
MonSamp: A Distributed SDN Application for QoS
Monitoring

Daniel Raumer, Lukas Schwaighofer, and Georg Carle
Technische Universität München, Department of Computer Science, Network Architectures and Services

{raumer|schwaigh|carle}@in.tum.de

Abstract—Software Defined Networks are intended to be less
complex, more flexible, and free of vendor-lock-ins. Therefore
the Software Defined Networking (SDN) instantiation OpenFlow
has been designed according to these properties. The efforts are
expected to result in lower expenditure and operational costs.
To reach these objectives, mechanisms of classical networks that
provide established functionalities have to be revalued and either
transformed or redesigned from scratch to take advantage from
SDNs. In this paper we describe our vision on flow sampling
suitable for traffic monitoring in those networks. Without the
loss of generality our approach was specifically created to monitor
the quality of service for flows. We describe monitoring as one
of possibly many applications that communicate with the SDN
controller via the SDN Northbound API. We implemented a
prototype SDN application called MonSamp and performed tests
to demonstrate the feasibility of our concept.

Keywords—SDN, QoS Monitoring, SDN Application, Flow
Sampling, Northbound API

I. INTRODUCTION

Triggered by OpenFlow [1] (OF) the rise of SDN breaks
one of the basic network design principles that was valid
since the first days of the Internet [2]: the avoidance of
central instances as these can be a single point of failure that
compromise the robustness of the network. The main idea of
SDN is the separation of control and data plane. The most
prominent SDN instantiation, OpenFlow is managed by the
Open Networking Foundation (ONF [3]). It provides access to
the forwarding plane of network devices. Flexible controller
software that performs the control plane tasks runs on com-
modity hardware while switches serve the data plane according
to the rules received via the OpenFlow protocol. Uniform
data plane hardware avoids vendor lock-ins and is expected
to reduce capital expenditure as less functionality is required
from it. The wide area network of Google, B4, demonstrated
the feasibility [4] of SDN deployments in large and productive
wide area networks. While the OpenFlow protocol itself is qute
stable, real world SDN applications and their requirements for
the SDN Northbound API (NB), allowing the combination of
multiple, modular SDN applications into a single consistent
controller, are still research in progress [5].

At the time of writing, SDN is still an active research
topic. Only very few known SDN installations used for pro-
ductive, non-research networks exist. One example is the B4
network [4]. With this paper we want to add techniques for
sampling traffic suitable for quality of service analysis to the
available SDN tools, as the OpenFlow protocol itself only
provides little feedback (similar to SNMP) about the network
traffic, which is unsuitable for an in-depth quality analysis.

Thus, we introduce an SDN application for traffic sampling
designed with the requirements for a later quality of service
(QoS) analysis in mind. Our goal is to extract a subset of the
packets handled by the switch, without limiting the selected
traffic to a few ports or suffering from seemingly random drops
because of an over-utilized monitoring link. We achieve this
using the capabilities that are already present in SDN migrated
networks, i.e. commodity servers and OpenFlow switches.
We do not introduce a new technique for data analysis or
traffic sampling. Our focus is on moving sampling away from
dedicated hardware into cheap standard network hardware
using SDN techniques.

The paper is structured as follows: In section II we give
an overview to the state of the art in network monitoring.
Section III describes the challenges of QoS monitoring and
discusses ways of integrating these into SDNs. Based on
these we infer properties for the sampling and present our
architecture. In section IV the prototype, the setting in which
we tested our prototype, and first measurement results that
demonstrate the capabilities of our model are presented. Af-
terwards, in section V we discuss the state of the art and
related publications. We conclude with by highlighting our
contributions, giving a wrap up of open research questions
and providing an outlook to our intended future work in
section VI.

II. EXCURSUS TO NETWORK MONITORING

Gaining information about the network performance is a
worthwhile objective that is not unique to SDNs but has
been addressed in classical networks since the first days. It
is important to differentiate between the productive and the
monitoring functionality. The latter could be omitted without
having any direct effect for the information delivery. In this
chapter we provide a short overview to the state of the
art in QoS-monitoring and discuss what distinguishes QoS
monitoring from other monitoring objectives.

A. State of the Art in QoS-Monitoring

Network monitoring techniques can be classified according
to many criteria: They can be active or passive and require end
host control or just access to the network. They may run on a
single node or require aggregation of information gathered on
different locations, require dedicated hardware and software or
be part of existing network equipment. The techniques can be
vendor specific, standardized or open solutions.

The value of the information provided by the different
techniques for QoS monitoring is highly diverse. Active mea-

surement tools like SmokePing are used to monitor the la-
tency and connectivity of a specific path but are impractical for
monitoring each possible connection in a network. Passively
collecting information about the network traffic is a service
provided by most forwarding network devices. Information
about flows can be pushed to a monitor using protocols like
IPFIX (formerly NetFlow) or actively pulled from a monitor
via device management protocols like SNMP, NETCONF, or
OpenFlow. Theoretically almost any information can be
exported via these protocols. However, each network device
needs the capability to collect the required network information
and to be able to export it to a collector or monitor where
information of different networking devices can be combined
or analysed. Although OpenFlow is intended to provide vendor
independent access, the heterogeneity of the networking hard-
ware available at the market leads to a situation where only
selected devices are able to provide the desired information
with an acceptable performance. Thus, specific requirements
may limit the choice of vendors which again creates a depen-
dency similar to vendor lock-ins. So, in practice, the usefulness
of QoS information exported by the network devices is very
limited. Additionally, pulling information too frequently causes
high load to the network devices which may have a negative
impact on the performance of the productive network (c.f. [6]).

The other widely used monitoring technique we will briefly
introduce is the collection of local network information by so
called sniffers. Sniffers may be hardware components or soft-
ware tools; e.g. Wireshark (former Ethereal) or tcpdump. They
are able to collect and log network traffic and usually require
truncating, filtering, and aggregation of the collected packets to
extract useful metrics. Software tool kits like VERMONT [7]
contain a set of modules that allow configuring a sniffer with
adequate post-processing functionality tailored to almost any
problem. Other solutions like the intrusion detection system
Snort [8] can also be described as sniffers with post-processing
functionality focused on detection of network attacks. In state
of the art approaches sniffers recognize packet drops by
looking at higher level information like TCP retransmits and
round trip times. Because the sniffers only have access to
traffic of a certain network link or node, the information is
necessarily incomplete: This approach is unable to determine
where a drop occurred and is not applicable to UDP traffic
used by most time-critical applications. To allow monitoring
nevertheless, the analyser needs to understand each higher level
protocol (e.g. SIP) that is to be monitored. The downside of
this approach is that the monitoring has to be implemented
for every protocol on top of UDP and may not be available
for some protocols used in the network (especially proprietary
protocols can pose problems). While it is theoretically possible
to combine the information from multiple sniffers, the require-
ments to do so are quite high. The exactly same traffic has to be
monitored on multiple locations (which may be a problem with
sampling). Too much aggregation will diminish the usefulness
but without aggregation the load on the analyser is very high
as all the monitored packets from the whole network need to
be correlated.

B. Sampling for QoS-Monitoring

In opposite to security monitoring where we need to find
traffic patterns outlining an attack, QoS monitoring can be
tackled by sampling. Whenever we detect bad performance

of a single flow, we assume that other flows that are in some
ways similar, e.g. they also traverse the same overloaded path,
will suffer as well. Note that this assumption holds only to
performance problems that are caused by the network and not
necessarily to those caused by an application running on an
end host. If monitoring is applied to all network nodes the
performance degradation can be quantified per hop and thus
per physical link or network device. Based on our assumption
information about the performance gained from the sampled
network traffic can be extrapolated to the whole network traffic
using the sampling rate.

The IETF working group on Internet Protocol Perfor-
mance Metrics (IPPM) focuses on developing and maintaining
“standard metrics” that can be applied to the quality, per-
formance, and reliability of Internet data delivery services
and applications running over transport layer protocols [9].
The QoS metrics can be gathered on almost all layers of
the ISO OSI model: e.g. connection establishment time, con-
nectivity, (maximal/minimal) round trip time, delay, jitter, out
of order delivery, (maximal/minimal) throughput/goodput, or
packet/information loss.

For the quality perceived by the user the term quality of
experience (QoE) is used. These metrics need to differentiate
between different types of traffic, e.g. when using the network
for telephony and the delay becomes greater than 150 ms the
user experience will be bad (c.f. [10]) but same delay for
a file transfer does not impact the user experience. Another
property is the relation between metrics that may be gathered
on different layers. Some indicators are highly dependent on
the type of application and often difficult to quantify, but
network problems detected on high levels are caused by lower
levels. Higher level indicators are thus correlated to lower level
metrics. For example layer 1 errors lead to retransmits on
layer 2 which lead to more traffic causing a lower throughput.
This may lead to congestion causing full buffers on layer 3
that cause higher delays or even drops of packets. The result
are retransmits or missing packets on layer 4 impacting the
performance of the application and thus the user experience.
So it is desirable to gain information on a low protocol layer.
For practical reasons the IP layer is used when a solution is
intended to be applied to network traffic.

To allow detection of single lost packets, flow level sam-
pling of network traffic is preferable to other sampling tech-
niques as it allows the analysis of complete flows. For instance
flow level sampling still allows determining performance met-
rics like the number of dropped packets and one way delays on
the IP layer between two monitoring points. A drawback with
state of the art monitoring approaches (c.f. section II-A) is that
monitoring of newly deployed protocols is hard and requires
adaptation of monitoring mechanisms, whereas the flow level
sampling approach would instantly recognize lost packets for
any IP-based traffic. Using the flow-tuple to match specific
parts of the traffic allows (pre)classification by the network
and dealing with it according to its needs. For example a VoIP
flow constantly needs low latency and jitter, whereas a file
transfer flow just needs high bandwidth on average (it does
not even suffer much from frequent bandwidth variations).
For scenarios where the flow-tuple is insufficient, the packets
can be classified and tagged based on more complex features
(c.f. [11], [12]). If different classes of traffic have been

introduced by tagging at the network edges the matching rules
can also be refined to match only a subset of the tagged traffic.

Another desirable feature is selective monitoring of certain
kinds of traffic, e.g. allowing to decouple statistic and net-
work performance collection from the data plane. A network
may have various monitoring systems that focus on different
aspects. E.g. a system that measures the performance of
telephony traffic is not required to receive any other traffic
in the network, while a second monitoring system may not
require the telephony traffic.

From a network operator’s point of view it is desirable
to recognize bad service quality as easily and universally as
possible. Network operators are usually not in control of the
end nodes of the connections. This condition differs from
scenarios like the Google B4 [4] where traffic can be elastically
delayed because of the control over the end-hosts.

III. BRINGING MONITORING FUNCTIONALITY TO SDNS

SDN, in particular OpenFlow, is expected to overcome
main problems of classical networks: complexity, inflexibility,
and vendor-lock-ins that cause high costs. Consequently we
expect to benefit from these advantages when designing a
monitoring solution for SDNs.

Software monitoring tool kits, like VERMONT [7], can
easily be deployed on commodity servers, are flexible, and can
thus be adapted for many different purposes including security
monitoring, network logging and gathering QoS metrics (c.f.
section II). However, placing a monitor to every link in order
to get the complete picture of the network does not scale. Thus
it is common practice to place monitors only at central nodes
in the network. Therefore, in a typical scenario, the monitors
are connected to one or more switches. The bandwidth of
this link is orders of magnitude smaller than the backplane
capacity of the switch and may act as bottleneck limiting the
monitored traffic. The switch is then configured to send a copy
of the forwarded packets to the port connected to the monitor.
The monitoring system analyses the traffic and extracts per-
formance metrics. These can be visualized for an operator to
take appropriate actions or, in a more advanced setup, directly
given to the SDN controller and its applications. For example
a traffic engineering application can react to congested links
by preferring alternative paths. Such an approach also provides
a solution to challenges of distributed monitoring by utilizing
the central controller of SDNs (c.f. section II-B).

This approach differs from another way of transferring
traffic information about the network to the controller that we
want to discuss briefly: The initial authors of OpenFlow [1]
already intended a configuration where the controller receives
all packets not matched by an OpenFlow rule on the switch.
However, handling all packets that way significantly impacts
the performance. To mitigate they propose an architecture
for monitoring where a subset of the traffic is redirected to
a programmable packet processing system (e.g. NetFPGA)
as installed into the OpenFlow rules. The advantage of this
approach is more flexibility as it allows modification and
filtering of the network traffic but introduces extra delays,
costs, and potential bottlenecks. Therefore we consider it as
attractive for security motivated scenarios. On the other hand,

this overhead is unnecessary if only passive monitoring and
no modification or filtering is desired.

Even in scenarios where the bandwidth is sufficient, other
bottlenecks and the unpredictable CPU capacity limits the
monitoring capabilities even further. Braun et. al. [13] mit-
igated the unpredictability and demonstrated that dynamic
adoption is a suitable way to avoid loss of monitoring in-
formation as long as the whole monitoring system has free
capacities. Still, exceeding the link or processing capabilities
leads to uncontrolled and thus random loss of packets in
the monitoring components. These cannot be distinguished
from real packet loss occurring in the productive network
parts and are affecting the real traffic. In order to optimize
monitoring performance with minimal costs packets should
only enter the monitoring network and connected monitoring
systems if they are likely to be processed. Our approach utilizes
OpenFlow capabilities for fine grained matching of the desired
packets and allows balancing the monitoring load. It provides
an intelligent alternative to classical monitoring ports that are
either affected by tail dropping behaviour on the monitoring
link or block productive traffic if the transmit queue for the
monitor port is full.

A. Northbound API

In SDN the interface between the controller and the higher
level applications and network functions is the Northbound
API. It is the logical consequence of the divide et impera
principle in software development to hide complexity that is
irrelevant for the applications behind clear interfaces. Network
functionality is separated from the controller software by the
Northbound API. The importance of the Northbound API in-
creases even more with the ongoing efforts of scaling controller
architectures. E.g. Kang et al. introduced the idea of providing
a “One Big Switch” abstraction to the application [14]. A
network operator who wants to implement a network function
(e.g. security policies) does not want to think about OpenFlow
rules, the underlying controller hierarchy, or the combination
of these policies with others. Resulting from our monitoring
application we identified the following requirements for the
Northbound API:

• Shared contexts with different levels of (topology)
abstraction should provide access to the information
that is required and influenced by different appli-
cations. These levels also have to hide information,
protect related configuration options for faulty access,
and keep application design as easy as possible. E.g.
an application for BGP routing can handle the network
as one big switch [15] while traffic engineering in
the network requires differentiated views of the single
switches in the network [14].

• Conflict free controller behaviour has to be guar-
anteed through intelligent failover techniques [16],
composition techniques for different applications [17],
and prioritization of rules [18].

• Information transparency is required in both direc-
tions. The Northbound API not only needs to translate
abstract rules into OpenFlow rules for the switches
but also requires the ability to react to incoming
OpenFlow packets sent from switches because none

of the installed rules matched. For proactive SDN
applications only the translation of the rules is required
while reactive applications need to be aware of
incoming OpenFlow packets too.

Until a standardized Northbund API is established, flexible
and transferable SDN applications are out of reach. The
relevance of the Northbound API has been noticed by the ONF
which started to analyse existing approaches for the North-
bound API in 2012. The ONF classified existing Northbound
APIs according to their scope and application (from OpenFlow
enabled networks to general networks) and their level of
abstraction. The definition of the Northbound was so unfocused
in terms of the abstraction level that the spectrum ranges
from the actual Southbound protocol OpenFlow, addressing
a concrete switch to high level virtual network management
interfaces like OpenStack (c.f. [19]). Existing SDN surveys
contain comparisons of different implementations of the SDN
Northbound API [20], [21]. The definitions used in the surveys
assume an abstraction level somewhere in the middle of the
mentioned extremes. In 2013 the ONF created a new working
group with the goal to collect requirements and to implement
first use cases [19].

B. Architecture

M
o

n
it

o
ri

n
g

M
o

n
it

o
ri

n
g

Collector

TrafficO
Engineering

Controller

SDNOenabledONetwork

Monitor

MonSamp ...

Applications

Northbound API

Analyzer
Visualisation

Southbound API
OpenFlow

Fig. 1: SDN with integrated monitoring application

Fig. 1 displays an SDN with integrated monitoring func-
tionality. The monitor receives parts of the network traffic
for analysis. A sampling application called MonSamp decides
which flows to duplicate and send to the monitor. The monitor
consists of different modules (here collector and analyser)
that are connected adequately for monitoring purposes. The
reactive flow sampling application (MonSamp) receives infor-
mation from the collectors regarding their current workload.
Using this information the flow sampling can reactively decide
to reduce the number of flows (to avoid random drops).
If the links are not working to capacity and the collectors
are not fully utilized, the amount of flows can be also be
dynamically increased. The selection range for traffic repli-
cation is transformed into OpenFlow rules that are installed
on the switches by the controller and the Northbound API.

In order to allow different applications on top of a controller
to interact within the same network slice the Northbound
API has to provide abstraction and the ability to combine
the behaviour of different applications to a consistent con-
troller behaviour. For example, the monitoring rules must not
overwrite or supersede rules required for forwarding of the
productive traffic. On the other hand we define a specific
interface for communication between the monitor and the flow
sampling application. MonSamp uses thresholds to adjust the
amount of monitoring load that is forwarded by the SDN
enabled devices to allow monitoring without drops. Thereby
it mitigates the tail drop behaviour of classical monitoring
ports on network devices that occurs whenever a buffer is full.
These thresholds are dependent on the concrete monitoring
setup and have to be set according to it. MonSamp allows the
configuration of monitoring destinations, so that the workload
can be split amongst multiple monitoring instances, either
though a dedicated physical monitoring network or through
a virtual monitoring network. The sampling application also
ensures that packets belonging to the same flow are replicated
and monitored on all monitoring devices (capacity permitting),
thus allowing meaningful correlation. The design supports
horizontal and vertical scaling of monitoring systems: It can
balance the load to both different monitors with redundant
capabilities and different monitors with different objectives
(e.g. to a security and a QoS monitor).

In general we cannot assume that all applications running
on the Northbound API are reactive. In fact, reactive rules
are expected to make the controller a bottleneck of the net-
work [22]. So whenever rules are installed before they match
flows or when rules use wildcards the flow sampling appli-
cation needs information about which flows to replicate for
monitoring. The use of event-based OpenFlow messages can
again degrade the performance of the controller. To bootstrap
the knowledge we imagine to have an ordinary monitoring link.
The traffic on this link can be analysed and can serve as input
for the flow sampling application. For gaining knowledge about
existing flows the random drop behaviour is unproblematic.
Another solution is the use of wildcard rules that may be
problematic for the switch performance (c.f. section IV-E).

One of the design goals of MonSamp is to avoid any
negative influence to the productive traffic. That includes the
resources used on the OpenFlow enabled devices. Therefore
MonSamp limits the number of installed OpenFlow rules for
the monitoring. However, controllers currently do not have
any awareness of the performance implications of the installed
OpenFlow rules, because the OpenFlow protocol lacks this
kind of information [23]. This limitation will be discussed
more thoroughly in section IV-E on infrastructural require-
ments.

IV. CASE STUDY

To provide a proof of concept and to demonstrate the
feasibility of our proposed architecture we implemented Mon-
Samp as a prototypic flow sampling application for SDNs and
performed experiments for evaluation.

A. Prototype

As discussed in section III-A the definition of the North-
bound API is an ongoing process in the community. For our

prototype implementation the Northbound API Pyretic seemed
the most fitting. The domain-specific language Pyretic is a
successor of Frenetic [24], was published in 2013 [17], [25],
and rapidly gained attention. We decided to use it for the
following reasons: Pyretic allows for automatic combination
of different SDN applications. It provides the required level
of abstraction and internally uses the POX controller to
communicate with the OpenFlow switches. Pyretic supports
both reactive and proactive applications. It can also
be run in an interpreted mode, where every packet is
sent through the controller. Both Pyretic and its applications
are written in Python making things fairly easy to debug and
extend in case of unexpected roadblocks. The downside is
the relatively low performance, which is not critical for a
prototype. We do not claim our choice of the Northbound API
to be the silver bullet or a general best practice decision.

The flow sampling application is responsible for deciding
whether a newly arriving flow is monitored. The flow sam-
pling application maintains the currently free capacity of the
monitor (and the link to it) in its knowledge base. Based
on this information the flow sampling application limits the
number of flows to be monitored. It does so by computing
a direction-independent hash of the flow 5-tuple and selecting
the flows within an adjustable hash-range. We achieve direction
independence by lexicographically sorting of the destination
and source (IP, port)-tuple before hashing. For each monitored
flow MonSamp installs a rule into the OpenFlow switches that
triggers the action to send a copy of the matched packets to
the monitor.

The described prototype focuses on the evaluation of the
MonSamp application. Therefore we implemented the monitor
as a stub that runs on Linux. It gives feedback about the current
level of received traffic to the flow sampling application.
Currently we transmit this feedback on the same link that
connects the monitor to the OpenFlow switch. There is no
interference between the incoming monitoring traffic and the
outgoing feedback as Ethernet provides exclusive channels in
each direction. A permanent OpenFlow rule on the switch
creates connectivity from the monitor to the flow sampling
application.

B. Implementation of the Test Scenario

Host

Southbound
NAPI

Applications

 OpenvSwitch

OpenFlow
Channel

Host

Monitor

POX Controller

TrafficNEngineering Flow Sampling

PCAP

APINN(Pyretic)
Northbound

BA

Fig. 2: Realization of the test setup with Mininet

For our case study we used the network emulator
Mininet [26] as it allows execution of reproducible network
experiments with real world traffic and functional realism [27].
The setup is illustrated in Fig. 2. We created a Mininet topol-
ogy containing three nodes connected by an Open vSwitch.
Mininet separates the hosts by using separate network name

spaces, a feature provided by the Linux kernel. As the con-
troller in the default Mininet setup is not part of separate
namespace, we added an additional port to the switch and
connected it to the root namespace. The flow sampling ap-
plication, which runs on top of the Pyretic Northbound API,
uses this port to communicate with the Monitor. To simulate an
application for steering the productive traffic we implemented
an application that simply forwards all traffic from HostA
to HostB regardless of layer 2 addressing. This allows us
to inject traffic containing multiple conversations between
different hosts into our test setup. For simplicity we assumed
that the productive application acts reactive. Thus the controller
notifies the flow sampling application on the arrival of new
flows.

C. Measurement Results

For a first concept evaluation we performed test runs with
a real network trace taken from parts of our campus network.
Although pseudonymized, we consider the traffic as realistic
as the trace contains all connections passing our gateway
node which is used by a group of more than 40 students
and researchers. The PCAP trace contains 18,000 packets,
distributed into 140 TCP and 53 UDP flows. Therefore we
created a testing scenario where from the view of the switch
and the controller not only two (host A and B) communicate
with each other, but more than hundred pairwise different
hosts. However, this scenario is representative for real world
networks as host A and B represent next hop neighbours
of the switch. The monitoring link has a bandwidth of 1.0
Mbps, which we chose as an exemplary link limitation that
the Mininet tetbed still can serve without problems.

Figure 3 shows the monitoring utilization during the replay
of previously recorded real world traffic through our test
setup with four different average speed levels: 0.70 Mbps,
0.94 Mbps, 1.17 Mbps, and 1.40 Mbps. Our application
is configured to keep monitoring utilization at 50 % of the
theoretical capacity (red doted line). For these initial mea-
surements we assume the limiting factor for monitoring to
be a constant link bandwidth. Another relevant factor can be
the dynamically changing CPU utilization [13]. The blue line
represents the adaptation factor that is the input parameter for
the decision function to determine the ratio of new flows to be
monitored. The dashed line is the real bandwidth processed by
the monitoring system. The Monitor reports this back to the
MonSamp application.

The tests show that monitoring of flows without uncon-
trolled drops in the monitoring system is possible. The few
areas where the monitoring load exceeds the capacity are
mainly caused by the relative big impact of elephant flows,
which are flows that contain a very large share of transferred
bits of the overall traffic. We do not expect this to be a problem
when applied to high-bandwidth scenarios where new flows are
created and old flows are finished more frequently. Thus the
impact of a single flow in relation to the total amount of traffic
is lower.

D. Open Issues with the Northbound API

Unfortunately, Pyretic – the Northbound API we chose for
our implementation – is currently not suitable for realising our

(a) PCAP injection rate with avg. 0.70 Mbps (b) PCAP injection rate with avg. 0.94 Mbps

(c) PCAP injection rate with: avg. 1.17 Mbps (d) PCAP injection rate with: avg. 1.4 Mbps

Fig. 3: Sampling adaptation for different bandwidth utilizations

monitoring vision in a meaningful way. The main limitation
is the lack of a policy that can make a decision based on an
incoming packet. The dynamic policy, as supported by Pyretic,
only allows adjusting the policy for future packets, not for
the one that is being processed. This means that a default
policy decision for the MonSamp application is required –
either the first packet of each flow is always monitored or it is
never monitored. Because (unless running in interpreted mode)
the default policy decision for each flow gets pushed to the
OpenFlow enabled hardware, subsequent packets are handled
directly on the OpenFlow hardware and not sent to MonSamp
any more, rendering the policy-adjustment useless.

Furthermore, Pyretic and other reviewed Northbound APIs
for SDNs lack control for the rules that are installed on the
OpenFlow switch. Rules are automatically installed based on
every decision and applied to the whole flow. It is not possible
to define additional rules (e.g. the reverse flow) to be installed
or changing the header-fields used for identifying a flow.

E. Infrastructural Requirements

The application of our vision requires both, hardware
and software features that provide fields for research. Our
monitoring concept requires a scalable controller architecture
that provides a reasonably powerful Northbound API. We
expect that the desired controller infrastructure will exist in
the near future, since first steps were already taken [22], [19].
Thereby the development process of controller software and
architectures benefit from the low market barriers, numerous

players, and almost no proportional costs for additional fea-
tures of software developments. These characteristics do not
apply for hardware OpenFlow-switches. These switches may
support OpenFlow 1.3 – at least after updates of firmware
– but still suffer from processing in software on the general
purpose CPU if certain OF rules are defined. This results in an
extreme heterogeneity of switch behaviour [23] that may lead
to poor forwarding performance and an unpredictable capacity
for stored OpenFlow rules on the switch. As an example the
HP OpenFlow Guide [28], which applies to switches in our
testbed, only states forwarding to a single port, dropping,
and modification of the IP TOS and VLAN-PCP field as
actions that can be executed in hardware; all other actions
are executed in software and therefore limit the processing
capacity of the whole switch to a rate of around 10,000
packets per second. In virtual switches like Open vSwitch the
replication of traffic only introduces a comparatively small and
constant overhead per processed packet. The exact overhead
is defined by the network stack that is used to send out
the traffic to the monitoring system (e.g. to a VM, or to a
physical connection). Better optimized hardware for OpenFlow
and feedback channels from the OpenFlow switches via the
Northbound API to the applications can solve these problems.

V. RELATED WORK

Related work in network monitoring is primary motivated
by security concerns and dates back some years. E.g. in
2005 Schaelicke et al. [29] discussed requirements for parallel
network monitoring and proposed an architecture for adapting

load balancing of security monitoring traffic. Limmer and
Dressler created an adaptive load balancer for NIDS systems.
It uses sampling to cope with high bandwidths [30]. It dy-
namically maps flows to NIDS processes. To alleviate issues
resulting from packet drops they use flow sampling, which
guarantees loss-free analysis for selected flows.

When monitoring the QoS it is an advantage that a network
problem resulting in degraded performance will affect a whole
class of flows that share some properties (i.e. routed through
an overloaded device and use the same QoS class). Thus,
unlike for security purposes, it is sufficient to monitor a
representative subset of the network flows which makes QoS-
Monitoring eligible for sampling. As we do not provide a
new sampling technique we just highlight the long history of
sampling dating back to mathematical work on statistics over
many decades. For a focused introduction we refer to work
of Claffy et al. [31] (general overview), Carela-Español et
al. [32] (study of sampling influence for traffic analysis), Braun
et al. [13], who recently implemented an adaptive sampling
within a monitoring system to mitigate tail dropping behaviour
within the overloaded system, and referenced in there.

Using OpenFlow switches for load balancing services (e.g.
web servers) in data centres was one of the first use cases of
OpenFlow switches. In 2009 Handigol et al. used a reactive
NOX controller to minimize response time for load balanced
web servers without IP address rewriting [33]. Uppal and
Brandon also described a reactive NOX-based load balancer
that does address rewriting [34]. Wang et al. presented a NOX
based, proactive load balancer that uses wildcard OpenFlow
rules with the motivation that reactive approaches causes un-
desired load to the controller [35]. The controller assumed that
the load of each server is proportional to the number of flows
directed to it, but did not consider feedback from the servers.
Due to their flexibility and the resulting capabilities, OpenFlow
switches have also been recognized as a powerful tool for
solving scalability issues in network monitoring. For instance
big switch network already sells Big Tap, a network monitoring
solution [36], [37]. Big Tap uses a separate OpenFlow enabled
(monitoring) network equipped with monitoring systems to
deliver, filter, and analyse traffic in a scalable manner. Recently
Shirali-Shahreza et al. proposed a concept for OpenFlow based
traffic sampling called FleXam [38], [39]. They demonstrated
how OpenFlow functionality can help detecting attacks in the
network [38].

VI. CONCLUSION

In this paper we described our vision on traffic monitoring
in SDNs. Our architecture is scalable and cost efficient because
utilizing the already existing OpenFlow functionality does not
add any additional costs. All special monitoring functionality is
provided by flexible software. We designed an SDN application
for extraction and sampling of network traffic directly from
the data plane that can be added to other applications via
the SDN Northbound API. The application addresses unsolved
and solved problems in (QoS) network monitoring with high
flexibility and low costs. Thereby we also contributed to the
open topic of the canon of SDN applications and requirements
for them (c.f. [5]). We implemented a prototype and performed
different measurements on it to demonstrate the feasibility of
our approach.

Our future work comprises the transfer of our application
into a real test environment which also provides more than
one switch. Thus we can extend the value of our architecture
evaluation beyond functionality (Mininet [27] only provides
functional realism). We plan to perform a more sophisticated
evaluation, transfer the application to other controller platforms
like Ryu, and combining it with monitoring systems like the
one proposed by Braun et al. [13]. We also plan further
refining to support multiple different limits where each may
dynamically interfere as bottleneck and consider sampling
coordination together with vertical and horizontal balancing
of monitoring loads. These steps should point out required
features in future SDNs and demonstrate (e.g. technical) lim-
itations of available SDNs.

ACKNOWLEDGMENTS

This research has been supported by the EU as part of
KIC EIT ICT Labs on Software-Defined Networking (SDN)
and the German Federal Ministry of Education and Research
(Bundesministerium für Bildung und Forschung; BMBF) un-
der support code 01BP12300A; EUREKAProject SASER. We
also would like to acknowledge the valuable contributions from
our colleagues Peter Schaab, Florian Wohlfart, and Lothar
Braun to the implementation and maturing of our vision.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling
innovation in campus networks,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008. [Online]. Available:
http://dx.doi.org/10.1145/1355734.1355746

[2] B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock,
D. C. Lynch, J. Postel, L. G. Roberts, and S. Wolff, “A Brief
History of the Internet,” ACM SIGCOMM Computer Communication
Review, vol. 39, no. 5, pp. 22–31, October 2009. [Online]. Available:
http://dx.doi.org/10.1145/1629607.1629613

[3] “ONF - Open Networking Foundation,”
https://www.opennetworking.org/, April 2014.

[4] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle,
S. Stuart, and A. Vahdat, “B4: Experience with a globally-
deployed software defined wan,” SIGCOMM Comput. Commun.
Rev., vol. 43, no. 4, pp. 3–14, Aug. 2013. [Online]. Available:
http://dx.doi.org/10.1145/2534169.2486019

[5] B. Munch, “Hype cycle for networking and communications,” Gartner,
Report, 2013.

[6] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore,
“Oflops: An Open Framework for OpenFlow Switch Evaluation,” in
Passive and Active Measurement. Springer, 2012, pp. 85–95. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-28537-0 9

[7] “VERMONT - VERsatile MONitoring Toolkit,”
https://github.com/constcast/vermont/, April 2014.

[8] “Snort,” http://www.snort.org/, April 2014.
[9] “IPPM - IP Performance Metrics,” http://tools.ietf.org/wg/ippm/, April

2014.
[10] M. Hassan, A. Nayandoro, and M. Atiquzzaman, “Internet telephony:

services, technical challenges, and products,” Communications
Magazine, IEEE, vol. 38, no. 4, pp. 96–103, 2000. [Online].
Available: http://dx.doi.org/10.1.1.43.1441

[11] A. Callado, C. Kamienski, G. Szabó, B. Gero, J. Kelner, S. Fernandes,
and D. Sadok, “A survey on internet traffic identification,”
Communications Surveys & Tutorials, IEEE, vol. 11, no. 3, pp. 37–52,
2009. [Online]. Available: http://dx.doi.org/10.1109/surv.2009.090304

[12] T. T. Nguyen and G. Armitage, “A survey of techniques for internet
traffic classification using machine learning,” Communications Surveys
& Tutorials, IEEE, vol. 10, no. 4, pp. 56–76, 2008. [Online]. Available:
http://dx.doi.org/10.1109/SURV.2008.080406

[13] L. Braun, C. Diekmann, N. Kammenhuber, and G. Carle, “Adaptive
Load-Aware Sampling for Network Monitoring on Multicore
Commodity Hardware,” in IFIP Networking 2013, New York,
NY, May 2013. [Online]. Available: http://dx.doi.org/10.1.1.395.9415

[14] N. Kang, Z. Liu, J. Rexford, and D. Walker, “Optimizing the one big
switch abstraction in software-defined networks,” Proc. ACM CoNEXT,
2013. [Online]. Available: http://dx.doi.org/10.1145/2535372.2535373

[15] A. Vidal12, F. Verdi, E. L. Fernandes, C. E. Rothenberg, and M. R.
Salvador, “Building upon routeflow: a sdn development experience,” in
XXXI Simpsio Brasileiro de Redes de Computadores, SBRC’2013, 2013.

[16] M. Reitblatt, M. Canini, A. Guha, and N. Foster, “Fattire: declarative
fault tolerance for software-defined networks,” in Proceedings of
the second ACM SIGCOMM workshop on Hot topics in software
defined networking. ACM, 2013, pp. 109–114. [Online]. Available:
http://dx.doi.org/10.1145/2491185.2491187

[17] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker,
“Composing software-defined networks,” in Proceedings of
the 10th USENIX Conference on Networked Systems Design
and Implementation, ser. nsdi’13. Berkeley, CA, USA:
USENIX Association, 2013, pp. 1–14. [Online]. Available:
http://dx.doi.org/10.1145/1384609.1384625

[18] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and
S. Krishnamurthi, “Hierarchical policies for software defined
networks,” in Proceedings of the first workshop on Hot topics
in software defined networks. ACM, 2012, pp. 37–42. [Online].
Available: http://dx.doi.org/10.1145/2342441.2342450

[19] Open Networking Foundation, “Northbound interface working group
charter,” 2013.

[20] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka,
and T. Turletti, “A survey of software-defined networking: Past,
present, and future of programmable networks,” COMMUNICATIONS
SURVEYS AND TUTORIALS, 2014. [Online]. Available:
http://dx.doi.org/10.1145/505733.505735

[21] D. Kreutz, F. M. V. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-Defined Networking: A Comprehensive
Survey,” 1414.

[22] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “Devoflow: scaling flow management for high-
performance networks,” in ACM SIGCOMM Computer Communication
Review, vol. 41, no. 4. ACM, 2011, pp. 254–265. [Online]. Available:
http://dx.doi.org/10.1145/2043164.2018466

[23] P. Perešı́ni, M. Kuzniar, and D. Kostic, “Openflow needs you! a
call for a discussion about a cleaner openflow api,” in The Second
European Workshop on Software Defined Networking, EWSDN 2013,
2013. [Online]. Available: http://dx.doi.org/10.1109/EWSDN.2013.14

[24] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A network programming language,”
SIGPLAN Not., vol. 46, no. 9, pp. 279–291, Sep. 2011. [Online].
Available: http://dx.doi.org/10.1145/2034574.2034812

[25] J. Reich, C. Monsanto, N. Foster, J. Rexford, and D. Walker,
“Modular SDN Programming with Pyretic,” USENIX ;login,
vol. 38, no. 5, pp. 128–134, Oct. 2013. [Online]. Available:
http://dx.doi.org/10.1.1.403.3030

[26] “Mininet - An Instant Virtual Network on your Laptop,”
http://mininet.org/, April 2014.

[27] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible network experiments using container-based emulation.”
in CoNEXT, C. Barakat, R. Teixeira, K. K. Ramakrishnan, and
P. Thiran, Eds. ACM, 2012, pp. 253–264. [Online]. Available:
http://dx.doi.org/10.1145/2413176.2413206

[28] H. O. Switches, “Openflow configuration guide,” 2012.
[29] L. Schaelicke, K. B. Wheeler, and C. Freeland, “Spanids:

a scalable network intrusion detection loadbalancer.” in Conf.
Computing Frontiers. ACM, 2005, pp. 315–322. [Online]. Available:
http://dx.doi.org/10.1145/1062261.1062314

[30] T. Limmer and F. Dressler, “Adaptive Load Balancing for Parallel
IDS on Multi-Core Systems using Prioritized Flows,” in 20th IEEE
International Conference on Computer Communication Networks
(ICCCN 2011). Maui, HI: IEEE, August 2011, pp. 1–8. [Online].
Available: http://dx.doi.org/10.1109/ICCCN.2011.6006063

[31] K. C. Claffy, G. C. Polyzos, and H.-W. Braun, “Application of sampling
methodologies to network traffic characterization,” in ACM SIGCOMM
Computer Communication Review, vol. 23, no. 4. ACM, 1993, pp.
194–203. [Online]. Available: http://dx.doi.org/10.1145/167954.166256

[32] V. Carela-Español, P. Barlet-Ros, A. Cabellos-Aparicio, and J. Solé-
Pareta, “Analysis of the impact of sampling on netflow traffic
classification,” Computer Networks, vol. 55, no. 5, pp. 1083–1099, 2011.
[Online]. Available: http://dx.doi.org/10.1016/j.comnet.2010.11.002

[33] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown, and J. Ramesh,
“Plug-n-serve: Load-balancing web traffic using openflow,” in ACM
SIGCOMM Demo, 2009.

[34] H. Uppal and D. Brandon, “Openflow based load balancing,” Tech.
Rep., 2010.

[35] R. Wang, D. Butnariu, and J. Rexford, “Openflow-based server
load balancing gone wild,” in Proceedings of the 11th USENIX
Conference on Hot Topics in Management of Internet, Cloud, and
Enterprise Networks and Services, ser. Hot-ICE’11. Berkeley,
CA, USA: USENIX Association, 2011. [Online]. Available:
http://dx.doi.org/10.1.1.227.7761

[36] “Big Tap,” http://www.bigswitch.com/products/big-tap-network-
monitoring, April 2014.

[37] big switch networks, “Sollution guide: Open sdn for network visibility
- simplifying large scale network monitoring systems with big tap.”

[38] S. Shirali-Shahreza and Y. Ganjali, “Efficient implementation of security
applications in openflow controller with flexam,” High-Performance
Interconnects HotI 2013, Symposium on, pp. 49–54, 2013. [Online].
Available: http://doi.ieeecomputersociety.org/10.1109/HOTI.2013.17

[39] ——, “Empowering software defined network controller with packet-
level information,” in Proceedings of the 1st IEEE Workshop on
Traffic Identification and Classification for Advanced Network Services
and Scenarios, TRICANS’13. IEEE, 2013, pp. 1355–1359. [Online].
Available: http://dx.doi.org/10.1109/ICCW.2013.6649444

