
Datacenter Network Virtualization in Multi-Tenant
Environments

Viktor Goldberg1, Florian Wohlfart2, Daniel Raumer2

1Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften,
Boltzmannstr. 1, 85748 Garching bei München

2Technische Universität München, Network Architectures and Services,
Boltzmannstr. 3, 85748 Garching bei München

goldberg@lrz.de, wohlfart@net.in.tum.de, raumer@net.in.tum.de

Abstract: Outsourcing of computation and storage infrastructure into the cloud entails
new challenges for the architecture and design of multi-tenant datacenters. With the
evolution of virtualization techniques, tenant applications do not need to be operated
on dedicated servers. Software switches hereby play an important role by mediating
between physical infrastructure and virtualized applications. In this paper, we discuss
the application of Open vSwitch, a software implementation of a network switch that
is particularly designed for use in cloud environments. We analyse its features and
performance in comparison to traditional concepts.

Software-defined datacenters provision pools of compute, storage and networking resources
and distribute them to their customers [BBE+13b]. Today, primarily networking is seen a
barrier to software-defined datacenters [FRZ13]. Address spaces that are tied from guest
operating systems down to features that are installed on physical network devices, i.e.
physical load balancers, result in slower provisioning and limited placement options. VMs
(Virtual machines) are geographically dependent on hardware features, vendors and the de-
ployment on underlying fabrics. Programmatic provisioning, control and visibility, allow
instant deployment of complex Layer 2 to Layer 7 topologies. From a provisioning per-
spective maintaining those services is operationally intensive and expensive [GHMP09].
Network Virtualization introduces a layer between physical networking equipment and
guest OS. The virtual overlay network can e.g. be created with a tunnelling technology
called VXLAN (Virtual Extensible Local Area Network). We discuss a novel approach to
a software-defined datacenters as dealt with in the LRZ (Leibniz Super Computing Centre
in Munich) infrastructure.

We describe the state-of-the-art in datacenter network virtualization in Section 1. Sec-
tion 2 provides an overview to Open vSwitch. We look at selected features and the overall
performance compared to cutting edge hardware switches and experimental ports like the
DPDK vSwitch. Section 3 summarizes this paper.

1 Network Virtualization

An optimal resource allocation by the virtualized networks directly relates to financial sav-
ings [GHMP09]. Existing methods for network virtualization consist of plenty of primi-



tives and proposals, but are nothing more than point solutions, in the sense that only single
aspects of networking are being virtualized [CKRS10]. VLANs (Virtual Local Area Net-
works) can virtualize the IP space by applying NAT (Network Address Translation) and
therefore, share overlapping IP addresses with multiple tenants. With MPLS (Multi Pro-
tocol Label Switching), paths across multiple physical networks can be virtualized. VRFs
(Virtual Routing and Forwarding) enables infrastructure operators to have virtual FIBs
(Forwarding Information Bases) and therefore moves the routing processes into VMs. On
behalf of OpenFlow the Data and Control Plane split paves the way for SDN (Software
Defined Networking) [sdn].

Applications

x86 Hardware

COMPUTE VIRTUALIZATION LAYER DECOUPLED

Figure 1: Virtualized multi-tenant topology of the Leibniz Supercomputing Centre

Figure 1 shows virtualized applications and physical machines as they are present in the
multi-tenant datacenter of the LRZ. Multiple servers are connected by a physical network
that run the tenants’ workloads. Redundant physical paths provide connectivity with High
Availability, High Reliability and High Bandwidth. On top of the physical layer, operators
run the server virtualization software of their choice (like VMware ESX) to host the tenant
VMs. If solely the described mechanisms are used to construct virtual environments for
tenants, the result is fairly challenging to operators [BBE+13a]. It is difficult to place or
remove VMs around the datacenter because the tenants’ addresses are chained to the phys-
ical network underlay – as shown by the dotted boxes. The addressing places constraints
on where the VM can be moved, as flat IP networks and VLANs do not scale and policies
cannot follow VM movements across the network automatically. It is difficult to provision
new tenants, as this involves a lot of manual hardware configuration.

Multi-tenant datacenters suffer from the tenants’ resources that are often coupled to the
physical infrastructure and the resulting inflexibility to run the infrastructure in an efficient
way [BBE+13b]. Virtualized software can be operated on commodity x86-hardware, just
with a little memory and CPU overhead [CKRS10]. The most important leverage, is that
physical machines and the software running on them are entirely decoupled [PPA+09].
Virtual workloads do not interfere with the hardware directly, but only with virtual de-
vices, such as virtual NICs or virtual storage devices. A similar approach for networking
is required. On top of the standard switches and routers that provide simple IP-to-IP con-
nectivity a transparent layer is needed that allows to build virtual networks which have
identical features to physical, so that workloads are not able to distinguish whether they
are processed on physical or virtual instances [PGP+10].



In cloud and datacenter environments, the network virtualization layer consists of virtual
switches (e.g., Open vSwitch) or virtual routers which are entirely deployed in software.
On the hypervisor a small number of NICs is shared between all VMs running on the
host. Hence, instead of supplying VMs with straight access to physical NICs, which lim-
its the number of VMs to the number of available PIFs, they are connected via VIFs. In
contrast to the simple network bridge, software switches provide a rich set of features,
including interfaces like SNMP, SPAN, ERSPAN and CLI [ovsc]. The integration of soft-
ware switches with the hypervisor (e.g., VMware NSX) even allows to get information
from VIFs and machines that are difficult to determine by conventional switches [vmw].
For example, a virtual switch may determine which IP address or even multicast group
is associated with a particular VM. With this knowledge broadcast and multicast storms
can be cut down, if not avoided. A virtualized network environment extends the service
possibilities of a multi-tenant datacenter to a new level: Cloud providers (like LRZ) can
take advantage of their hardware resources while security in the network and isolation of
multiple clients, which share one physical infrastructure, can be sustained [BBE+13b].
By removing all tenant services from the physical underlay network and porting them to
a virtual deployment, cloud providers are also able to add network service features, e.g.
to offer a single broadcast domain to tenants which are spread over multiple different IP
networks by virtually tunnelling of the whole tenant’s overlay network - beyond Layer 2
and Layer 3 borders.

2 Open vSwitch
2.1 Design and Architecture

OVS (Open vSwitch) is an open source multi-layer virtual switch that is used for network
virtualization. It is an integral part of cloud operating systems like OpenStack. Like a
physical switch it operates on Layer 2 but also has the ability to accomplish tasks on Layer
3 and Layer 4, for instance, make decisions not only based on MAC addresses but also
considering IP addresses or L4 ports. OVS is a software implementation that runs on
commodity hardware supporting different platforms, like Linux. It is split up into two
major components – the controller which is the decision making engine, running in the
userspace and a datapath that is implemented as kernel module for fast packet processing.
OVS supports the OpenFlow protocol, but also adds features which are not present in
OpenFlow (like QoS Control). The userspace module, which consists of a controller and
tools, is licensed under the Apache license, whereas the datapath is under the GPLv2
for compatibility reasons with the Linux kernel [ovsb].

Comparing OVS to a physical switch, interfaces correspond to the slots (e.g., RJ-45 con-
nectors) where cables are plugged in. A switch port can aggregate one or more interfaces
using a technology called port bonding with a protocol like LACP (Link Aggregation Con-
trol Protocol). This allows to build load balancing and high availability environments. In
switches, packets are forwarded on the basis of flows defined by source and destination
MAC. In OVS flows can be identified by other, much more specific attributes, like Tun-
nel ID or IPv6 ND Target. This flexibility differentiates OVS from the existing bridging
implementation, the Linux Bridge. The integration across multiple hypervisors, which al-
lows network designers to span a virtual switch beyond the scope of a physical host, makes



OVS a very promising technology in the context of SDN [lx-].

2.1.1 Forwarding Path

With the Linux bridge source and destination MAC address of a received packet is con-
secutively inspected, learned and forwarded [Ros13]. The packet never leaves the kernel.
OVS design and architecture is different although it is still connected to the same place
in the Linux kernel where the Linux bridging code is nested and resources are shared ac-
cordingly. The Linux networking stack is being bypassed. Path determination and packet
processing decisions are made in the userspace.

Figure 2: Architecture of Open vSwitch, packet processing and management workflows (from [wif])

The first packet to come in hits the datapath as shown in Figure 2 (1), where a flow ta-
ble lookup is being performed to determine whether the datapath has any knowledge on
what actions to perform with the packet. The first packet(s) in a flow is sent up to the
ovs-vswitchd process (2) in the userspace. Major tasks of vswitchd are to communicate
with SDN controllers using OpenFlow (6633/TCP) (3), interacting with the OVS database
ovsdb-server via the management protocol (6632/TCP) and exchanging information with
the kernel module using Netlink. When a packet from the kernel is received it is handed
to the classifier which holds one or more OpenFlow tables and is a part of vswitchd. For
example, if a simple Layer 2 virtual switch is implemented, it makes assumptions based
on L2 addresses and then decides to forward on a specific port(s). Whatever a decision is
made for packets belonging to that flow, vswitchd has to instruct the datapath about what
to do with it. Because the datapath is implemented to do lightweight forwarding, it does
not keep state about the packet sent to the userspace earlier and therefore does not wait
for a response. A newly generated flow table entry is added (4) and vswitchd is forced
to inject (5) the processed packet back into the datapath. The recently inserted packet
is matched against the new flow table entry of the datapath (6) and forwarded (7) to the
destination [ovsa].



2.1.2 OVS Management

Plenty of tools exist to interact with OVS, configure and observe the state of the system
as shown in the Management layer of Figure 2. The ovsdb-server holds the complete
switch-level configuration and further communication details e.g., IP addresses between
OVSDB and an OpenFlow controller. The state is durable, written to disk and therefore
persistent upon restart. All properties like value constraints, weak references and garbage
collection are met. Communication is handled via the OVSDB protocol that is based on
JSON RPC. For configuration a connection to ovsdb-server needs to be established, which
then connects to other parts of the system on behalf. A call to the database returns exactly
then when the requested configuration action has finished with the information of failure or
successful completion. This makes OVSDB very reliable in terms of remote management,
as no concern needs to be put on the signalling. For efficiency reasons, a Unix socket
is used for database configuration. This obtains the possibility to interact remotely using
TCP and even SSL deliberately on top [ovsd, cla].

2.2 Features

OVS accomplishes simple tasks, analogous to what the Linux network bridge does: desig-
nating memory for network packets, buffering and forwarding packets in the kernel module
and processing L2 frames from VIFs to PIFs, PIFs to VIFs and VIFs to VIFs.

2.2.1 Network Virtualization Overlays

With a high density of VMs in multi-tenancy clouds comes the need for tunnelling tech-
nologies, to separate tenants from each other. Major requirements include the need of L2
adjacencies across L3 boundaries, logical separation of virtual broadcast domains and de-
coupling of virtual networks from the physical infrastructure. Figure 3 depicts a stripped
down cloud network topology with two physical servers pHostA and pHostB in separate
physical locations. The underlay network provides basic IP End-to-End connectivity and
consists of one router separating two L2 switches with the IP spaces 1.1.1.0/24 on the left
and 2.2.2.0/24 on the right side. pHost A and pHost B both have IP addresses attached to
their PIF from the networks they are connected to and run hypervisors (like KVM). Each
server has a virtual switch running to provide connectivity for VMs. Both hypervisors
run a multi-tenant switch (e.g., Open vSwitch) with tenants T1 and T2. T1.1 receives IP
10.0.0.1 from the vSwitch, T1.2 on the other physical end receives 10.0.0.2. The underlay
network in-between has no routing knowledge for these specific networks, and addition-
ally there is no L2 connectivity between T1.1 and T.1.2 as the router in middle forms a L3
boundary. The second tenant’s IP space overlaps with T1 and therefore equal IP addresses
are assigned to T2.1 and T2.2.

Although, there is the possibility to use traditional 802.1Q native1 VLAN tagging in con-
ventional L2 devices, scalability issues will remain considering there is no support for
overlapping IP networks. Furthermore only a maximum of 4096 concurrent networks can

1An extension called Q-in-Q tunnelling, where a VLAN tag is encapsulated into an outer VLAN tag allows
for tunnelling tenant networks through i.e. an ISP network but still fails over L3 paths.



coexist which is an insufficient number for large scale cloud deployments. Virtualization
and therefore separation of the tenants’ L2 networks allow for flexibility in IP addressing
and likewise provide security through isolation of private traffic.

Through a tunnelling mechanism like VXLAN a virtual overlay network can be created,
as in Figure 3 symbolized by the cloud and the curved connections.The vSwitches on
both sides act as tunnel endpoints, called VTEPs (Virtual Tunnel End Point) in VXLAN.
VTEPs require the information about the location of each VM of a tenant. For example
the virtual switch on pHost A acting as a VTEP needs to learn that in order to reach T1.2,
traffic has to be sent out towards pHost B at 2.2.2.2 which implies that VTEPs depend
upon a mapping between VM L2 addresses and virtual network end point IP addresses.
Mechanisms VTEPs utilize to derive these mappings include manual, push and dynamic
learning. Manual configuration is usually not used in productive environments. By acquir-
ing mappings in a pull/push process an external SDN controller is consulted (cf. Figure 3)
or information is pushed towards it. In the dynamic learning process established flows
are inspected and mappings extracted similar to L2 address learning. For example ARP
broadcasts can be encapsulated into multicast messages to get across the network to VTEP
subscribers [PPA+09]. The VXLAN Header holds the VNI (VXLAN Network Identifier)
that allows the VTEPs to distinguish between different tenant domains. In the example of
Figure 3 T1 holds VNI 10. VNIs work analogous to conventional VLAN tags, yet provid-
ing more scalability. 802.1Q tags have a maximum of 12 bits reserved for the ID which
results in 4096 possible addresses. VNIs, however, have 24 bits reserved which allows for
over 16 M different identifiers [MDD+14].

vSwitch
VTEP

HYPERVISOR HYPERVISOR

T1.1
10.0.0.1

T2.1
10.0.0.1

T1.2
10.0.0.2

T2.2
10.0.0.2

vSwitch
VTEP

Underlay Network

VNI 10 VNI 20

pHost A
1.1.1.1

pHost B
2.2.2.2

1.1.1.1/24 Router 2.2.2.2/24

Overlay Network

SDN Controller

Figure 3: Two overlapping L2 tenant domains, tunnelled across an L3 network using VXLAN

Alternative solutions like GRE (Generic Routing Encapsulation) or LISP (Locator/Identifier
Separation Protocol) for overlay tunnelling are also present in OVS [os-].

2.2.2 The Intelligent Edge

OVS supports the same features as high-end hardware switches – including features for
the intelligent edge like LACP, 802.1Q, 802.1D STP, fine-grained ACLs, QoS control,
BFD in the context of 802.1AG link monitoring and L4 hashing [os-, lis]. Intelligent edge
networking defines the concept of shifting the logic from the core to the boundaries of
the network. The edge position advances other in-network devices as it can summarize
management of a great amount of virtualized hosts in comparison to an in-network device
(e.g., traditional physical host). Many cloud networks face the problem of oversubscribed



PIFs. Often the guest VMs are not trusted which makes it indispensable to enforce traffic
policies on the virtual node, before sending it out over the physical link. OVS has the ideal
position for network control and visibility as different parts of the systems at the edge have
the possibility to communicate between one another. For example by having a service VM
that is running an IDS (Intrusion Detection System) and issues are detected by it, this
machine has the possibility to communicate over an out-of-band networking subsystem
with OVS and in consequence isolate traffic that has been determined to be compromised.
This method can even be improved by introspection where a specific agent runs on the
host VM collecting network data.

One more important feature is TCP pacing: When TCP traffic is sent from a VM, it may
get sent as large TSO (TCP Segmentation Offload) segments and OVS now breaks them
up into the according MTU size before sending them out, thus saving buffer windows by
not filling them up. There is also the approach of doing the opposite which is required
because all the clients communicating via TCP through one PIF end up filling the buffers
while trying to maintain their state. Jitter is introduced into some sessions to break this
up [ASA00].

Finally, the flowlet switching feature where the concept is to send a single TCP session
over multiple links by consulting the RTT, keeps the segments in-order. Different links are
chosen, once they have cleared the total RTT [SKK04].

2.3 Performance Analysis

In virtual switching environments packets are forwarded from VM to VM (VIF-to-VIF),
VM to in-line network device (VIF-to-PIF) or in-line network device to VM (PIF-to-VIF).
As shown in Figure 4, in a VIF to VIF scenario there is either the way of switching in the
edge (1) or hairpinning (2) by directing the traffic through a hardware switch.

PHYISCALnSWITCH

HYPERVISORnBRIDGE

V
M

n1

V
M

n2

V
M

n3

VIF

VIF VIF VIF

VIF VIF

PIF PIF

PIF PIF

(1)

(2)

EdgenSwitching

HairpinnSwitching

Figure 4: Two different switching approaches: Switching at the Edge (1) and Hairpinning (2)

Efficient processing of packets in switches like OVS is limited by multiple factors (e.g.,
CPU, #out ports). Adaptation to the system and the integration of packet IO frameworks
like DPDK (Data Plane Development Kit) can be used to accelerate OVS. For example the
Intel X710 40 GbE controller supports VXLAN offloading [Int14].



2.3.1 Evaluation

The performance of packet processing in software is only limited by the CPU when using
common PC systems [ERWC15]. This means the performance of OVS is dependent on
the system CPU and the number of cores used for parallel packet processing.

The maximum performance OVS achieves is a packet rate of 1.88 Mpps per CPU core
(PIF-to-PIF) which is a meaningful improvement compared to the Linux bridging code
that accomplishes a rate of 1.11 Mpps, and IP forwarding at 1.58 Mpps [ERWC14]. This
best-case performance was measured with OVS running on a dedicated host (equipped
with a 3.3GHz Intel Xeon E3-1230 V2 processor) attached to two physical network in-
terfaces (Intel 10 Gigabit X520-SR2), where one serves as input and one as the output
interface. The test traffic consists one single flow (uniform UDP packets with 64 Byte
packet length) and constant interframe gaps (constant bit-rate). Also in the context of PIF-
to-VIF switching (OVS 0.85 Mpps, IP forwarding 0.78 Mpps, Linux bridge 0.74 Mpps)
and PIF-to-VIF-to-PIF switching (OVS 0.3 Mpps, IP forwarding 0.19 Mpps, Linux bridge
0.2 Mpps), OVS always exceeds the performance of IP forwarding and the Linux bridge
and therefore is well suited as an all-purpose switch.

Adaptation to the system and the integration of packet IO frameworks like DPDK (Data
Plane Development Kit) can be used to accelerate OVS. DPDK vSwitch with a single core
PIF-to-PIF throughput of 11.31 Mpps is considered as the fastest possibility of switching
in software, yet the DPDK framework is not fully supported by OVS which results in
regular instability and therefore is not qualified for production workloads [ERWC14].

2.3.2 Multithreading

Since megaflows (allow the kernel module to support a random number of bitwise wild-
carding, instead of using an exact-match cache) were introduced in OVS 1.11 the total
amount of packets that passed through the userspace – the major bottleneck of OVS –
was radically diminished. Version 2.0 introduced multi-threading in ovs-vswitchd which
now added the possibility to not only use OVS as a hypervisor switch but completely uti-
lize it for PIF-to-PIF processing. This induces the ability to entirely substitute traditional
switching appliances. The change in architecture allows the kernel cache to be extended
to 200,000 flow entries in contrast to previous versions where the cache had a maximum
capacity of 1000 flows [ovsa].

2.3.3 Scaling with multiple cores

After analyzing the per-core performance of OVS, this section focuses on the scalibility of
OVS using multiple CPU cores in parallel. Therefore, we extend our scenario from 2.3.1.
In addition to the existing traffic consisting of one flow, we create traffic patterns with up
to seven equally distributed flows and ensure that each flow is processed by a dedicated
CPU core.

Figure 5 shows that the performance of OVS scales almost linearly with the number of
cores (represented by the number of flows). The packet size is insignificant unless the
Ethernet Link limit is reached [ERWC14]. In Figure 5 that limit is 10 GbE. This effect



is explained by a comparative high memory bandwidth accessed directly by the NIC via
DMA. By taking advantage of RSS (Receive Side Scaling), a technology used for hard-
ware offloading, linear scaling of overall performance with the count of added CPUs is
understood. The actual slight sub-linearity is caused by synchronization efforts between
the cores (e.g. for statistics), and dynamic boosted frequencies in case of skewed loads.
As rule of thumb about 1 Mpps per GHz and core can be forwarded on today’s servers.

0

1

2

3

4

5

6

64 128 256 384 512 768 1024 1280 1518

av
er

ag
e 

th
ro

ug
hp

ut
 [

M
pp

s]

packet lenght

1 flow 
2 flows
3 flows
4 flows
5 flows
6 flows
7 flows

Figure 5: Throughput performance of OVS (10 GbE) PIF-to-PIF; various packet sizes and flows

3 Conclusion

Network operators in traditionally managed datacenters nowadays struggle with problems
that arise in modern multi-tenant environments. Those legacy architectures lack behind
in terms of efficiency, mobility and flexibility both for customers and providers. Hence,
Datacenter Network Virtualization is expected to solve this issue while also providing
security by proper isolation.

We have analyzed that advanced edges, supplied with a considerable amount of features,
can impact the design of future network architectures. We have pointed out that Open
vSwitch does not only support basic switching functionality but also has the ability to
provide elaborate services, i.e. L2 tunnelling mechanisms through insecure L3 networks.
Conventional switching and routing architectures can be simplified to provide IP End-to-
End connectivity only, as this is the single requirement for virtualization overlays.

References

[ASA00] A. Aggarwal, S. Savage, and T. Anderson. Understanding the performance of TCP
pacing. In INFOCOM 2000. Proc. of the Nineteenth Annual Joint Conference of the
IEEE Computer and Communications Societies, volume 3, 2000.

[BBE+13a] M. F. Bari, R. Boutaba, R. Esteves, L. Z. Granville, M. Podlesny, M. G. Rabbani,
Q. Zhang, and M. F. Zhani. Data center network virtualization: A survey. Communi-
cations Surveys & Tutorials, 15(2), 2013.

[BBE+13b] Md. Faizul Bari, Raouf Boutaba, Rafael Pereira Esteves, Lisandro Zambenedetti
Granville, Maxim Podlesny, Md. Golam Rabbani, Qi Zhang, and Mohamed Faten



Zhani. Data Center Network Virtualization: A Survey. IEEE Communications Sur-
veys and Tutorials, 15(2), 2013.

[CKRS10] M. Casado, T. Koponen, R. Ramanathan, and S. Shenker. Virtualizing the network
forwarding plane. In Proceedings of the Workshop on Programmable Routers for Ex-
tensible Services of Tomorrow. ACM, 2010.

[cla] Keeping IT Classless, [SDN Protocols] Part 3 - OVSDB. http://
keepingitclassless.net/2014/08/sdn-protocols-3-ovsdb/. vis-
ited 15-2-10.

[ERWC14] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle. Performance characteristics of
virtual switching. In Cloud Networking (CloudNet), 2014 IEEE 3rd International Con-
ference on. IEEE, 2014.

[ERWC15] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle. Assessing Soft- and Hardware
Bottlenecks in PC-based Packet Forwarding Systems. In Fourteenth International Con-
ference on Networks (ICN 2015), Barcelona, Spain, 2015.

[FRZ13] N. Feamster, J. Rexford, and E. Zegura. The Road to SDN. Queue, 11(12), 2013.
[GHMP09] A. Greenberg, J. Hamilton, D. Maltz, and P. Patel. The Cost of a Cloud: Research

Problems in Data Center Networks. Computer Communications Review, 2009.
[Int14] Intel Ethernet Controller XL710 Datasheet Rev. 2.1. Intel, 2014.
[lis] Using LISP tunneling. https://github.com/emaste/openvswitch/

blob/master/README-lisp. visited 15-2-10.
[lx-] Virtual Networking in Linux. http://www.ibm.com/developerworks/

linux/library/l-virtual-networking/. visited 15-2-10.
[MDD+14] M. Mahalingam, D. Dutt, K. Duda, L. Agarwal, P.and Kreeger, T. Sridhar, M. Bursell,

and C. Wright. RFC7348: Virtual eXtensible Local Area Network (VXLAN): A
Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks. 2014.

[os-] Configuring the Quantum Open vSwitch Plugin. https://wiki.openstack.
org/wiki/Obsolete:ConfigureOpenvswitch. visited 15-2-10.

[ovsa] Accelerating Open vSwitch to ”Ludicrous Speed”. http://networkheresy.
com/2014/11/. visited 15-2-10.

[ovsb] OVS Documentation. http://openvswitch.org/support/. visited 15-2-10.
[ovsc] OVS: Features. http://openvswitch.org/features/. visited 15-2-10.
[ovsd] Ubuntu Manuals, ovsdb-server - Open vSwitch database server. http:

//manpages.ubuntu.com/manpages/natty/man1/ovsdb-server.1.
html. visited 15-2-10.

[PGP+10] J. Pettit, J. Gross, B. Pfaff, M. Casado, and S. Crosby. Virtual switching in an era
of advanced edges. In Proc. 2nd Workshop on Data Center—Converged and Virtual
Ethernet Switching (DCCAVES), ITC, volume 22, 2010.

[PPA+09] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker. Extending
Networking into the Virtualization Layer. In Proc. ACM SIGCOMM Workshop Hot
Topics in Networks (HotNets), 2009.

[Ros13] R. Rosen. Linux Kernel Networking: Implementation and Theory. Apress, 2013.
[sdn] OpenStack Taking Its Place in the Software-Defined Economy. http://www.

openstack.org/blog/2014/08/openstack-taking/. visited 15-2-10.
[SKK04] S. Sinha, S. Kandula, and D. Katabi. Harnessing TCP’s burstiness with flowlet switch-

ing. In Proc. ACM SIGCOMM Workshop Hot Topics in Networks (HotNets), 2004.
[vmw] vmWare NSX. http://www.vmware.com/products/nsx. visited 15-2-10.
[wif] Future Wireless Networking Project Wiki. http://teampal.mc2lab.com/

projects/fwn/wiki/Build_Open_vSwitch. visited 15-2-10.


