
Assessing Soft- and Hardware Bottlenecks in PC-based Packet Forwarding Systems

Paul Emmerich, Daniel Raumer, Florian Wohlfart, and Georg Carle

Technische Universität München, Department of Computer Science, Network Architectures and Services
Boltzmannstr. 3, 85748 Garching bei München, Germany

{emmericp|raumer|wohlfart|carle}@net.in.tum.de

Abstract—Due to grown capabilities of commodity hardware for
packet processing and the high flexibility of software, the use of
those systems as alternatives to expensive dedicated networking
devices has gained momentum. However, the performance of
such PC-based software systems is still low when compared to
specialized hardware. In this paper, we analyze the performance
of several packet forwarding systems and identify bottlenecks by
using profiling techniques. We show that the packet IO in the
operating system’s network stack is a significant bottleneck and
that a six-fold performance increase can be achieved with user
space networking frameworks like Intel DPDK.

Keywords–Linux Router; Intel DPDK; Performance Evaluation;
Measurement.

I. INTRODUCTION

Software routers and switches which are based on com-
modity hardware provide high flexibility. The user can com-
bine modules without paying for unnecessary features. Soft-
ware switches hosted on a single server allow for switching
between virtual machines above the physical limit of its
10 GbE network adapters [1]. Additionally, almost any middle
box behavior can be added to a software switch. Whole operat-
ing systems like the Vyatta Open-Firmware-Router [2] which
focus on packet processing on commodity hardware have been
created as part of new business models demonstrating the
marketability of software routers and switches.

We analyze the performance of Linux IP forwarding, Linux
bridge, Open vSwitch (OvS) [3], DPDK L2FWD (a forwarding
application based on the user space packet processing system
DPDK [4]), and DPDK vSwitch [5], a port of OvS that uses
DPDK. We focus our measurements on OvS because it is
the latest and fastest forwarding method based on the Linux
network stack and the existence of the DPDK port allows for
a direct performance comparison of the Linux network stack
with DPDK. Thus we can show where potentially unnecessary
bottlenecks in kernel-based packet processing systems are.

The throughput of DPDK-based software is significantly
faster than the kernel forwarding techniques. We use profiling
techniques to understand why the kernel applications are
slower. We analyze hardware bottlenecks like effects of the
CPU cache and software bottlenecks in the applications and
the kernel. Based on these results we conclude that the most
important bottleneck is receiving and sending packets in the
network stack and that a six-fold performance improvement
for OvS can be achieved by replacing the I/O technique with
DPDK or a similar framework like Netmap [6] or PF_RING
DNA [7].

We begin with a description of our test setup in Section II.
Section III presents the results of our throughput tests. Sec-

tion IV discusses potential hardware bottlenecks and Section V
software bottlenecks. We discuss related work in Section VI
and conclude with an outlook.

II. TEST METHODOLOGY

Our test setup in Fig. 1 is based on recommendations by
RFC 2544 [8].

A. Hardware Setup

Servers A and B are used as load generators and packet
counters, the DuT (Device under Test) runs the software under
test. For black-box tests, we must not introduce any overhead
on the DuT through measurements. So we measure the offered
load and the throughput on A and B. The DuT runs the
Linux tool perf for white-box tests; this overhead reduces
the maximum throughput by ∼ 1%.

The DuT uses an Intel X520-SR2 dual 10 GbE network
interface card (NIC), the two other servers are equipped with
X520-SR1 single port NICs. These NICs are based on the
Intel 82599 Ethernet controller. All servers use 3.3 GHz Intel
Xeon E3-1230 V2 CPUs. We also tested a second setup in
which we replaced the X520 NICs with newer Intel X540
NICs to test effects of different hardware. We disabled Hyper-
Threading, Turbo Boost, and power saving features that scale
the frequency with the CPU load because we observed mea-
surement artifacts with these features.

B. Software Setup

As generation of 64 B packets at 10 GbE line rate is a
task that many existing packet generators are incapable of, we
used a modified version of the pfsend packet generator from
the PF_RING DNA [7] software repository [9]. This packet
generator is able to produce UDP packets at the 10 GbE line
rate of 14.88Mpps with only a single core. Except for the
DPDK forwarding test, all tests just used unidirectional traffic
because the line rate was not the bottleneck.

We restrict the tests to a single flow and CPU core, because
we observed linear scaling with the number of available CPU

A DuT B

Measurement points for black-box testing

10 GbE 10 GbE

Figure 1. Server setup



64 256 512 768 1024 1280 1518

1

2

4

8

16
DPDK

Open vSwitch

IP forwarding

Linux bridge

packet size [byte]

p
a
ck
et

ra
te

[M
p
p
s]

Figure 2. Packet size vs. throughput (logarithmic y-axis)

cores in previous work [10]. This focus on packet processing
per core allows us to make claims for systems with different
numbers of cores.

We used our own packet counter that relies on the statistics
registers of our NICs which are accessible via ethtool. The
packet rate is calculated by snapshotting the NIC counters
periodically.

The DuT runs the Debian-based live Linux distribution
Grml with a 3.7 kernel, the ixgbe 3.14.5 NIC driver with
interrupts statically assigned to CPU cores, OvS 2.0.0, DPDK
vSwitch 0.10 (based on OvS 2.0.0), and Intel DPDK 1.6.0.

C. Presentation of Results

All throughput measurements were run for 30 seconds and
the packet rate was sampled every 100 ms. Graphs show the
average measurement. The standard deviation was below 0.2%
for all throughput measurements. We therefore omitted error
bars in these. Profiling measurements were restricted to the
core on which the processing task was pinned and were run
for five minutes per test to get accurate results. Measurements
showing significant noise were plotted with 95% confidence
intervals (cf. Fig. 4).

III. FORWARDING PERFORMANCE

Table I compares the data plane performance of OvS, Linux
IP forwarding, Linux bridge, DPDK vSwitch, and DPDK
L2FWD with minimally sized packets. The packet size is
irrelevant in almost all scenarios as shown in Fig. 2.

TABLE I. DATA PLANE PERFORMANCE COMPARISON

Application Throughput [Mpps]
DPDK L2FWD bidir X540 29.76
DPDK L2FWD bidir X520 24.06
DPDK L2FWD unidir X520 14.88
DPDK vSwitch 11.31
Open vSwitch 1.88
Linux IP forwarding 1.58
Linux bridge 1.11

The OvS kernel module is able to process packets faster
than the Linux kernel forwarding. The Linux kernel code for
routing has received steady optimizations while the bridging
code was last modified with kernel 2.6. OvS proved to be the
fastest packet forwarding technique using the Linux network
stack.

1.6 2 2.4 2.8 3.3
0

10

20

25

CPU frequency [GHz]

th
ro
u
g
h
p
u
t
[M

p
p
s]

bidirectional (X520 NIC)

unidirectional (X520 NIC)

Figure 3. L2FWD at different clock rates

The DPDK applications do not use the Linux network stack
and are significantly faster. The DPDK port of OvS showed a
six-fold performance increase compared to the kernel version.

A. User Space Packet Processing

Approaches like Intel DPDK [4], Netmap [6], and
PF_RING DNA [7] replace the network stack with a user space
application to avoid overhead.

DPDK L2FWD only forwards packets between two stati-
cally configured network interfaces without consulting a rout-
ing or flow table. It can therefore be seen as an upper bound
for the possible throughput. We focus our measurements on
DPDK here but also observed similar results with forwarding
applications based on Netmap and PF_RING.

We adjusted the CPU clock frequency to measure the
required processing power per packet. DPDK L2FWD man-
aged to forward 14.88 Mpps even with the lowest possible
frequency, we therefore added a bidirectional test for this appli-
cation. Fig. 3 shows the throughput with all clock frequencies
supported by our CPU. The same test with similar results for
the performance of Netmap is presented by Rizzo in [6].

The bidirectional test initially only achieved a throughput
of 24.06 Mpps instead of line rate with the maximum clock
frequency. We then tried to use two cores for this test but this
resulted in the same performance which indicates a hardware
limit in the NIC. We therefore replaced the X520 NIC with a
newer X540 NIC on all servers to investigate further. The X540
was able to forward 29.76 Mpps, i.e., line rate, with DPDK on
a single CPU core.

The DPDK L2FWD application initially only managed to
forward 13.8 Mpps in the single direction test at the maximum



CPU frequency, a similar result can be found in [11]. Reducing
the CPU frequency increased the throughput to the expected
value of 14.88 Mpps. Our investigation of this anomaly re-
vealed that the lack of any processing combined with the fast
CPU caused DPDK to poll the NIC too often. DPDK does not
use interrupts, it utilizes a busy wait loop that polls the NIC
until at least one packet is returned. This resulted in a high poll
rate which affected the throughput. We limited the poll rate to
500,000 poll operations per second (i.e., a batch size of about
30 packets) and achieved line rate in the unidirectional test
with all frequencies. This effect was only observed with the
X520 NIC, tests with X540 NICs did not show this anomaly.

IV. HARDWARE BOTTLENECKS

We use OvS as an example and follow a packet’s path
through it and examine each component for potential bottle-
necks. A packet arrives at the input network interface and is
transferred via DMA with Intel’s Direct Cache Access (DCA)
technology [12] to the L3 cache. It is then processed and
modified by OvS on the CPU based on a flow table in the
OvS kernel module called the datapath. Packets that do not
match any rule in the datapath are forwarded to a user space
process, which then installs a rule in the kernel module for
subsequent packets of this flow, this processing path is called
the slow path. These rules use an idle timeout so that only
actively used rules are kept in the kernel module. Afterwards
the packet is transferred to the outgoing network interface via
DMA/DCA.

Other forwarding systems beside OvS use the same packet
flow except for the processing step. The following potential
bottlenecks are present in the packet processing path.

A. Network Bandwidth

DPDK L2FWD hit the limit of 14.88 Mpps in the unidi-
rectional test, but not in the bidirectional test (cf. Table I).
All other measured programs were far below this limit. It is
therefore not a relevant bottleneck for our tests with a single
CPU core.

B. NIC Processing Capacity

The data sheet of the Intel 82559 chip does not mention any
limits to the packet rate [13]. However, we have encountered
such a limit at 24 Mpps. We verified that the processing is
limited by the number of packets per second and not the total
bandwidth by testing with larger packet sizes. The NIC is
able to handle line rate with packets larger than 100 Byte. The
newer X540 chip does not have this limit.

C. PCIe Bandwidth

Both the X520 and X540 NICs we used are attached via
a PCIe 2.0 x8 link with a net bandwidth of 32 GBit/s per
direction, far more than the 20 GBit/s of the two network ports.
Our CPU unfortunately does not support performance counters
to measure this bandwidth. However, this limit is not relevant
since the X540 NIC is able to sustain full line rate with 64 Byte
packets on both ports.

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

·107

offered load [Mpps]

ev
en

ts
p

er
se

co
n
d

L3 cache references
L3 cache misses

Figure 4. L3 cache statistics (OvS)

D. Memory Bandwidth

Each packet is written to and read from the main memory
at least once. The CPU in our test server offers a memory
bandwidth of 200 GBit/s. This is therefore not a bottleneck for
10 GBit networks but needs to be considered when moving to
100 GBit Ethernet.

E. CPU Cache Size

The overall cache size can be a bottleneck if it is insuffi-
cient for the state of the application.

We use OvS as example here, but the results are also
applicable to other forwarding applications, which use a flow
table or a routing table. Fig. 4 shows the number of L3
cache references and misses in the OvS forwarding scenario
with only one flow. Both grow linearly with the number of
processed packets per second, the miss ratio stays constant.
Slight deviations in the lower packet rates are due to the
dynamic interrupt rate throttling by the ixgbe driver. The other
cache levels show similar results.

The total number of accesses and misses per second is
in the order of 107. This translates to a cache and memory
bandwidth of less than 8 GBit per second when multiplied with
the CPU cache line size of 64 Bytes. This is an uncritically low
bandwidth requirement that can easily be satisfied [14].

A high number of actively used flow table entries, which
are 576 Bytes each, in the OvS forwarding scenario can exhaust
the cache. The L1 cache fits 56 entries, the L2 cache 455, and
the L3 Cache about 14 500 without taking space requirements
for packets or any other required data into account.

Fig. 5 shows the number of active flows vs. cache misses
and throughput. The first two caches quickly fill up and cause
a slight drop in the performance from 1.87 Mpps with one
flow (slightly lower than the result from Table I due to active
profiling) to 1.76 Mpps with 2000 flows.

Tests that exhaust the L3 cache require more than 14 500
flows, but testing with such a large amount of flow table
entries was not feasible due to exponential growth of the time
required to add flows. This exponential growth of flow table



0 500 1000 1500
0

0.5

1

1.5

2

number of active flows

th
ro

u
gh

p
u
t

[M
p
p
s]

throughput
L1 misses
L2 misses

0

0.5

1

·107

ca
ch

e
m

is
se

s
p

er
se

co
n
d

Figure 5. Flow table size vs. cache misses (OvS)

modification operations in OvS is described in more detail by
Rotsos et al. [15]. Note that this is not a bottleneck in a real-
world application because OvS only needs a constant amount
of flow table entries (exact figure depends on the installed
OpenFlow rules) per attached device due to wild card support.

Minor performance improvements can be achieved by
reducing the footprint of flow or routing table entries. But this
is not a major bottleneck and does not explain the performance
gap to DPDK-based applications.

F. CPU Cache Line Length

The cache line length can also affect the throughput due
to access latencies and bad alignment when using packet
sizes that are not a multiple of the cache line length of
64 Bytes [14]. To investigate we performed a test series of
maximum throughput experiments and we increased the packet
size by 1 Byte per test (cf. Fig. 2).

The DPDK L2FWD throughput test showed a very slight
deviation from the line rate for packet sizes between 65 and
68 Bytes, which were processed with only 14.12 Mpps instead
of the expected 14.71 to 14.20 Mpps (line rate). Larger packets
are limited by the line rate. We assume this is caused by
packets that need slightly more than a single cache line. Rizzo
measured this effect with Netmap in more detail in [6].

The maximum throughput curves of the conventional
packet processing systems have no inflection points except
when the network link bandwidth sets in. We conclude that
there are no adverse effects if the packet sizes do not match
the cache line size for the kernel-based systems which we are
trying to improve.

G. CPU Time

We measured the throughput of all packet forwarding
programs with different CPU frequencies to analyze the impact
of raw processing power. All applications scaled linearly with
the CPU frequency except for the DPDK L2FWD application
(cf. Section III-A). This means that the only relevant bottleneck
for the kernel-based forwarding applications is the software.

0.5 1 1.5 2 2.5
0

20

40

60

80

100

offered load [Mpps]

C
P

U
lo

a
d

[%
]

idle
OvS datapath
ixgbe
kernel

Figure 6. CPU usage per kernel module (OvS)

V. SOFTWARE BOTTLENECKS

We ran the Linux profiling tool perf to analyze the
relative time required per function and combined this with the
CPU cycle counter to compute the wall-clock time of each
function.

A. CPU Utilization per Processing Step

Fig. 6 shows the CPU time aggregated per kernel module
in the OvS forwarding scenario under increasing load. It shows
the self-time spent in the respective kernel module, i.e., without
taking the call stack into account. The load of all involved
modules increases linearly and the first drops were observed
once the CPU load hit 100%. This example uses OvS because
its architecture as a separate kernel module allows for a
simple split by functionality, the other kernel-based forwarding
applications show a similar behavior. DPDK utilizes a busy
wait loop and the CPU load is always 100% independent of
the offered load.

The OvS datapath module is responsible for the forwarding
decision, the other modules handle all other tasks: receiving
packets, sending packets, and buffer management. Only about
18% of the CPU time is spent in the OvS kernel module, so
the software bottleneck is packet I/O and not processing.

The datapath module calls back into other kernel modules
during the processing at one point to acquire and release a spin
lock which should be attributed to OvS even though the time is
spent in another kernel module. Measuring this requires a ker-
nel that is compiled without the fomit-frame-pointers
compiler optimization to generate backtraces based on the
stack from a sample. This change resulted in a drop of the
throughput by ∼ 15%. This additional overhead is distributed
approximately uniformly across the code which we confirmed
by comparing the self-times with and without the compiler
optimization. The option allows for a more detailed and correct
look at the CPU time distribution: about 4% of the total time
is spent in the spin lock with OvS as caller, so 22% of the time
is spent processing the packet and 78% are for receiving and
sending. All of the following measurements were run without
this compiler optimization.



Linux
bridge

IP
forwarding

Open
vSwitch

DPDK
vSwitch

DPDK
L2FWD

0

20

40

60

80

100
C

P
U

lo
a
d

[%
]

processing
skbuff
memory
TX
RX

Figure 7. CPU usage per task under full load

Fig. 7 shows the relative required time for the required
steps of the forwarding methods: Processing are all func-
tions that are associated with reaching a forwarding decision,
so it is 0% for the DPDK L2FWD application which only
transfers packets between two interfaces. Memory represents
the time required to allocate and free the memory for the
packets, but without any initialization functions that are spe-
cific to the kernel’s skbuff data structure. Skbuff contains all
functions that initialize, release, or change an skbuff (kernel
packet buffer descriptor) without the memory management
functions. RX includes all functions that handle receiving a
packet in the network stack and driver. It also includes time
required to handle interrupts like saving and restoring the
context or raising the software interrupt to call into softirqd
for further processing. TX includes all functions from the point
where the application calls into the network stack’s dev_
queue_xmit transmit function. It includes any task in the
network stack that is required to send a packet, most notably
the handling of the queuing discipline in the kernel.

Table II shows the same data as Fig. 7 in CPU cycles
per packet. The Linux bridge clones the skbuff descriptor
unnecessarily which leads to higher memory management and
skbuff times. The differences between the I/O tasks for the
DPDK applications are due to different batch sizes which were
chosen for optimal overall performance with the applications.

TABLE II. CPU CYCLES PER PACKET AND PROCESSING STEP

Application RX TX Mem. skb Process.
Linux bridge 491 456 178 311 1508
IP forward 453 463 101 292 757
Open vSwitch 490 447 102 288 416
DPDK vSwitch 41 85 0 0 165
DPDK L2FWD 55 62 0 0 0

The linux kernel needs about 1300 cycles on average to
receive and send a single packet including memory manage-
ment and overhead from the data structures. DPDK performs
the same tasks with only 120 cycles, so the network stack is
an important bottleneck for packet forwarding systems.

B. Overheads in the Kernel

The Linux network stack is a general-purpose network
stack and exhibits unnecessary overheads when used with a
specialized application like a packet forwarding system. One
example for such an overhead in the kernel is the send path
which requires a spin lock to access the queuing discipline
of the device (configured as the default fifo queue). This
lock takes about 8% of the total wall-clock time in the OvS
example which impacts the throughput. Profiling shows that
this lock is never contended because there are no other network
tasks which could acquire the same lock. However, the kernel
needs to handle the generic case which might be configured
differently, so the spin lock still needs to be acquired and
released at multiple locations, this manifests as overhead.

Another example is the skbuff data structure. It needs to
handle all possible cases for the network stack and requires
an extensive constructor and destructor. A simple buffer is
sufficient for a software switch or router.

A switch can allocate a fixed amount of buffers on startup
and directly reuse them after finishing a batch of packets. The
kernel’s network stack uses a memory pool from which buffers
are acquired before retrieving packets and returned to after
sending packets. In the general case, this is necessary because
packets might still be needed after processing them. However, a
software switch can always forward all packets directly. So the
same buffers can be overwritten with new packets immediately
after sending a batch. Memory management is therefore also
unnecessary.

C. Open vSwitch vs. DPDK vSwitch

DPDK vSwitch shows a six-fold increase in throughput
over OvS, this discrepancy can not explained by only the
packet I/O. The processing logic is also optimized, DPDK
vSwitch only takes 165 cycles to reach a forwarding decision
for a packet while the original OvS requires 416 cycles.

DPDK vSwitch replaces the whole flow table with a
highly optimized version. Some of these optimizations, like
an optimized hash function that utilizes the CPU’s CRC32
instruction, could be ported back to the original OvS. This
would improve the performance slightly, but the network stack
is still the main bottleneck.

VI. RELATED WORK

Bolla and Bruschi recognized the trend for optimization
already in 2007 and presented a detailed study of packet
forwarding in Linux by applying RFC 2544 and internal
measurements with profiling [16]. They measured a higher
CPU load of packet I/O tasks in test similar to the one
described in Section V here. This indicates that the overhead
was reduced since kernel version 2.6.16 which they used.
Later a study of performance influences of multi-core PC
systems under different workloads [17] was published. These
performance studies have been shown and extended, e.g.,
in [10]. We only discuss bottlenecks of software routers here,
further measurements on Open vSwitch throughput and latency
in different scenarios can be found in [18] and [19].

Another important aspect beside the throughput is the
latency of a forwarding system. A notable example of latency



measurements is the OFLOPS OpenFlow benchmarking frame-
work by Rotsos et al. which uses OvS as an example, they
also describe challenges with measuring latency on commodity
hardware [15]. Discussion of latency in software routers can
also be found in [20] and [21]. We will extend this study to
include latency measurements based on our packet generator
MoonGen [22] in future work.

Other user space packet processing frameworks beside
Intel’s DPDK with similar performance characteristics are
Netmap by Rizzo who presents similar measurements to our
tests from Section III-A for his framework [6]. This shows that
DPDK and Netmap have similar performance characteristics
and our results are transferable to Netmap. Deri presents
PF_RING DNA in [7] which was originally written for a
fast packet capture application called nCap. We expect similar
performance gains when using this framework.

DPDK was also used to evaluate the performance of a PC-
based OpenFlow switch by Pongracz et al. [11] but without
comparing it to a conventional packet I/O system like the Linux
kernel.

Rizzo et al. ported the networking library libpcap to
Netmap and use it to improve applications transparently with
a user space version of OvS as one example [23]. They only
state the performance improvements for various applications
but do not measure software bottlenecks explicitly.

VII. CONCLUSIONS AND OUTLOOK

We identified and measured different bottlenecks and con-
clude that the main bottleneck for PC-based packet forwarding
systems is the software due to overhead in the kernel’s network
stack. We measured that receiving and sending packets with a
user space packet processing framework like DPDK is 12 times
faster than using the Linux kernel to do the same task. Existing
software switches like OvS can show significant performance
improvements by adopting a modern packet I/O framework
even without modifying the processing logic. DPDK vSwitch
also optimizes the processing logic and shows a six-fold
increase of the total performance compared to OvS.

There have been discussions to include the Netmap frame-
work in the Linux kernel [24] where it could supplement the
current network API while maintaining backwards compatibil-
ity with older drivers and applications. Using such a framework
requires special drivers and a complicated setup procedure
at the moment. Direct support from the Linux kernel is an
important step for the mainstream adaption of such frameworks
in the next generation of software switches and routers.

ACKNOWLEDGMENTS

This research has been supported by the DFG as part
of the MEMPHIS project (CA 595/5-2), the KIC EIT ICT
Labs on SDN, and the BMBF under EUREKA-Project SASER
(01BP12300A).

REFERENCES

[1] L. Rizzo and G. Lettieri, “VALE, a Switched Ethernet for Virtual
Machines,” in Proceedings of the 8th International Conference on
Emerging Networking Experiments and Technologies. ACM, 2012,
pp. 61–72.

[2] “Vyatta,” http://www.brocade.com/products/all/network-functions-
virtualization/product-details/5400-vrouter/index.page, last visited
2015-03-08.

[3] “Open vSwitch,” http://openvswitch.org, last visited 2015-03-08.
[4] “Intel DPDK: Data Plane Development Kit,” http://dpdk.org/, Intel, last

visited 2015-03-08.
[5] “Intel DPDK vSwitch,” https://github.com/01org/dpdk-ovs, Intel Cor-

poration, last visited 2015-03-08.
[6] L. Rizzo, “Netmap: A Novel Framework for Fast Packet I/O,” in 2012

USENIX Annual Technical Conference (USENIX ATC 12). Boston,
MA: USENIX, 2012, pp. 101–112.

[7] L. Deri, “nCap: Wire-speed Packet Capture and Transmission,” in IEEE
Workshop on End-to-End Monitoring Techniques and Services, 2005,
pp. 47–55.

[8] S. Bradner and J. McQuaid, “Benchmarking Methodology for Network
Interconnect Devices,” RFC 2544 (Informational), Internet Engineering
Task Force, March 1999.

[9] “Ntop,” http://www.ntop.org, last visited 2015-03-08.
[10] T. Meyer, F. Wohlfart, D. Raumer, B. Wolfinger, and G. Carle,

“Validated Model-Based Prediction of Multi-Core Software Router
Performance,” Praxis der Informationsverarbeitung und Kommunikation
(PIK), April 2014.

[11] G. Pongracz, L. Molnar, and Z. L. Kis, “Removing Roadblocks from
SDN: OpenFlow Software Switch Performance on Intel DPDK,” Second
European Workshop on Software Defined Networks (EWSDN’13),
2013, pp. 62–67.

[12] R. Huggahalli, R. Iyer, and S. Tetrick, “Direct Cache Access for
High Bandwidth Network I/O,” in Proceedings of the 32nd Annual
International Symposium on Computer Architecture, 2005, pp. 50–59.

[13] “Intel 82599 10 GbE Controller Datasheet Rev. 2.76,” Intel, 2012, Santa
Clara, USA.

[14] “Intel R© 64 and IA-32 Architectures Optimization Reference Manual,”
Intel, 2014.

[15] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore, “Oflops:
An Open Framework for OpenFlow Switch Evaluation,” in Passive and
Active Measurement. Springer, 2012, pp. 85–95.

[16] R. Bolla and R. Bruschi, “Linux Software Router: Data Plane Optimiza-
tion and Performance Evaluation,” Journal of Networks, vol. 2, no. 3,
June 2007, pp. 6–17.

[17] M. Dobrescu, K. Argyraki, and S. Ratnasamy, “Toward Predictable
Performance in Software Packet-Processing Platforms,” in USENIX
Conference on Networked Systems Design and Implementation (NSDI),
April 2012.

[18] A. Beifuß, D. Raumer, P. Emmerich, T. M. Runge, F. Wohlfart, B. E.
Wolfinger, and G. Carle, “A Study of Networking Software Induced
Latency,” in 2nd International Conference on Networked Systems 2015
(accepted), Cottbus, Germany, 2015.

[19] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle, “Performance
Characteristics of Virtual Switching,” in 2014 IEEE 3rd International
Conference on Cloud Networking (CloudNet), Luxembourg, 2014.

[20] L. Angrisani, G. Ventre, L. Peluso, and A. Tedesco, “Measurement of
Processing and Queuing Delays Introduced by an Open-Source Router
in a Single-Hop Network,” IEEE Transactions on Instrumentation and
Measurement, vol. 55, no. 4, 2006, pp. 1065–1076.

[21] S. Larsen, P. Sarangam, R. Huggahalli, and S. Kulkarni, “Architectural
Breakdown of End-to-End Latency in a TCP/IP Network,” International
Journal of Parallel Programming, vol. 37, no. 6, 2009, pp. 556–571.

[22] P. Emmerich, F. Wohlfart, D. Raumer, and G. Carle,
“MoonGen: A Scriptable High-Speed Packet Generator,” ArXiv
e-prints, Oct. 2014. [Online]. Available: http://adsabs.harvard.edu/abs/
2014arXiv1410.3322E

[23] L. Rizzo, M. Carbone, and G. Catalli, “Transparent Acceleration
of Software Packet Forwarding using Netmap,” in INFOCOM, 2012
Proceedings IEEE. IEEE, 2012, pp. 2471–2479.

[24] S. Hemminger, “netmap: infrastructure (in staging),” http://lwn.net/
Articles/548077/, last visited 2015-03-08.

http://www.brocade.com/products/all/network-functions-virtualization/product-details/5400-vrouter/index.page
http://www.brocade.com/products/all/network-functions-virtualization/product-details/5400-vrouter/index.page
http://openvswitch.org
http://dpdk.org/
https://github.com/01org/dpdk-ovs
http://www.ntop.org
http://adsabs.harvard.edu/abs/2014arXiv1410.3322E
http://adsabs.harvard.edu/abs/2014arXiv1410.3322E
http://lwn.net/Articles/548077/
http://lwn.net/Articles/548077/

	Introduction
	Test Methodology
	Hardware Setup
	Software Setup
	Presentation of Results

	Forwarding Performance
	User Space Packet Processing

	Hardware Bottlenecks
	Network Bandwidth
	NIC Processing Capacity
	PCIe Bandwidth
	Memory Bandwidth
	CPU Cache Size
	CPU Cache Line Length
	CPU Time

	Software Bottlenecks
	CPU Utilization per Processing Step
	Overheads in the Kernel
	Open vSwitch vs. DPDK vSwitch

	Related Work
	Conclusions and Outlook
	References

