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Abstract—In 2016, Google published the bottleneck bandwidth
and round-trip time (BBR) congestion control algorithm. Unlike
established loss- or delay-based algorithms like CUBIC or Vegas,
BBR claims to operate without creating packet loss or filling
buffers. Because of these prospects and promising initial perfor-
mance results, BBR has gained wide-spread attention. As such
it has been subject to behavior and performance analysis, which
confirmed the results, but also revealed critical flaws.

Because BBR is still work in progress, measurement re-
sults have limited validity for the future. In this paper we
present our publicly available framework for reproducible TCP
measurements based on network emulation. In a case study,
we analyze the TCP BBR algorithm, reproduce and confirm
weaknesses of the current BBR implementation, and provide
further insights. We also contribute an analysis of BBR’s inter-
flow synchronization behavior, showing that it reaches fairness
equilibrium for long lived flows.

Index Terms—TCP, Congestion Control, BBR, Reproducible
Measurements

I. INTRODUCTION

TCP BBR is a congestion-based congestion control algo-
rithm developed by Google and published in late 2016 [1].
In contrast to traditional algorithms like CUBIC [2] that rely
on loss as indicator for congestion, BBR periodically estimates
the available bandwidth and minimal round-trip time (RTT). In
theory, it can operate at Kleinrock’s optimal operating point [3]
of maximum delivery rate with minimal congestion. This
prevents the creation of queues, keeping the delay minimal.

Service providers can deploy BBR rapidly on the sender
side, as there is no need for client support or intermediate
network devices [1]. Google already deployed BBR in its
own production platforms like the B4 wide-area network and
YouTube to develop and evaluate BBR [1] and provided quick
integration of BBR with the Linux kernel (available since
version 4.9). This spiked huge interest about benefits, draw-
backs and interaction of BBR with alternatives like CUBIC.
The research community has started to formalize and analyze
the behavior of BBR in more detail. While the initial results
published by Google have been reproducible, demonstrating
that BBR significantly improved the bandwidth and median
RTT in their use cases, weaknesses like RTT or inter-protocol
unfairness have been discovered since (e.g. [4, 5, 6]). As a
consequence, BBR is actively improved [5]. Proposed changes
usually aim to mitigate specific issues, however they need to
be carefully studied for unintended side effects.

We introduce a framework for automated and reproducible
measurements of TCP congestion avoidance algorithms. It
produces repeatable experiments and is available as open
source at [7]. The use of emulation using Mininet allows the
framework to be independent of hardware, enabling other re-
search groups to easily adapt it to run their own measurements
or replicate ours.

We demonstrate the capabilities of our framework by in-
specting and analyzing the behavior of BBR in different
scenarios. While the throughput used for our measurements
is orders of magnitude lower compared to testbeds utilizing
hardware, we verify the applicability of our results by repro-
ducing measurements of related work. Beyond reproduction,
we deepen the analysis of BBR regarding inter-flow unfairness
and inter-protocol fairness when competing with TCP CUBIC
flows. Lastly, we use measurements to analyze the inter-flow
synchronization behavior of BBR flows.

This paper is structured as follows: Section II presents
background to TCP congestion control. In Section III, we
describe our framework for reproducible TCP measurements.
We performed various case studies with the analysis of BBR.
The results are used to validate our framework by reproducing
and extending measurements from related work in Section IV.
Our BBR inter-flow synchronization analysis is discussed in
Section V. Related work is presented in Section VI before we
conclude with Section VII.

II. TCP CONGESTION CONTROL

Congestion control is required to achieve high network
utilization for multiple flows, claiming a fair share, while
preventing overloading the network with more packets than
can be handled. Buffers are added to counteract packet drops
caused by short lived traffic peaks, increasing network utiliza-
tion. When buffers remain non-empty (“static buffers”), they
add delay to every packet passing through the buffer, coined
bufferbloat. Static buffers originate mainly from two factors,
as shown by Gettys and Nichols [8]: poor queue management
and failure of TCP congestion control. Algorithms like TCP
NewReno [9] or TCP CUBIC [2] use packet loss as indication
of congestion. However loss only occurs when the buffers
are close to full at the bottleneck (depending on the queue
management used). The congestion is only detected when
the bottleneck is already overloaded, leading to large delays
hurting interactive applications.ISBN 978-3-903176-08-9 c©2018 IFIP
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Figure 1: Effect of increasing inflight data on the RTT and
delivery rate. Based on [1].

Various TCP congestion control algorithms were developed
to improve on loss-based congestion control. Examples include
TCP Vegas [10], adapting delay as indicator, or TIMELY [11]
based on precise RTT measurements. However, these are
suppressed when competing with loss-based algorithms. Hock
et al. present TCP LoLa [12], primarily focusing on low
latency. Hybrid algorithms using both loss and delay as con-
gestion indication were proposed such as TCP Compound [13].
Alizadeh et al. proposed Data Center TCP (DCTCP) [14],
which requires support for Explicit Congestion Notification
(ECN) in network switches.

A. TCP Optimal Operation Point

Any network throughput is limited by the segment with the
lowest available bandwidth on the path. It is called bottleneck,
as it limits the total throughput of the connection. Thus for
modeling congestion control, a complex network path can be
modeled by a single link. The delay of that link is set to
the sum of all propagation delays in each direction and the
bandwidth is set to the bottleneck’s (BtlBw). This preserves
the round trip propagation delay (RTprop). The bandwidth-
delay product (BDP) as BtlBw ·RTprop describes the amount
of data that can be inflight (non-acknowledged) to fully utilize
the network path and is coined Kleinrock’s optimal point of
operation [3].

Figure 1 visualizes the effects of an increase in inflight
data on the connection’s bandwidth and RTT. If less data
than the BDP is inflight, there is no congestion and the
RTT equals RTprop (application bound). The delivery rate
corresponds directly to the sending rate, but hits the maximum
when the inflight data reaches the BDP at Kleinrock’s point.
Increasing the inflight further causes packets to arrive faster at
the bottleneck than they can be forwarded. This fills a queue,
causing added delay which increases linearly with the amount
inflight (recognized by delay-based algorithms). The queue
is full when the amount inflight hits BDP + BtlneckBufSize.
After this point, the bottleneck buffer starts to discard packets
(recognized by loss-based algorithms), capping the RTT. This
shows that both delay and loss-based algorithms operate
beyond Kleinrock’s optimal operating point.

B. Bottleneck Bandwidth and Round-trip Propagation Time

The following describes basics of BBR that are important
for our evaluation. Our deliberations are based on the version
presented by Cardwell et al. [1] and we refer to their work for
a detailed description of the congestion control algorithm or
[4] for a formal analysis.

1) Overview: The main objective of BBR is to ensure that
the bottleneck remains saturated but not congested, result-
ing in maximum throughput with minimal delay. Therefore,
BBR estimates bandwidth as maximum observed delivery rate
BtlBw and propagation delay RTprop as minimum observed
RTT over certain intervals. Both values cannot be measured
simultaneously, as probing for more bandwidth increases the
delay through the creation of a queue at the bottleneck and
vice-versa. Consequently, they are measured separately.

To control the amount of data sent, BBR uses pacing gain.
This parameter, most of the time set to one, is multiplied with
BtlBw to represent the actual sending rate.

2) Phases: The BBR algorithm has four different
phases [15]: Startup, Drain, Probe Bandwidth, and Probe RTT.

The first phase adapts the exponential Startup behavior
from CUBIC by doubling the sending rate with each round-
trip. Once the measured bandwidth does not increase further,
BBR assumes to have reached the bottleneck bandwidth.
Since this observation is delayed by one RTT, a queue was
already created at the bottleneck. BBR tries to Drain it by
temporarily reducing the pacing gain. Afterwards, BBR enters
the Probe Bandwidth phase in which it probes for more
available bandwidth. This is performed in eight cycles, each
lasting RTprop: First, pacing gain is set to 1.25, probing for
more bandwidth, followed by 0.75 to drain created queues. For
the remaining six cycles BBR sets the pacing gain to 1. BBR
continuously samples the bandwidth and uses the maximum
as BtlBw estimator, whereby values are valid for the timespan
of ten RTprop. After not measuring a new RTprop value for
ten seconds, BBR stops probing for bandwidth and enters the
Probe RTT phase. During this phase the bandwidth is reduced
to four packets to drain any possible queue and get a real
estimation of the RTT. This phase is kept for 200 ms plus one
RTT. If a new minimum value is measured, RTprop is updated
and valid for ten seconds.

III. TCP MEASUREMENT FRAMEWORK

The development of our framework followed four require-
ments. Flexibility of the framework should allow to analyze
aspects of TCP congestion control, focusing on but not limited
to BBR. The Portability of our framework shall not be
restricted to a specific hardware setup. Reproducibility of
results obtained via the framework must be ensured. Given
a configuration of an experiment, the experiment itself shall
be repeatable. All important configuration parameters and the
results should be gathered to allow replicability and repro-
ducibility by others. The complete measurement process shall
be simplified through Automation. Via configuration files and
experiment description, including post processing of data and
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Figure 2: Mininet setup with sending and receiving hosts and
bottleneck link.

generation of plots, the experiment should be executed without
further user interaction.

A. Emulation Environment

Our framework uses emulation based on Linux network
namespaces with Mininet. Linux network namespaces provide
lightweight network emulation, including processes, to run
hundreds of nodes on a single PC [16]. A drawback is that
the whole system is limited by the hardware resources of a
single computer. Thus we use low bandwidths of 10 Mbit/s
for the different links in the studied topology. By showing
in Section IV that our measurements yield similar results as
related work performing measurements beyond 10 Gbit/s, we
argue that the difference in throughput does not affect the
validity of the results.

B. Setup

Topology: As a TCP connection can be reduced to the
bottleneck link (cf. Section II-A), our setup uses a dumbbell
topology depicted in Figure 2. For each TCP flow a new host-
pair, sender and receiver, is added for simplified collection of
per-flow data. Both sides are connected via three switches.
The middle switch acts as the bottleneck by performing traffic
policing on its interface. The two additional switches allow
capturing the traffic before and after the policing. Traffic from
the receivers to the senders is not subject to rate limiting since
we only send data from the senders and the returning acknowl-
edgment stream does not exceed the bottleneck bandwidth,
assuming symmetric bottleneck bandwidth.

Delay Emulation: We use NetEm to add flow specific delay
at the links between the switch and the respective receivers to
allow configurable RTTs. This approach introduces problems
for higher data rates like 10 Gbit/s where side effects (e.g.
jitter) occur [4], but works well for the data rates we use.

Rate Limit & Buffer Size: We use Linux’s Token-Bucket
Filter (TBF) for rate limiting and setting the buffer size. TBFs
also allow a configurable amount of tokens to accumulate
when they are not needed and the configured rate can be
exceeded until they are spent. We set this token bucket size to
only hold a single packet, because exceeding the bottleneck
bandwidth even for a short time interferes with BBRs ability
to estimate the bottleneck bandwidth correctly [1].

C. Workflow

Each experiment is controlled using a configuration file de-
scribing the flows. For each flow, the desired TCP congestion

control algorithm, start time in relation to previous flow, RTT,
and runtime have to be specified. The runtime of an experiment
consists of a negligible period to set up Mininet, as well as the
actual experiment defined by the length of the running flows.
The framework automatically extracts data and computes the
implemented metrics.

D. Metric Collection

For each TCP flow we gather the sending rate, throughput,
current RTT, and the internal BBR values. We also sample
the buffer backlog of the TBF every 40 ms. As a result of
one experiment, a report containing 14 graphs visualizing
the metrics over time is automatically generated. A sample
experiment report, including its configuration file, can be
found with our source code publication [7].

We capture the headers up to the TCP layer of all packets
before and after the bottleneck using tcpdump. The raw data
is processed to generate the metrics listed below. Existing tools
like Wireshark (including the command line tool tshark) and
tcptrace did not meet all our requirements for flexibility.
Instead we wrote our own analysis program in Python.

Sending Rate & Throughput: We compute the per flow
and total aggregated sending rate as the average bit-rate based
on the IP packet size in 200 ms intervals, using the capture
before the bottleneck. The throughput is computed equal to the
sending rate, but is based on the capture after the bottleneck
to observe the effect of the traffic policing.

Fairness: We follow the recommendation of RFC 5166 [17]
and use Jain’s Index [18] as fairness coefficient based on
the sending rate to indicate how fair the bandwidth is shared
between all flows. For n flows, each of them allocating xi ≥ 0
of a resource,

F = 1/n · [Σn
i=1xi]

2/Σn
i=1x

2
i

is 1 if all flows receive the same bandwidth and 1/n if one
flow uses the entire bandwidth while the other flows receive
nothing. The index allows quantifying the fairness in different
network setups independent of the number of flows or the
bottleneck bandwidth. Graphs displaying the fairness index in
the remaining part of this paper are restricted to the interval
[1/n, 1] unless mentioned otherwise.

Round-trip Time: RTT values are aggregated in intervals
of 200 ms and averaged to provide better stability. Samples of
retransmitted packets are ignored.

Retransmissions: We count retransmissions of TCP seg-
ments in the packet capture before the bottleneck. We use
these as an indicator for packet loss in our evaluation.

Inflight Data: Refers to the number of bytes sent but not yet
acknowledged. We obtain this value by computing the differ-
ence of the maximum observed sequence and acknowledgment
numbers in the capture before the bottleneck. This metric is
only useful when there are no retransmissions.

BBR Internal Values: BBR keeps track of the estimated
bottleneck bandwidth and RTT as well as the pacing and
window gain factors. We extract these values every 20 ms
using the ss tool from the iproute2 tools collection.
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Figure 3: Single BBR flow (40 ms, 10 Mbit/s bottleneck) under
changing network conditions. Values sampled every 40 ms.

E. Limitations

Due to resource restriction on a single host emulated net-
work, we are limited to bandwidths in the 10 Mbit/s range.
However, our methodology provides sufficient accuracy com-
pared to measurements utilizing real hardware. This is because
both approaches use the same network stack, i.e., the same
implementation of the BBR algorithm.

The CPU and RAM capacities of the test system limit the
number of emulated hosts and therefore flows. We encountered
problems when spawning more than 30 hosts simultaneously
using a host equipped with an Intel Core i5-2520M CPU
@ 2.50 GHz and 8 GB RAM.

IV. REPRODUCTION & EXTENSION OF RELATED WORK

We validate the accuracy of our framework by using it
to reproduce the results of related work that were based on
measurements with hardware devices. The results show that
the behavior of TCP BBR at bandwidths in the Mbit/s range
is comparable to the behavior at higher ranges of Gbit/s. In the
following, we present our reproduced results with a mention
of the respective related work.

We focus on the results of two research groups. Cardwell
et al., the original authors of BBR, have described their current
research efforts towards BBR 2.0 [1, 5]. Goals are reduced loss
rate in shallow buffers, reduced queuing delay and improved
fairness among others. Hock et al. evaluated BBR in an
experimental setup with 10 Gbit/s links and software-based
switches [4]. They reproduced intended behavior of BBR with
single flows, but also showed cases with multiple flows where
BBR causes large buffer utilization.

For all following figures the raw data, post-processed data
and source code to generate the figures can be found with
our source code publication [7]. Unless representing a single
flow, measurements were repeated five times and standard
deviations are shown where applicable.

A. Single Flow

Figure 3 shows how a single BBR flow reacts to changes
of the bottleneck bandwidth in a network. Thereby, the first
55 seconds are our reproduction of [1, Fig. 3]. For equal
network conditions, no significant differences are visible. The
sending rate, measured RTT and inflight data closely follow
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Figure 4: RTT unfairness for multiple flows with two groups
of RTTs

the doubling in BtlBw. After the bandwidth reduction, a queue
is generated, as indicated by the increased RTT estimation, and
drained in the following five seconds.

Instead of an additional bandwidth reduction, we tripled
RTprop at the 56 s mark. The results are surprising at first.
Similar to a decrease in BtlBw, BBR cannot adapt to an
increase in RTprop immediately, since the minimum filter
retains an old, lower value for another 10 s. When RTprop
grows, the acknowledgments for the packets take longer to
arrive, which increases the inflight data until the congestion
window is reached. To adapt, BBR limits its sending rate,
resulting in lower samples for BtlBw. As soon as the BtlBw
estimate expires, the congestion window is reduced according
to the new, lower BDP. This happens repeatedly until the old
minimum value for RTprop is invalidated (at approx. 62 s).
Now, BBR learns about the new value and increases the
sending rate again to match BtlBw with exponential growth.

While this behavior is not ideal and can cause problems, the
repercussions are not severe for two reasons. First, even though
the sending rate drops, the inflight data does not decrease
compared to before the RTT increase. Second, it is unlikely
that such a drastic change in RTT happens in the Internet in
the first place.

The RTT reduction at 76 s is adapted instantly because of
the RTT minimum filter.

Figure 3 also validates that our framework can sample
events detailed enough (4t = 40 ms), as both Probe Band-
width (small spikes) and Probe RTT phases (large spikes every
10 s) are displayed accurately. However, in general we use
4t = 200 ms for less overhead.

B. RTT Unfairness

The RTT unfairness of BBR is visualized in [6, Fig. 1].
Two flows share a bottleneck of 100 Mbit/s, one flow having
a larger RTT than the other (10 ms and 50 ms). The flow with
shorter RTT starts three seconds before the other. We set the
bandwidth to 10 Mbit/s and adapted all other parameters. Our
reproduced results (not shown) only differ slightly: The larger
flow receives about 10 % less of the bandwidth.

As shown in Figure 4, the behavior can also be observed
when increasing the number of flows. Flows with equal RTT
converge to a fair share within their group, however, groups
with higher RTT claim a bigger share overall.

C. Bottleneck Overestimation for Multiple Flows

BBR overestimates the bottleneck when competing with
other flows, operating at the inflight data cap [4]. The analysis
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of Hock et al. predicts 2 BDP ≤ ∑
i inflighti < 2.5 BDP.

Our experiments using a large enough buffer size of 5 BDP
reproduce the results of this formal analysis as shown in
Figure 5. For five simultaneously started BBR flows, the sum
of the BBR estimations of BtlBw exceeds the real BtlBw after
each Probe RTT phase, increasing the estimation towards the
inflight cap. The backlog of the bottleneck buffer is kept at
1.5 BDP resulting in a total of 2.5 BDP.

1) Insufficient Draining of Queues During Probe RTT: To
measure the correct RTprop value, all flows need to simulta-
neously drain the queue in Probe RTT. Figure 6, displaying
the duration of the Probe RTT phase for five flows and the
overlap thereof, shows that this is not the case. For RTTs
below 40 ms the overlap is only half of the duration of the
Probe RTT phase (200 ms + RTT). This is because all flows
enter Probe RTT at slightly different times even though the
flows are synchronized. As a consequence, the queue is not
drained enough and BBR overestimates the bottleneck.

For high RTTs the overlap exceeds the theoretic maximum
of 200 ms + RTT. Indeed, the duration of the Probe RTT phase
for each individual flow equals 200 ms + 2.5 RTT. This is
because when the previous RTprop value expires, triggering
the Probe RTT phase, BBR chooses the newest measured
RTT as RTprop [15]. As this value, however, is based on a
measurement outside of the Probe RTT phase, it is influenced
by the 2.5 BDP overestimation. As a consequence, the Probe
RTT phase is longer, reducing the performance of BBR.

2) Retransmissions for Shallow Buffers: BBR is susceptible
to shallow buffers as it overestimates the bottleneck, not
recognizing that the network is strongly congested, since
packet loss is not interpreted as congestion. Cardwell et al.
have shown that BBR’s goodput will suffer if the buffer cannot
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Figure 8: Competing BBR and CUBIC flow

hold the additional 1.5 BDP [5].
We reproduced this effect by analyzing the relation be-

tween bottleneck buffer size and caused retransmissions for
both BBR and CUBIC (cf. Figure 7). Five TCP flows are
started simultaneous and share a 10 Mbit/s, 50 ms bottleneck
(BDP = 500 kbit). We compute the retransmission rate for
different buffer sizes at the bottleneck for BBR and CUBIC
individually. BBR<20 s shows the first 20 s of the test includ-
ing only startup and synchronization phases. BBR≥20 s and
CUBIC≥20 s represent steady-state operation after 20 s.

For shallow buffers up to 2 BDP retransmission for BBR
exceeds the amount for CUBIC by a factor of 10. This is
a consequence of the buffer overestimation, in contrast to
CUBIC’s adaption of the congestion window for loss events.
Between 2 BDP and 2.5 BDP loss only occurs during the
startup and synchronization phases (before 20 s) for BBR. This
is because of the initial aggressive bandwidth claiming. For
even larger buffers BBR is not susceptible to loss.

CUBIC, as loss-based algorithm, produces loss with all
buffer sizes during congestion avoidance phase. However, for
small buffer sizes it is a factor of 10 below BBR. Only
when exceeding 10 BDP = 5 Mbit a rise in retransmissions is
visible for CUBIC. This is because of taildrop, increasing the
repercussions of a single loss event. However, buffers with this
large capacity are not realistic in the Internet [8] and therefore
only pose a theoretic problem.

D. Inter-protocol Behavior With CUBIC

In the best case, a competing BBR and CUBIC flow reach
an oscillating steady-state [5]. This is caused by the RTprop
estimation of BBR as shown in Figure 8. CUBIC’s aggressive
probing for bandwidth causes the queues to fill up, resulting
in BBR to measure a higher delay, increasing its BDP. In turn,
this causes packet loss, resulting in reduced data inflight for
CUBIC. Once the queue is drained, CUBIC starts to probe
again, while BBR measures the correct RTprop value. This
oscillation results in F being constantly low, however, both
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flows reach an equal average throughput. For the following
analysis related to the inter-protocol behavior we use Ftp as
fairness index based on the average throughput.

The size of the bottleneck buffer is crucial for the fairness
between competing BBR and CUBIC flows [1, 4]. Figure 9a
shows our reproduction of this result, displaying the band-
width share and fairness for one BBR and one CUBIC flow
for different bottleneck buffer sizes. Up to 1.5 BDP buffer
size, BBR causes constant packet loss as explained in the
previous section. CUBIC interprets this as congestion signal
and reduces its sending rate. Up to 3 BDP both flows reach
a fair share, while for further increasing buffer sizes CUBIC
steadily claims more. The reason is that CUBIC fills up the
ever growing buffers. For BBR this results in ever growing
Probe RTT phases, i.e., reduced sending rate. The length of
and the gap between Probe Bandwidth phases increases too,
reducing BBR’s ability to adapt. However, these buffer sizes
pose only a theoretical problem (cf. Section IV-C2).

While showing the same overall behavior, RTT changes
have a smaller influence on the fairness if applied to both
flows as shown in Figure 9b. For all tested RTTs the fairness
remained above 80 %. However, when fixating one flow at
50 ms RTT and varying the RTT of the other flow, unfairness
emerges (Figure 9c). For small RTTs or shallow buffers BBR
suppresses CUBIC for the already discussed reasons. In the
other cases, the bandwidth share remains independent of the
RTT. Only when having large buffers, CUBIC gains increasing
shares with increasing RTT. Our conclusion is that the fairness
between CUBIC and BBR largely depends on the botteneck
buffer size, while the RTT only has a small impact.

Lastly, we evaluate how the number of flows competing
with each other influences the throughput share per conges-
tion avoidance algorithm. Figure 10 shows that CUBIC is
suppressed independent of the number of flows in a scenario
with 50 ms RTT and 2.5 BDP bottleneck buffer. A single BBR
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flow claims more bandwidth than its fair share already when
competing against two CUBIC flows. In fact, independent of
the number of BBR and CUBIC flows, BBR flows are always
able to claim at least 35 % of the total bandwidth.

V. INTER-FLOW SYNCHRONIZATION

Different BBR flows synchronize themselves to avoid faulty
estimations, e.g., when one flow probes for bandwidth causing
a queue to form at the bottleneck, while another probes
for RTT. In contrast to loss-based algorithms, this does not
correlate with congestion, as the flows are impervious to loss.

A. Theory & Questions

Cardwell et al. demonstrate in [1, Fig. 6] how different
BBR flows synchronize whenever a large flow enters the
Probe RTT phase. We visualize the process in Figure 11 with
one new flow joining four already synchronized flows. The
new flow immediately overestimates the bottleneck link and
claims a too large share of the bandwidth. 10 s later it enters
Probe RTT. The flow with bigger share drains a large portion
of packets from the queue, which results in all other flows
measuring a better RTprop estimate. Consequently, the flows
are synchronized as the RTprop samples of all flows expire at
the same time, causing them to enter Probe RTT together at
the 81 s mark. Considering the fairness, it takes approximately
35 s after the new flow joined until equilibrium is reached.

To maximize performance, BBR should only spend 2% of
time in Probe RTT [1, 15]. Therefore, new flows have trouble
to measure the correct RTprop as active flows likely probe for
more bandwidth and create queues. It causes the new flow to
overestimate the BDP, inducing queuing delay or packet loss.

This raises two questions regarding the synchronization
behavior of BBR flows: Is there an optimal and worst moment
regarding the time until equilibrium is reached for a single
flow to join a bottleneck containing already synchronized
BBR flows? And secondly we want to determine if constantly
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adding new flows can result in extended or accumulated
unfairness.

B. Synchronization Metrics

To quantify the impact of a new flow joining we use
two metrics based on Jain’s fairness index F . For better
comparison we define Tjoin as the point in time when the
flow of interest, i.e. the last flow, has joined the network (cf.
Figure 11). As first metric, we define TF95 as the point after
Tjoin for which F remains stable above 0.95, i.e. no longer
than 2 s below this threshold. Second, we compute the average
fairness Favg in the interval [Tjoin, Tjoin + 30 s].

In the following we analyze the behavior of flows with equal
RTTs. We assume that all effects described in the following
will scale similarly as described in Section IV-B with RTT
unfairness between flows.

C. Single Flow Synchronization Behavior

To analyze the basic synchronization behavior, we use the
scenario of one new BBR flow joining a network with four
other BBR flows already synchronized and converged to a fair
share. Figure 12a shows our experimental evaluation when
joining a new flow in relation to the Probe RTT phase of the
synchronized flows.

As expected, a periodic behavior is revealed, with the best
case for a new flow to join being during the Probe RTT phase.
It synchronizes immediately as the queues are drained and the
new flow can measure the optimal RTT, leading to low TF95

and high Favg. The worst case is if the flow joins directly
after the other flows left the Probe RTT phase. At this point,
the queue is building again as the flows keep 2 BDP inflight,
resulting in the new flow severely overestimating the BDP. It
remains in this state until the old flows enter Probe RTT again
(up to 10 s later), draining the queue and synchronizing with
the new flow. This behavior of aggressively taking bandwidth
from existing flows can be harmful when many short living
BBR flows join, leading to starvation of long-living flows.

In general, it lasts 20 s until TF95 is reached, but the later
the new flow joins during the cycle, the higher varies TF95 (10
to 30 s). The local optimum when joining 2 s before the Probe
RTT phase with TF95 = 10 s is because the existing flows
enter the Probe RTT phase while the new flow drains after the
Startup as shown in Figure 12b. Consequently, all flows drain
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the queue and measure a new optimal RTprop, synchronizing
immediately, yet overestimating the bottleneck because the
queue created during Startup is not entirely drained yet. In
contrast, the worse case directly afterwards (1.7 s before next
Probe RTT) with TF95 = 22 s is caused by the existing flows
entering Probe RTT, draining the queue, while the new flow is
in Startup. This causes the new flow to drastically overestimate
the bottleneck until leaving Startup, suppressing other flows.

Considering the prevalence of short-lived flows in the
Internet [19, 2], this high TF95 value poses a significant
disadvantage of TCP BBR. Initially, flows during this time
suppress other flows through unfair bandwidth claims, which
is only solved when reaching a fair share.

D. Accumulating Effects

To evaluate if negative effects of multiple flows joining
can accumulate, i.e. whether the duration of unfairness can
be prolonged, we change the scenario to have a new flow join
every x seconds up to a total of five BBR flows (cf. Figure 13).

Optima are visible for intervals matching the duration of the
Probe RTT phase of the already active flows at approximately
10 s and 20 s. When all flows join at the same time, they all
measure a good RTprop value within the first few packets,
synchronizing them immediately. For intervals smaller than
10 s accumulating effects are visible as new flows rapidly join,
not allowing the fairness to stabilize. As for a single flow, TF95

and Favg improve with increasing interval. For flows joining
every 5 s an additional local optimum is visible as every second
flow joins during the Probe RTT phase of the other flows. For
intervals larger than one Probe RTT cycle (after flows leave
Probe RTT, approximately 10.5 s), TF95 and Favg show the
behavior for a single flow joining. This is because all prior
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flows have already synchronized, resulting in them already
converging towards an equilibrium before the next flow joins.

Analyzing the effect of a new flow joining on individual
existing flows, e.g. the longest running flow, is difficult for
the lack of a good metric. We therefore select the best and
worst case join intervals displayed in Figure 14 for a visual
analysis. As the minimum value of F depends on the number
of flows (1/n), it is normalized using percentages.

Figures 14a and 14b show the effects of subsequent flows
joining during (best case) or immediately after (worst case)
the Probe RTT phase. Similar to the effects on the last flow
joining, existing flows are only influenced by the timing of the
next flow joining. Within the group of synchronized flows, they
converge to their fair share. The synchronization itself depends
on the timing and happens at most after 10 s. The resulting
unfairness is only caused by the new flow. The overall time
until bandwidth equilibrium is approximately 55 s and 70 s,
respectively. We attribute the 15 s difference to the longer
synchronization phase in the latter case (10 s) and bigger
unfairness thereof.

Throughout all our tests we encountered rare cases where
TF95 extended for up to 50 s, which are not reproducible. We
attribute this instability to the sensibility of the join timing.

Summarizing, the fair sharing of bandwidth is intertwined
with the timing of new flows joining the network. Except
during the brief Probe RTT phase, equilibrium is only reached
after 20 s and can extend up to 30 s. However, there are no
effects accumulating beyond the interval of one Probe RTT
phase. The timing only has a short term effect on the amplitude
of unfairness, not TF95 .

VI. RELATED WORK

Different definitions of and processes to reach reproducibil-
ity exist [20], e.g. as a three stage process as defined by an
ACM policy [21]. Thereby, the minimum level is repeata-
bility. It refers to recreating the results for an experiment
conducted by the same scientists with the same tools. The
term replicability is used for results that can be reproduced
by other scientists given the same experiment setting. Finally,
reproducibility defines that results can be validated in differ-
ent experiments, by different scientists and tools.

Our paper contributes to these quality aspects by repro-
ducing results of other scientists with different methods (i.e.
reproducibility). By providing our framework as open source
software, we increase the value of our results by allowing
others to replicate them (i.e. replicability).

A. Reproducible Measurements with Network Emulation

Handigol et al. [22] have shown that various network
performance studies could be reproduced using Mininet. The
Mininet authors published an editorial note [23] in 2017,
wherein they describe efforts in reproducing research. They
reproduced performance measurements of DCTCP, Multi-Path
TCP (MPTCP), the TCP Opt-ack Attack, TCP Fast Open, and
many more. Other research groups used Mininet in studies
about TCP, such as the work from Paasch et al. [24], with
a performance evaluation of MPTCP. Girardeau and Steele
use Mininet in Google Cloud VMs to perform simple BBR
measurements [25]. They use a patched kernel and, compared
to our approach, their setup and runtime for one experiment
is significantly higher with up to 50 minutes.

BBR support is announced to be available for the network
simulator ns3 [26]. The Pantheon allows researchers to test
congestion control algorithms in different network scenar-
ios [27]. The results of Internet measurements are used to
tune the parameters of emulated network paths which provides
better reproducibility.

B. TCP BBR in Other Domains

BBR deployed in domains with different requirements
yields varying results. Kuhn has shown promising results
over SATCOM links, which have latencies in the range of
500 ms [28]. They state that a “late-comer unfairness” [28]
exists. Leong et al. claim that BBR can be further improved
for mobile cellular networks [29], which is a recent research
area of Cardwell et al. [5]. Kakhki et al. integrated BBR for
QUIC, however, state that it is not yet performing well [30].

VII. CONCLUSION

We presented a framework for TCP congestion control mea-
surements focusing on flexibility, portability, reproducibility
and automation. We used Mininet to emulate different user-
configured flows. Experiments run without user interaction and
produce a report containing graphs visualizing 14 metrics. We
reproduced related work to validate the applicability of our
approach using emulation.

Furthermore, we summarized the state of the art for analysis
for TCP BBR and extend existing insights in several aspects.
In particular, we have shown that the algorithm to determine
the duration of the Probe RTT phase is flawed and that
in most cases BBR and CUBIC do not share bandwidth
in a fair manner. Our final contribution is an experimental



analysis of the synchronization mechanism. We identified two
primary problems. Depending on the timing of new flows
joining existing flows in relation to their Probe RTT phase,
bandwidth can be shared severely unfair. This boils down
to BBR’s general problem of overestimating the BDP. The
second problem is the time until a bandwidth equilibrium is
regained. This can last up to 30 s, which is bad for short-
lived flows, common in today’s Internet. We identified that
this is correlated with the trigger for synchronization, i.e. the
Probe RTT phase, draining the queues. Consequently, without
reducing the time between Probe RTT phases, the worst case
time until flows synchronize cannot be improved further.

Our framework as well as the raw data for all figures
presented is available online [7] for replicability of our results
and to allow further investigations by the research community.
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