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Abstract—Tools to capture and analyze traffic are found in ev-

ery network operator’s toolbox. Traffic dumps are essential to the

process of debugging network issues and for network forensics.

Capturing traffic is a performance-intensive and challenging task

for high-speed networks. Therefore, network operators often rely

on sampling a random subset of the traffic instead of capturing

the network traffic in its entirety. Sampling is not always suitable,

for example, network forensics applications require a full dump

of the traffic to determine the source of an attack.

We present FlowScope, a tool to continuously capture and

store packets in an in-memory ring buffer. A filtered subset of

the acquired packets can be dumped to disk if a specified trigger

event occurs. We report benchmark results of 120 Gbit/s with

128 byte packets. This is achieved by using a novel ring buffer

data structure that is optimized for high packet throughput.

FlowScope is available as free software under the MIT license at

https://github.com/emmericp/FlowScope.

I. INTRODUCTION

Traffic dumps are an essential tool for operators to trouble-
shoot network issues. Acquiring such traffic dumps is a
challenging task on high-speed links exceeding 10 Gbit/s. A
common solution to cope with high bandwidths is taking ran-
dom samples from the traffic. Sampling can sometimes even be
done directly on the control plane of switches by configuring
the control plane as a mirror port target [4]. Specialized
protocols like sFlow [36] rely on hardware capabilities of
switches to centrally collect packet samples to monitor traffic.
These sampling-based approaches work sufficiently well for
many scenarios. However, sometimes full traffic captures are
needed to debug a network issue or for network forensics.

Traffic captures are usually started manually after a problem
is noticed. Finding the root cause of a problem in a post-
mortem analysis requires capturing packets before the problem
occurs. Another scenario where starting the capture process
after the fact is too late for network forensics to determine
the source of an attack. Capturing and storing all traffic in
persistent storage is expensive and hence generally not feasible
in high-speed networks. One solution is continuously capturing
packets in a large ring buffer in RAM and dump them to
persistent storage on demand.

We present FlowScope, a tool to capture and store packets
at rates above 100 Gbit/s. FlowScope is based on the idea of a
digital storage oscilloscope: it continuously stores packets in

a ring buffer and dumps a subset of them to disk on a trigger
event. External sources such as an HTTP interface or observed
packets matching a user-defined filter can act as trigger events.
The user specifies two filters to FlowScope: a trigger filter and
a dumping filter. The former specifies the start of the dumping
process, the latter the kind of packets to be stored. FlowScope
supports two different kinds of filter configurations: pcap filters
or Lua-scriptable filters. For instance, the pcap dumping filter
"host $srcIP" dumps packets from and to the source IP
address of the initial trigger packet.

Usage scenarios for FlowScope are trouble-shooting and
forensics applications in high-speed networks. We have al-
ready successfully deployed FlowScope to identify a rarely
occurring anomaly on a 100 Gbit/s data center interconnect
link. Other existing tools were not able to find the root-cause
of this issue due to their limited performance.

Our main innovation over existing similar systems such as
the Bro Time Machine [29] is our novel data structure QQ
(queue of queues). QQ is an efficient multi-threaded queue
implemented as a ring buffer optimized for packet storage. It
scales to multiple producers and consumers and rates beyond
100 Gbit/s and 120 Mpps (million packets per seconds). This
is 50 times faster than Bro Time Machine which only managed
to process 2.4 Mpps in our tests. This is achieved by trading
latency for throughput: FlowScope incurs a latency in the
millisecond range but gains throughput and scalability. We
also move the packet capturing backend to DPDK [23] which
speeds up packet capture compared to the commonly used
libpcap framework [42]. Further, we optimize the disk access:
FlowScope can saturate multiple high-speed PCIe SSDs when
persistently storing captured packets.

The remainder of the paper is structured as follows: We
start by discussing the related work and technical background
in Sections II and III. Section IV shows the architecture and
design of FlowScope, Section V focuses on the implementa-
tion and evaluation of our queuing data structure. Section VI
discusses how to run the published code to reproduce our eval-
uation of FlowScope. Both FlowScope and QQ are available
as free software under the MIT license on GitHub [12].

II. RELATED WORK

Capturing traffic in high-speed networks is the traditional
domain of specialized hardware that is offered commercially.ISBN 978-3-901882-94-4 © 2017 IFIP
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Endace offers data acquisition PCIe adapters capturing up to
40 Gbit/s [16]. Standalone appliances that perform hardware-
assisted packet capturing are provided by fmad [20]. Open
source hardware solutions are available based on the NetFPGA
platform [3].

The rise of high-speed packet processing frameworks such
as DPDK [23], netmap [38], and PF RING ZC [34] has
enabled high-speed packet processing tasks in software run-
ning on commodity hardware. Multiple efficient software
traffic capture and storage systems have been designed since
10 Gbit/s Ethernet became commodity over the past years.
Important works are n2disk [9], [32], a traffic recorder that
can write 10 Gbit/s traffic to disk with minimum sized packets
using multiple capture threads. They recommend using at
least 10 hard disks in parallel to store 10 Gbit/s of traffic.
FloSIS [30] was evaluated at up to 30 Gbit/s using 24 hard
disks in parallel.

The main bottleneck for even higher speeds is the storage
back end: it needs to write a large amount of data fast. These
are two conflicting optimization goals for a storage system, as
they are typically either large, slow, and inexpensive (HDDs)
or fast, small, and expensive (SSDs). Our approach of using
an in-memory ring buffer as intermediate storage and only
dump flows that are deemed interesting to persistent storage
mitigates this bottleneck.

This architecture and basic idea of FlowScope is similar
to the Bro Time Machine (Bro TM) [29] published in 2005.
It continuously stores packet captures into ring buffers of
different sizes depending on a programmable classification.
These ring buffers can then be dumped on triggers from
an external intrusion detection system. Bro TM builds on
a simple ring buffer that stores packet data back-to-back
in one block of memory and maintains index pointers in a
second ring buffer. Concurrency is achieved by using different
ring buffers for different traffic classes. However, access to
each ring buffer is controlled by a single lock for all reader
and writer threads (cf. implementation in FifoMem.cc [8]).
Traffic classes are typically defined by protocol in the example
configurations, e.g. HTTP traffic would be stored in one ring
buffer. This presents a serious bottleneck for traffic classes
that receive a large amount of traffic, especially as a reader
thread analyzing or dumping the data will also limit the data
acquisition. Bro TM was designed for 1 Gbit/s networks [29]
– state of the art technology in 2005. We found it unsuitable
for monitoring links of capacities beyond 10 Gbit/s due to its
design limitations.

Our main innovation and contribution is the queuing data
structure queue of queues (QQ). Fast concurrent queues are a
common building block for multi-threaded applications and
many implementations of such data structures exist. These
queues are typically written as lock-free code utilizing low-
level memory synchronization primitives. A good introduction
to general lock-free programming and a lock-free queue design
was published by Sutter in 2008 [41]. Popular fast lock-free
queues can be found in libraries such as Facebook’s folly [19],
Intel’s TBB [24], and Boost [6]. Desrochers published a lock-

free queue design in 2014 and provides a detailed performance
comparison with other commonly used queues [11].

Lock-free queues also optimize for a low latency (in the
nanoseconds range) between a producer and a consumer
thread. This is often an important property, e.g., when used in
the backend of a financial exchange platform [43]. However,
we are not interested in such low latencies for our application.
Detecting trigger events within milliseconds is sufficient since
the history is available anyways. Hence, we only aim for a
latency in the range of hundreds of milliseconds for QQ. This
lowered requirement enables the use of code with traditional
synchronization mechanisms like locks without sacrificing
throughput. Such code leads to a simpler overall design and
simplifies the implementation of features like random access
to variable-length entries in an efficient manner with multiple
producers and consumers, a feature that is not found in any
lock-free queue design. Moreover, writing correct lock-free
code is difficult, bugs due to subtle mistakes have been found
in peer-reviewed published code [40].

III. TECHNICAL BACKGROUND

Identifying the key technologies is crucial for understanding
the performance of FlowScope and its underlying data struc-
ture QQ.

A. DPDK
DPDK (Data Plane Development Kit) is an open source

project started by Intel providing efficient userspace drivers
for common server network interface cards (NICs) by multiple
vendors [23]. It maps the PCIe address space of NICs directly
into a userspace process, thus eliminating overhead associated
with the network stack of a general-purpose operating system.
This allows receiving packets in a userspace process in less
than 100 CPU cycles [21]. The drawback is that DPDK offers
no protocol stack, it merely sends and receives packets without
processing on any higher layer. FlowScope does not need a
protocol stack, we are only interested in storing, analyzing and
dumping raw packets – analysis is also handled by specialized
libraries or user-defined code in FlowScope.

Moreover, DPDK provides utility functions commonly
needed for multi-threaded packet processing applications. Of
particular interest is the rte_ring data structure, a queue
optimized for passing packets between threads. We evaluate
this queue and compare it to our implementation.

B. libmoon
libmoon is a framework for packet processing in Lua [13],

[14]. It combines DPDK with LuaJIT [35] providing a fast
scripting environment for quick prototyping of packet pro-
cessing tools. Furthermore, libmoon bundles other third-party
libraries that are commonly required in packet processing
applications. Relevant libraries used for this work are the
Turbo webserver [1] and the pflua pcap filter compiler [5].

All high-level parts of FlowScope, i.e., handling triggers, the
HTTP API, managing threads, and configuration, are written
in Lua. Further, user-provided Lua code to analyze and filter
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traffic can be embedded. These custom filters and triggers can
utilize libmoon’s fast and efficient protocol stack framework
to dissect and analyze packets [39].

C. Offloading Features of NICs
Offloading capabilities are an integral part of modern NICs.

Two features are particularly noteworthy here: VLAN offload-
ing and Receive Side Scaling (RSS). VLAN offloading allows
moving a IEEE 802.1Q tag [7] from the Ethernet header into
the packet metadata. This ensures that the Ethernet header has
a fixed length, speeding up the analysis. RSS sets up multiple
receive queues on the NIC that can be used concurrently and
independently from multiple threads. Traffic is distributed via
hashing configurable protocol headers, ensuring that packets
belonging to the same flow are directed to the same queue.

Figure 1 illustrates how RSS processes an incoming packet.
The driver can configure which header fields are hashed and
how many queues are used. Limitations like the header fields,
hash function, and number of queues are hardware-specific.
For example, the Intel 10 and 40 Gbit/s NICs used by us
support 16 and 256 RSS queues respectively and both IPv4
and IPv6 with UDP or TCP ports for hashing [26], [27]. This
is sufficient for our purposes.

D. Queues and Ring Buffers
The following definitions and concepts for queues will be

used throughout this paper.
A bounded queue is a queue of a fixed size. Bounded queues

are typically implemented as buffer that is allocated once and
used in a circular manner, i.e., a ring buffer. Inserting elements
into full ring buffers can either fail gracefully, block until space
becomes available, or override the oldest entry efficiently. We
use the term ring buffer to refer to a bounded queue that
supports overriding old entries on insertion. Implementations
for unbounded queues typically involve linked lists and do not
support overriding the oldest entry, these queues are generally
unsuitable for FlowScope.

Threads writing to a queue are called producers, threads
reading from it consumers. Concurrent queues can support
a single or multiple producers and consumers. The most
common variants are single-producer/single-consumer (SPSC)
and multi-producer/multi-consumer (MPMC) queues.

IV. FLOWSCOPE

Figure 2 shows a high-level overview over the different
components in FlowScope. The analyzer and dumper are
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Figure 2. Architecture of FlowScope

written in Lua as they run filters which are either user-
defined Lua code or pcap filters compiled to Lua. All other
components are implemented in C++.

QQ is the central ring buffer data structure, discussed and
evaluated in detail in Section V. Inserters act as producers
reading traffic from an assigned RSS queue from a NIC and
copying packets into QQ. Inserters can also trim large packets
if only headers are required. A zero-copy solution where
the NIC places the packets directly into QQ is not possible:
commodity NICs copy packets into fixed-size DMA buffers.
Hence, packets must be copied to store them back-to-back in
the queue.

QQ offers two different kinds of consumers - analyzers
and dumpers. An analyzer peeks at packets in the queue
without removing them from the queue. Multiple analyzers
are supported: QQ provides a peek() method that shares a
pointer between the workers to distribute work. The analyzer
that detects a trigger sends a signal to the dumper thread
containing the packet that matched the filter. The dumper
thread listens to trigger signals that can either come from the
analyzer thread or from external sources such as the HTTP
API.

Note that this design does not preserve packet order if
multiple inserters are used. Intra-flow order is preserved by
RSS on the NIC, cf. Section III-C. Analyzers and dumpers will
only see packets of different flows out of order. Inserters take
a timestamp for each received packets this allows interleaving
flows to create an inter-flow order if desired, e.g., in the
dumper to produce pcap files with monotonic timestamps.

A. Triggers
Simple triggers are provided in the libpcap filter lan-

guage [42]. We use pflua [5] to compile and execute the filters
with LuaJIT, this method is faster than other common libpcap
filter compilers [22].

More complex filters can be defined as Lua code with
full support for the libmoon protocol framework [39] in the
filter functions. Listing 1 shows an example based on the
example trigger-payload.lua from the examples in the



1 local pktLib = require "packet"
2 local ffi = require "ffi"
3 local eth = require "proto.ethernet"
4 local ip = require "proto.ip4"
5

6 local searchStr = "EXAMPLE"
7 return function(pkt)
8 local udpPkt = pktLib.getUdp4Packet(pkt)
9 if udpPkt.eth:getType() == eth.TYPE_IP

10 and udpPkt.ip4:getProtocol() == ip.PROTO_UDP then

11 local data = ffi.string(udpPkt.payload.uint8,
12 #searchStr)
13 return data == searchStr
14 end

15 end

Listing 1: Filtering with custom Lua code

FlowScope repository. It checks whether the packet is an IPv4
UDP packet and then raises the trigger if the payload begins
with a specific string. These Lua functions can be arbitrarily
complex, e.g., a fully featured deep-packet inspection (DPI)
library can be attached here. A good candidate is nDPI [33]
with the ljndpi [2] LuaJIT interface.

Triggers can also be raised externally: A custom HTTP
REST API provides an endpoint to start the dumper with a
custom libpcap filter.

B. Dump filters

The dumper thread is notified of every trigger event and
receives the packet that raised the trigger. A dump filter is a
function that derives a filter from a given packet, this filter
will then be applied to decide whether to include a packet
in the resulting pcap file. A simple example is the libpcap
filter "host $srcIp" which dumps all packets coming
from or going to the source of the trigger packet. The full
documentation of available replacements can be found in
our GitHub repository [12]. Moreover, a user-provided Lua
function can be used for the dump filter. This function receives
the trigger packet and returns a predicate function for packets.

Packets within the configurable time interval [t
s

, t
e

] depicted
in Figure 3 are evaluated by the filter. The dumper first jumps
back in the queue to search for the first packet that arrived
after t

s

, it then starts filtering and saving packets until t
e

is
reached, waiting for new packets if necessary. t

s

should be
chosen large enough that the dumper does not have to jump
back to the very beginning of the queue to prevent conflicts
with the inserters that are at that position. The dumper is
prioritized over inserters, i.e., packets after the trigger are lost
if the inserters catch up to the dumper. Note that the dumper
is initially faster as it writes to the disk cache, mitigating this
problem.

C. Writing pcaps

We rewrote the pcap writer in libmoon for FlowScope, it
previously relied on appending to files with the write()
syscall which proved to be too slow. Our updated implemen-
tation sparsely allocates the file with fallocate() and then
calls mmap() to map it into memory. The allocated file size is
grown exponentially. Incoming packets are then simply copied
into the memory area. The operating system handles writing
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Figure 3. Traffic stored by the dumper thread

out the data to disk transparently and asynchronously in the
background.

We test this approach with two Samsung SM951 NVMe
PCIe SSDs configured as software raid 0. Our pcap writer
manages to write out small packets at 1900 MB/s in this
configuration after the file system cache was completely filled
when writing a file larger than the system memory. Linux
reports 100% utilization of both disks, i.e., the disks are the
bottleneck.

D. Evaluation

We evaluate FlowScope on a server with two 10-core Intel
Xeon E5-2630 v4 CPUs, 128 GiB DDR4 RAM, two Samsung
SM951 NVMe PCIe SSDs. The used NICs are two dual-port
Intel XL710 40 Gbit/s NICs, a dual-port Intel X520, and a
dual-port Intel X540. The total network bandwidth is limited
to 120 Gbit/s at 128 byte packets due to limitations of the Intel
XL710 NICs: they cannot saturate both ports at the same time
due to hardware limitations and require a minimum packet size
of 128 byte to achieve the full 40 Gbit/s [28]. MoonGen [14]
on a second host (same NIC configuration, directly connected)
is used to generate packets at full line rate, i.e., 101.35 Mpps
with 128 byte packets.

We compare the capturing performance of FlowScope with
Bro Time Machine (TM) [29] and tcpdump [42] in Figure 4.
Note that the figure has a discontinuous y axis as FlowScope
is over 6 times faster than Bro TM measured in data rate. Both
Bro TM and tcpdump are particularly slow when faced with
a large number of small packets: Bro TM managed 2.4 mpps
and tcpdump only 0.3 Mpps when capturing 128 byte packets.
FlowScope is able to capture the full 120 Gbit/s to memory at
all tested packet rates.

tcpdump was configured to write to /dev/null to avoid
hitting disk bottlenecks but it still falls behind the specialized
in-memory capturing tools. Bro Time Machine is used with a
different number of traffic classes (TCs) with traffic evenly dis-
tributed between them. Adding traffic classes initially increases
the capturing performance as more ring buffers and threads are
used. However, more than 3 TCs lead to diminishing returns.

Unlike the other two contenders, Bro Time machine sup-
ports tracking of individual flows. We experimented with
different numbers of flows per traffic class and found that a
single flow performed best in this scenario.
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V. QQ: QUEUE OF QUEUES

This section describes the design of QQ and compares the
features and performance with other queueing data structures.
All benchmarks performed in this section are executed on a
6-core Intel Xeon E5-2620 v3 CPU.

A. Requirements

Design goals of queues are typically a high throughput
measured in messages per second and a low latency. However,
as mentioned in Section II, we are not interested in low latency
here. FlowScope only requires a latency in the millisecond-
range, so we can make a trade-off between latency and
throughput. Our requirements are summarized as follows:
R1 MPMC support.
R2 Efficient storage of variable-length objects.
R3 Bulk operations for efficiency.
R4 Ring-buffer operation, producers implicitly override the

oldest entries.
R5 Different priorities for consumers: dumpers must block

the producers, analyzers that fall behind must be ad-
vanced implicitly by the producers.

R6 Iterating through elements without consuming them.
R7 Nice-to-have but not strictly necessary is support for

random access to efficiently start writing out packets at
a specified time.

B. Design

QQ is implemented as a queue of queues, i.e., it is a large
outer queue containing multiple small inner queues.

Inner queues are simple containers for packets with accom-
panying metadata and a mutex for synchronization. All inner
queue elements are allocated from a large memory area that
is created by QQ. Producers acquire exclusive ownership of
inner queue elements from this area, fill them, and eventually
release them. As every producer has its own inner queue
with exclusive access, writing to these inner queues does not
need to be synchronized between different producers, hence
accelerating write performance. However, the inner queues can
only be consumed after the producer releases them.

The outer queue is a ring buffer consisting of inner queue
elements, MPMC support is limited by a single mutex for
the outer queue. Note that the outer queue is accessed rarely:
each inner queue stores a large amount of data and only
acquiring and releasing an inner queue requires locking the
mutex. Hence, there are few accesses to the outer queue per
second, so the mutex on the outer queue does not pose a
bottleneck.

This design imposes a maximum time that an inner queues
element can be hold by a producer. A producer that owns a
queue element indefinitely blocks a consumer: all inner queues
are stored directly and consecutively in the outer queue, there
is no additional indirection. Consumers that are directly behind
producers in the queue receive an element that is locked by
the producer and have to block. The maximum hold time is
checked by the inner queue every time an element is inserted
using the low-overhead RDTSC instruction. Moreover, this sets
a limit on the time required for a packet to traverse the queue.

C. Inner queue size

Tuning the size of the inner queue is crucial for QQ: Large
inner queues lead to high latencies, small inner queues affect
the throughput as the outer queue becomes the bottleneck. In-
ner queue elements should be multiples of the CPU’s page size
to improve utilization of per-core TLB (translation lookaside
buffer) caches [25]. A common and recommend optimization
when handling large consecutive data elements is using a
larger page size than the default 4 KiB of our CPU [25], [44].
Modern Intel CPUs support 2 MiB and 1 GiB page sizes beside
the default 4 KiB. Transparent huge pages (THP) in the Linux
kernel make 2 MiB pages particularly easy to use [44], 1 GiB
pages require a more elaborate setup. Hence, we support a
configurable multiple of 2 MiB for the inner queue size.

We test exponentially increasing queue sizes from 2 MiB
to 128 MiB in a configuration with 4 producers and a sin-
gle consumer utilizing the queue with 64 byte packets. The
performance difference between 2 MiB queues and 128 MiB
sizes is only 1.5%. Therefore, we use a default size of 2 MiB
to optimize latency, especially at lower throughputs.



Table I
BOTTLENECK IMPOSED BY THE OUTER QUEUE

Threads 1 2 3 4 5 6 7 8

Ops/s 2.1 M 800 k 340 k 240 k 200 k 190 k 175 k 170 k

2 MiB pages can contain 167.8µs worth of data at
100 Gbit/s. This translates to 11.9 k operations on the outer
queue per 100 Gbit/s of traffic, a potential bottleneck. We
stress-test the outer queue operations to quantify this bottle-
neck, Table I shows that our configuration is feasible even at
higher data rates.

D. Latency and capacity
The best-case latency is achieved at high packet rates and

determined by the inner queue size. Worst-case latency occurs
at lower packet rates and is determined by the configurable
maximum hold time for producers. As with any queue, latency
is even worse if consumers fall behind the producers. We only
discuss the case where the consumers can keep up with the
producers here, latency in the other case is simply the total
queue size.

To reduce resource contention, we impose a minimum dis-
tance between producers and consumers equal to the number
of producers. This increases the total throughput by 59% in a
test case with 4 producers and 4 consumers. Taking this into
account, the latency l can be derived from the inner queue size
s
i

= 2MiB, the data rate r, the number of producers n
p

, and
the maximum hold time t

max

.

l = min(
s
i

r
, t

max

) · n
p

Assuming one inserter per 10 Gbit/s of traffic, the latency is
1.67 ms if the link is fully utilized (t

max

, if chosen correctly, is
not hit at full rate). Lower rates pose an optimization problem
between storage capacity and latency: Choosing the t

max

too
high affects latency at lower rates. A hold time set too low
leaves unused space in the fixed-size inner queues as producers
are forced to give up their inner queue before it is completely
filled. t

max

can be selected to match the lowest expected data
rate r

min

:

t
max

=
s
i

r
min

For example, in a setup with 10 producers, the default 2 MiB
inner queue size and an expected data rate between 1 Gbit/s
and 100 Gbit/s, t

max

should be set to 16.77 ms. This leads to
an overall latency between 1.67 ms and 167.7 ms. The storage
capacity of QQ is best measured in time at a specific data rate
c(r) depending on the total amount of memory allocated s

t

.

c(r) = min(
s
t

r
,
t
max

· s
t

s
i

)

Using the previous guideline for choosing t
max

leads to an
upper bound for the stored time equal to the amount of data
that can be stored at r

min

.
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Figure 5. Packet layout used by the capture threads

E. Packet storage

Naı̈vly filling up the inner queues as densely packed as
possible leads to poor data alignment of packet headers,
slowing down the analyzers, especially on older CPUs [25].
Aligning packets at a 4 byte or 8 byte boundary is also not
optimal: the 14 byte Ethernet header leads to poorly aligned
header fields in layer 3 and layer 4 protocols. Metadata must
also be stored in the queue: a timestamp (48 bits), the length
of the packet (16 bits), and the 802.1q VLAN tag (12 bits)
extracted by the NIC. A 48 bit timestamp is sufficient since it
only needs to be unique for all packets currently in the queue.
48 bits at 1 ns resolution are sufficient for over 3 days worth
of packets in memory.

Figure 5 shows how QQ stores a packet and its metadata.
The whole structure is aligned to 4 byte boundaries leading to
correct alignment of 4 byte layer 3 header fields such as IPv4
addresses.

F. Performance

We configure QQ with 1 to 5 producers that insert packets
sized between 64 byte and 1518 byte into the queue. A single
consumer continuously reads from QQ and counts the packets
before freeing the inner queues, this single consumer is fast
enough to keep up with all five producers. The producers copy
the same packet data over and over into QQ.

Figure 6 visualizes the results and compares the through-
put to the memory bandwidth measured with the STREAM
benchmark [31]. QQ scales well with the number of cores
when using small packets, larger packets see lower increases
from a higher number of producers. This can be attributed
to memory bandwidth as the memory throughput measured
by the STREAM benchmark behaves in a similar way when
more threads are added.

G. Comparison with other queues

We compare the features and performance of popu-
lar queues: Facebook’s ProducerConsumerQueue [18] and
MPMCQueue [17], Desrochers’ ReaderWriterQueue [10] and
ConcurrentQueue [11], and DPDK’s rte ring [23]. We omit
implementations found Intel’s TBB [24] and in Boost [6]
because evaluation done by Desrochers [11] demonstrates that
they are slower than other available alternatives. Table II is
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Table II
QUEUE COMPARISON

Feature Read
erW

rite
rQ

ue
ue

[10
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[11
]

Prod
uc

erC
on

sum
erQ
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]

MPMCQue
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[17
]

rte
rin

g [23
]

QQ

MPMC support (R1) 7 3 7 3 3 3
Variable length objects (R2) 7 7 7 7 7 3
Bulk operations (R3) 7 3 7 7 3 3
Ring buffer (R4) 7 7 7 7 7 3
Special functions (R5-R7) 7 7 7 7 7 3
Growable 3 3 7 7 7 7
Low latency 3 3 3 3 3 7

a feature comparison matrix showing that QQ only fails to
support low-latency and dynamic memory allocation – two
features that are not required for FlowScope.

Support for variable length objects can be achieved with
all queues: simply allocate memory of the correct size for
each packet. This approach is inefficient: memory allocation
becomes a bottleneck, memory fragmentation occurs, and
reading data leads to random accesses instead of sequential
accesses that can be prefetched. QQ stores all data directly and
sequentially in a large ring buffer: the outer queue contains the
inner queues directly with no additional indirection.

Figure 7 compares the throughput achieved by the different
queues with 4 producers and 4 consumers sending 64 byte
packets through the queue. SPSC queues only use a single
producer and consumer and are hence significantly slower.
To make this a fair comparison, we emulate how a properly
optimized application would use these third-party queues:
we insert message buffers containing 64 packets into them.
Further, we avoid allocations by re-using the same buffers over
and over again, i.e., this is synthetic benchmark comparable to
the ”heavy concurrent“ benchmark from [11]. QQ proves to
be the fastest queue by a factor of two, however, the latency
of all other queues is better by several orders of magnitude.

Low latency implies that a large amount of data needs
to be moved between different CPU cores. This leads to
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Figure 7. Throughput comparison with 64 byte packets

resources contention in the memory subsystem – accessing
data that is currently owned by a different core is a slow
operation [25]. QQ enforces a minimum distance between
producers and consumers. This trade-off between latency and
throughput increases throughput by 59%, this is both due to
reduced locking and fewer cache conflicts. The latency impact
is in the range of tens of milliseconds, the exact value depends
on the number of producers and data rate, cf. calculations in
Section V-D.

VI. REPRODUCIBLE RESEARCH

Both FlowScope and QQ are available as free software
under the MIT license on GitHub [12]. Readers interested in
validating of the performance and functionality of FlowScope
can use a MoonGen script published on a separate GitHub
repository [15]. Our evaluation at 120 Gbit/s with 128 byte
packets in Section IV-D can be reproduced with this setup.
test-high-background-traffic.lua in the

repository is a MoonGen script that generates random flows
within the subnet 10.0.0.0/16 on random ports in the range
1000 to 10000. One of these flows will generate a single
packet to UDP port 60000 with a different payload after a
configurable delay. This packet can be used as a FlowScope



trigger, by matching either on the port or on the payload. An
appropriate dumping filter can be used to dump only traffic
of this 5-tuple flow or all packets from/to the IP address that
generated the trigger packet.

Follow these steps to test FlowScope with this setup:
• Directly connect two servers A and B with several high-

speed links, server A is the device under test (DuT),
server B the packet generator.

• Install FlowScope [12] on server A.
• Install MoonGen [14] with the script found in our test

repository [15] on server B.
• Run ./libmoon/build/libmoon flowscope.
lua 0 --trigger-expr 'udp port 60000'
--dumper-expr 'host $srcIP' on server A.

• Run ./MoonGen test-high-background-
traffic.lua 0 -t 10 on server B, this will
generate the trigger packet after 10 seconds of traffic.

Run FlowScope and the MoonGen scripts with --help to
see further options, e.g., to use multiple ports and threads.
Matching on payload instead of the UDP port to benchmark
the analyzer under higher load can be done by using the
trigger example trigger-payload.lua that comes with
FlowScope. FlowScope will report the current throughput of
all capturing threads, the analyzer and the performance of the
pcap writer thread once the trigger packet has been detected.
We last tested this procedure with git revision 3678ebc of
FlowScope. README.md in the FlowScope repository [12]
will be kept up-to-date if anything in this demo setup changes.

VII. CONCLUSIONS AND FUTURE WORK

Previous in-memory ring buffer systems were bottlenecked
both by inefficient packet IO libraries and by inefficient data
structures. The performance optimizations discussed in this
paper can help others building similar high-speed concurrent
data structures to analyze or capture traffic on commodity
hardware. FlowScope is a demonstrator for the possibilities
of capturing solutions that build on QQ, our queueing data
structure optimized for packet capturing and analysis. The
clear separation between the implementation of the QQ data
structure and the FlowScope demonstrator applications allows
others to integrate QQ into their systems. We demonstrate the
feasibility of capturing and analyzing traffic in networks at
rates beyond 100 Gbit/s by building on the fast packet IO
backend DPDK. Our work presents an increased performance
of factor 50 over the state of the art.

QQ was implemented as part of a thesis by one of the
authors. Readers interested in further implementation details
of this part are referred to his thesis [37].

We plan to apply FlowScope to both high-speed Internet
uplinks and Internet exchange points where we found existing
tools to be unsuitable due to performance limitations. In
particular, we have previously been monitoring a high-speed
internet uplink and identified flows that show anomalous
behavior seconds or minutes after they start. We have been
unable to capture the full flow as the anomaly cannot be
detected when the flow starts.

We are currently working on integrating efficient flow
tracking to simplify integration of analyzers operating on data
streams, as well as more a more comprehensive API. Refer to
our GitHub repository [12] for documentations and examples
of the latest features.
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