries and
increasing amount of CPU cores. Boxplot shows median
latency, whiskers display 1.5 interquartile range.
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Figure 10: Data type influence (exact match)

stored action data. In both cases, this changes the parameters
k and a for R̃ and, therefore, when the L3 cache limit is
reached. Our experiments have shown that this is indeed the
case. However, for ternary and lpm tables the already discussed
limitations of the respective table implementations outweigh
this effect.

E. Table Key Segmentation

On CPU-based systems, data used as match key can be
represented using different data types. Figure 10 shows the
packet rate when using a 2 × 8B or 1 × 16B data structure
instead of the 4 × 4B data structure used to represent the
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Figure 11: Packet rate for multiple applications of exact match
table

match key. As the total key size is the same we can rule out
memory accesses as cause for the performance differences. In
fact, profiling reveals that the reduced performance for 4×4B
key segmentation is architecture specific. For this case, Store
Forwarding, a performance enhancing feature that allows pre-
vious memory writes to be forwarded to a subsequent memory
read without having to write the value to main memory [21],
failed in 100 % of the cases due to incorrectly passing the data
to the hash function. For our CPU architecture, this results in
a 12 clock cycle performance penalty [21]. Optimizing the
code generated by t4p4s would allow Store Forwarding to
succeed, yielding better performance. While this effect has
a performance impact, we do not include it in our model for
the sake of simplicity. Instead, we use the worst-case (default)
key segmentation for all our measurements.

F. Number of Table Applications

The last property we analyze is the number of applied tables
in the P4 program. While hardware P4 targets typically do
not allow the application of the same table multiple times per
packet, this restriction does not exist in t4p4s. This flexibility
allows a closer estimation of the cost of the actual table
application (i.e., hash calculation), without fetching data for
keys and entries. The data fetched is the same for successive
table applications, getting cached and amortizing the cycles
required. We, therefore, analyze both scenarios, applying the
same table t times and applying t different tables. Each table
is filled with one entry using a 4× 4B match key.

As shown in Figure 11, the packet rate decreases linearly
with the number of tables applied. Increasing the number
of entries per applied table (not shown) causes the effect
discussed in Figure 5a, where memory accesses increase the
cycles per packet. The difference between applying the same
or different tables is small, wherefore we focus on applying
the same table. The cycle model for table applications C̃tables
reveals that every table application adds 57 cycles per packet:

C̃tables(t) = 56.67 · t+ 225.35 (8)

The primary factor is the cost of calculating the hash used
to access the table as the cost for loading the input data and
result are amortized through caching.
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VII. ASIC RESOURCE MODEL

For the resource model we used a commercial P4-
programmable Intel Tofino 1 ASIC Delta ET-X064FFRB. It
is equipped with and capable of switching 65 100 GbE ports.

A. Performance

We use a 10 GbE NIC and the packet duplication feature
of the Intel Tofino to generate 100 Gbit/s of traffic. Baseline
end-to-end latency in this setup is approx. 2 µs. Latency
increases linearly when looping 100 Gbit/s of traffic through
increasing amounts of 100 GbE ports via loopback cables (see
Figure 12a). Effectively, this increases the load on the ASIC
with every additional loop, however, latency remains stable,
showing no long-tail behavior under higher load.

As shown in Figure 12b, increasing the complexity of the P4
program yields latency changes in the nanosecond range. This
behavior persists even in more complex scenarios, wherefore
we focus on the resource consumption for the ASIC target.

B. Available Resources

ASICs typically provide a large amount of affordable static
RAM (SRAM). For specialized purposes, a smaller amount of
more expensive TCAM is used. These resources are used to
create P4 tables, depending on the match type. Exact matches
are realized on SRAM, while ternary or lpm matches work
best in TCAM. The amount of SRAM and TCAM is fixed,
limiting not only the P4 program complexity, but also the size
of tables, in particular, such that use ternary or lpm matches.

C. Table Resource Model

As in Section VI we have identified three primary influenc-
ing factors regarding the resource consumption R of P4 tables
on an ASIC. A single entry is defined by the cost Rwidth caused
by the key width k (for a certain match type) and total action
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data a (the result of the lookup). This is then scaled with the
number of total table entries n depending on the match type:

R<type>(n, k, a) = n · (Rwidth, <type>(k) + a) (9)

The action data a can be any data structure defined in the
P4 program and is therefore highly variable and difficult to
measure the resource cost of. As such, we leave it as unknown
variable with the assumption of linear scaling with action
data size. However, we have a detailed look at the impact
of different key widths to verify our assumption of a linear
dependency. As tables can be applied only once per packet due
to hardware restrictions, the required resources for all tables
of the P4 pipeline are a sum of individual table cost.

D. Key Width Resource Cost

We have tested P4 programs containing a single table with
varying key widths for all match types on our DuT. Resource
consumption is a discrete staircase function when increasing
the number of table entries, which we approximate with a
linear function (see Figure 13a for exact match). Key width
increases the incline of this approximated function for resource
usage. From this, we interpolate the gradient of increasing key
width for every match type, shown in Figure 13b.

For simplicity, we assume that a table only uses one match
key. However, the model can be extended by summing the cost
of every match key before multiplying it with the number of
table entries.

Instead of key segmentation and number of table keys, we
only depend on the total key width being used. As a result,
we can represent resource usage of different key widths using
Equation (10):

Rwidth, <type>(k) = p<type> · k + q<type> (10)

where p is the gradient and q the offset of the interpolation
function depending on the match type. The concrete values
for our tested device are listed in Table III. Note that the



usage for ternary and lpm match were identical in our test.
The explanation is that lpm is a special case of ternary match,
wherefore the hardware implementation is likely identical.

<type> p q Resource

exact 1.00 · 10−6 −2.09 · 10−6 SRAM
ternary/lpm 1.44 · 10−5 4.81 · 10−4 TCAM

Table III: Interpolated parameters of resource model

VIII. CONCLUSION

Network performance is the main concern of network in-
frastructure providers. While changes in network infrastructure
management, such as SDN or P4, open up new possibilities,
the performance remains relevant. Our contribution is a set of
performance models for hard- and software-based P4 targets.
Depending on the type of target, different aspects of the target
architecture gain importance. We investigated software-based
systems, where the underlying hardware resources like cache
sizes impact the performance, whereas memory resources are
plenty and hardly impact performance. The analyzed ASIC-
based device provides high throughput with low delay and
jitter, even when increasing program complexity. However,
available memory resources are a limiting factor.

Both, performance and resource model suggest, that each
P4 target provides unique properties making it preferable
depending on the task in question. The general guideline is
that program complexity through available resource benefits
appertain to software targets. Throughput and latency, on
the other hand, is generally a benefit particular to hardware
targets. Furthermore, the presented models enable determining
feasibility of a given P4 implementation. While presented
models remain target-dependent, that is, parameterization of
other P4 targets may differ, model outputs provide hints
regarding possibilities and limits.

It is generally known and accepted that ASIC targets excel
in providing stable, scaleable performance, while software
targets provide a platform with virtually unlimited resources.
We argue that modeling of device characteristics should be
focused on their respective weaknesses instead. This leads to a
focus on resource usage modeling as sensible metric on ASIC
targets. The Achilles’ heel of software targets, in contrast to
that, is performance behavior.

For future work on this matter, we plan to investigate model
parameters for other available software targets, for example,
P4 transpilers for eBPF or XDP [22].
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H. Wang, C. Cascaval, N. McKeown, and N. Foster, “p4v: practical
verification for programmable data planes,” in Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication,
SIGCOMM 2018, Budapest, Hungary, August 20-25, 2018, S. Gorinsky
and J. Tapolcai, Eds. ACM, 2018, pp. 490–503.

[10] M. C. Neves, L. Freire, A. E. S. Filho, and M. P. Barcellos, “Verification
of P4 programs in feasible time using assertions,” in Proceedings of
the 14th International Conference on emerging Networking EXperiments
and Technologies, CoNEXT 2018, Heraklion, Greece, December 04-07,
2018, X. A. Dimitropoulos, A. Dainotti, L. Vanbever, and T. Benson,
Eds. ACM, 2018, pp. 73–85.

[11] A. Nötzli, J. Khan, A. Fingerhut, C. W. Barrett, and P. Athanas,
“p4pktgen: Automated test case generation for P4 programs,” in Pro-
ceedings of the Symposium on SDN Research, SOSR 2018, Los Angeles,
CA, USA, March 28-29, 2018. ACM, 2018, pp. 5:1–5:7.

[12] S. Gallenmüller, D. Scholz, F. Wohlfart, Q. Scheitle, P. Emmerich,
and G. Carle, “High-Performance Packet Processing and Measurements
(Invited Paper),” in 10th International Conference on Communication
Systems & Networks (COMSNETS 2018), Bangalore, India, Jan. 2018.

[13] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“Moongen: A scriptable high-speed packet generator,” in Proceedings of
the 2015 Internet Measurement Conference. ACM, 2015, pp. 275–287.
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