
Reproducible Measurements of TCP BBR Congestion Control

Benedikt Jaeger, Dominik Scholz, Daniel Raumer, Fabien Geyer, Georg Carle

Chair of Network Architectures and Services, Technical University of Munich

{jaeger|scholz|raumer|fgeyer|carle}@net.in.tum.de

Abstract

The complexity of evaluating TCP congestion control has increased considerably since its initial development in the 1980s.
Several congestion control algorithms following different approaches have been proposed to match the requirements of
modern computer networks. We present a framework to analyze different congestion control algorithms using network
emulation. The framework is publicly available which provides easy repeatability of our experiments and reproducibility
of the results.

As a case study, we use our framework to analyze the bottleneck bandwidth and round-trip time (BBR) congestion
control algorithm, which was published by Google in 2016. Because of promising initial results, BBR has gained wide-
spread attention. As such it has been subject analysis, which showed an increase in performance, but also revealed
critical flaws. We verify our framework by reproducing experiments from related work which confirm weaknesses of
the current BBR implementation. We also contribute an analysis of BBR’s inter-flow synchronization behavior and its
interaction when competing with other congestion control algorithms. Our results show that BBR flows on their own
have difficulty to reach a fairness equilibrium and suppress other congestion control algorithms. BBR is still work in
progress, thus the framework is useful to validate further updates of BBR by rerunning the given experiments.

Keywords: TCP, Congestion Control, BBR, Reproducible Measurements

1. Introduction

TCP congestion control is imperative for applications
to utilize network resources efficiently. Over the years, sev-
eral algorithms have been developed with different char-
acteristics [1]. This can be algorithms adapted to a spe-
cific domain, or different metrics used to calculate the con-
gestion window. This results in multiple congestion con-
trol algorithms being deployed in the Internet at the same
time [2], respective flows competing for available band-
width based on different congestion indicators. To analyze
the efficiency of an algorithm it is therefore not enough to
just study a single mechanism, but also the interaction
when competing with other congestion control algorithms.

We introduce a framework for automated and repro-
ducible measurements of TCP congestion control algorithms.
It uses Mininet as backend for emulating network topolo-
gies with Linux network namespaces. The flexible con-
figuration enables manifold scenarios, whereby important
values and metrics are extracted and post-processed auto-
matically. This allows to analyze the behavior of different
TCP congestion control algorithms and their interaction
with each other in detail. It produces repeatable experi-
ments and is available as open source at [3]. The use of
emulation using Mininet allows the framework to be inde-
pendent of hardware constraints, enabling other research
groups to easily adapt it to run their own measurements
or replicate ours.

We demonstrate the capabilities of our framework by
inspecting and analyzing the behavior of different conges-
tion control algorithms in various scenarios. While the
throughput used for our measurements is orders of mag-
nitude lower compared to testbeds utilizing hardware, we
verify the applicability of our results by reproducing mea-
surements of related work. Beyond reproduction, we deepen
the analysis regarding inter-flow unfairness and inter-protocol
fairness when different algorithms compete with each other.

As a case study we use the framework to analyze TCP
BBR, a congestion-based congestion control algorithm de-
veloped by Google and published in late 2016 [4]. In con-
trast to traditional algorithms like CUBIC [5] that rely
on loss as indicator for congestion, BBR periodically es-
timates the available bandwidth and minimal round-trip
time (RTT). In theory, it can operate at Kleinrock’s op-
timal operating point [6] of maximum delivery rate with
minimal congestion. This prevents the creation of queues,
keeping the delay minimal.

Service providers can deploy BBR rapidly on the sender
side, as there is no need for client support or intermedi-
ate network devices [4]. Google already deployed BBR in
its own production platforms like the B4 wide-area net-
work and YouTube to develop and evaluate BBR [4] and
provided quick integration of BBR with the Linux ker-
nel (available since version 4.9). This spiked huge in-
terest about benefits, drawbacks and interaction of BBR

Preprint submitted to Elsevier May 16, 2019

with alternatives like CUBIC. The research community has
started to formalize and analyze the behavior of BBR in
more detail. While the initial results published by Google
have been reproducible, demonstrating that BBR signifi-
cantly improved the bandwidth and median RTT in their
use cases, weaknesses like RTT or inter-protocol unfair-
ness have been discovered since (e.g. [7, 8, 9]). As a con-
sequence, BBR is actively improved [8]. Proposed changes
usually aim to mitigate specific issues, however they need
to be carefully studied for unintended side effects.

We deepen the analysis of BBR regarding inter-flow un-
fairness and inter-protocol fairness when competing with
TCP CUBIC, Reno, Vegas and Illinois flows. Lastly, we
use measurements to analyze the inter-flow synchroniza-
tion behavior of BBR flows.

This paper is structured as follows: Section 2 presents
background to TCP congestion control. In Section 3, we
describe our framework for reproducible TCP congestion
control measurements. We performed various case studies
with the analysis of BBR. The results are used to validate
our framework by reproducing and extending measure-
ments from related work in Section 4. Section 5 demon-
strates the interactions when BBR flows compete with
other, loss-, delay- and loss-delay-based congestion control
algorithms. Our BBR inter-flow synchronization analysis
is discussed in Section 6. Related work is presented in
Section 7 before we conclude with Section 8.

2. TCP Congestion Control

Congestion control is required to achieve high network
utilization for multiple flows, claiming a fair share, while
preventing overloading the network with more packets than
can be handled. Buffers are added to counteract packet
drops caused by short lived traffic peaks, increasing net-
work utilization. When buffers remain non-empty (“static
buffers”), they add delay to every packet passing through
the buffer, coined bufferbloat. Static buffers originate mainly
from two factors, as shown by Gettys and Nichols [10]:
poor queue management and failure of TCP congestion
control. Algorithms like TCP NewReno [11] or TCP CU-
BIC [5] use packet loss as indication of congestion. How-
ever loss only occurs when the buffers are close to full
at the bottleneck (depending on the queue management
used). The congestion is only detected when the bottle-
neck is already overloaded, leading to large delays hurting
interactive applications.

Various TCP congestion control algorithms were de-
veloped to improve on loss-based congestion control. Ex-
amples include TCP Vegas [12], adapting delay as indica-
tor, or TIMELY [13] based on precise RTT measurements.
However, these are suppressed when competing with loss-
based algorithms. Hock et al. present TCP LoLa [14], pri-
marily focusing on low latency. Hybrid algorithms using
both loss and delay as congestion indication were proposed
such as TCP Compound [15] or TCP Illinois [16]. Alizadeh

loss-based
operating
point

Kleinrock’s optimal
operating point

BDP BDP+BtlneckBufSize

RTprop

R
T

T

BtlBw

Amount Inflight

D
el

iv
er

y
R

a
te

Figure 1: Effect of increasing inflight data on the RTT and delivery
rate. Based on [4].

et al. proposed Data Center TCP (DCTCP) [17], which re-
quires support for Explicit Congestion Notification (ECN)
in network switches. Utility functions were also proposed
in order to describe objectives for congestion control, such
as the works from Winstein and Balakrishnan in [18] with
TCP Remy, or the work from Dong et al. in [19] with
Performance-oriented Congestion Control (PCC).

2.1. TCP Optimal Operation Point

Any network throughput is limited by the segment with
the lowest available bandwidth on the path. It is called
bottleneck, as it limits the total throughput of the con-
nection. Thus for modeling congestion control, a complex
network path can be modeled by a single link. The de-
lay of that link is set to the sum of all propagation delays
in each direction and the bandwidth is set to the bottle-
neck’s (BtlBw). This preserves the round trip propagation
delay (RTprop). The bandwidth-delay product (BDP) as
BtlBw · RTprop describes the amount of data that can
be inflight (non-acknowledged) to fully utilize the network
path, coined Kleinrock’s optimal point of operation [6].

Figure 1 visualizes the effects of an increase in inflight
data on the connection’s bandwidth and RTT. If less data
than the BDP is inflight, there is no congestion and the
RTT equals RTprop (application bound). The delivery
rate corresponds directly to the sending rate, but hits
the maximum when the inflight data reaches the BDP at
Kleinrock’s point. Increasing the inflight further causes
packets to arrive faster at the bottleneck than they can
be forwarded. This fills a queue, causing added delay
which increases linearly with the amount inflight (recog-
nized by delay-based algorithms). The queue is full when
the amount inflight hits BDP+BtlneckBufSize. After this
point, the bottleneck buffer starts to discard packets (rec-
ognized by loss-based algorithms), capping the RTT. This
shows that both delay and loss-based algorithms operate
beyond Kleinrock’s optimal operating point.

2.2. Loss-based Congestion Control

A simple idea to detect congestion is to assume that
each packet loss solely happens due to congestion. Algo-
rithms following this approach are classified as loss-based

2

congestion control algorithms. Popular loss-based TCP
versions are Reno [11], BIC [20] and CUBIC [5]. They
only use a congestion window as control parameter which
limits the amount of unacknowledged data in the network.
Its size grows as long as all packets arrive and is reduced
whenever packet loss occurs. The quantity of theses in-
creases and decreases usually varies for different loss-based
algorithms For example, Reno increases its congestion win-
dow by one for each RTT and reduces it by 50 % whenever
packet loss is detected. As a result, Reno has both prob-
lems with RTT fairness and the utilization of long-delay
links with large BDP.

TCP CUBIC increases the window according to a cu-
bic slope as a function of the time since the last packet
loss happened. It sets an inflection point as target, the
area where it estimates to reach the optimum operating
point. Close to the inflection point, CUBIC is conserva-
tive, trying to have a stable congestion window, however,
the further away CUBIC gets from the inflection point,
the more aggressive the congestion window is increased.
In case of a loss event, CUBIC adjusts its estimated tar-
get conservatively reducing it by 20 % [1].

Loss-based approaches suffer from two major problems.
First, they are susceptible to random packet loss since
TCP interprets them as a signal for congestion and steadily
reduces its congestion window, leading to under-utilization
of the link. Secondly, they shift their operation point away
from Kleinrock’s optimal operation point (Figure 1). This
permanently keeps the network buffers full, which is not a
problem as long as the buffer size is small. However, with
larger size the additional buffer delay grows increasing the
transmission delay of all connections using that link. This
becomes a major problem for real-time applications like
telephony or streaming via TCP.

2.3. Delay-based Congestion Control

Delay-based algorithms use the measured time between
a packet was sent and the corresponding acknowledgement
arrived to detect congestion. If this time increases, TCP
assumes that a queue has formed somewhere on the path
and reduces the sending rate. Thus, compared to the loss-
based approach, congestion can be detected before any
packet-loss occurs.

TCP Vegas [12] is an example for a delay-based algo-
rithm. It periodically measures the connection’s RTT and
stores the minimum measured as RTTmin. The conges-
tion window is scaled linearly according to the difference
between the measured RTT and RTTmin. Since Vegas
keeps RTTmin for the whole connection it cannot adapt to
changes in the path’s RTprop.

Delay-based congestion control algorithms are known
to perform poorly when run in parallel with loss-based
algorithms [21].

2.4. Hybrid Congestion Control

To combine the advantages of both approaches, hy-
brid algorithms were developed. TCP Illinois [16] uses

packet loss as the primary signal for congestion, which
decides if the congestion window should be increased or
decreased. Additionally, the delay is taken into account to
determine the quantity of the change. When the network
is not congested, Illinois grows the congestion window fast
and reduces it less drastically. When delay increases the
growth is slowed down, leading to a concave slope simi-
lar to CUBIC. Another example for a hybrid algorithm
is Compound TCP [15], having both a delay-based and a
loss-based component.

2.5. Bottleneck Bandwidth and Round-trip Propagation Time

Cardwell et al. proposed TCP BBR following a new ap-
proach named congestion-based congestion control, which
is supposed to react only to actual congestion and not
only to indicators as former algorithms. In this section
the basics of BBR that are important for our evaluation
are described. Our deliberations are based on the version
presented by Cardwell et al. [4] and we refer to their work
for a detailed description of the congestion control algo-
rithm or [7] for a formal analysis.

2.5.1. Overview

The main objective of BBR is to ensure that the bot-
tleneck remains saturated but not congested, resulting in
maximum throughput with minimal delay. Therefore, BBR
estimates bandwidth as maximum observed delivery rate
BtlBw and propagation delay RTprop as minimum ob-
served RTT over certain intervals. Both values cannot be
measured simultaneously, as probing for more bandwidth
increases the delay through the creation of a queue at the
bottleneck and vice-versa. Consequently, they are mea-
sured separately.

To control the amount of data sent, BBR uses pacing
gain. This parameter, most of the time set to one, is mul-
tiplied with BtlBw to represent the actual sending rate.

2.5.2. Phases

The BBR algorithm has four different phases [22]: Startup,
Drain, Probe Bandwidth, and Probe RTT.

The first phase adapts the exponential Startup behav-
ior from CUBIC by doubling the sending rate with each
round-trip. Once the measured bandwidth does not in-
crease further, BBR assumes to have reached the bottle-
neck bandwidth. Since this observation is delayed by one
RTT, a queue was already created at the bottleneck. BBR
tries to Drain it by temporarily reducing the pacing gain.
Afterwards, BBR enters the Probe Bandwidth phase in
which it probes for more available bandwidth. This is per-
formed in eight cycles, each lasting RTprop: First, pacing
gain is set to 1.25, probing for more bandwidth, followed
by 0.75 to drain created queues. For the remaining six
cycles BBR sets the pacing gain to 1. BBR continuously
samples the bandwidth and uses the maximum as BtlBw
estimator, whereby values are valid for the timespan of ten
RTprop. After not measuring a new RTprop value for ten

3

ReceiverSender

Bottleneck Link

Different
RTTs

TBF

tcpdump

Figure 2: Mininet setup with sending and receiving hosts and bot-
tleneck link.

seconds, BBR stops probing for bandwidth and enters the
Probe RTT phase. During this phase the bandwidth is
reduced to four packets to drain any possible queue and
get a real estimation of the RTT. This phase is kept for
200 ms plus one RTT. If a new minimum value is measured,
RTprop is updated and valid for ten seconds.

3. TCP Measurement Framework

The development of our framework followed four re-
quirements. Flexibility of the framework should allow to
analyze aspects of TCP congestion control, focusing on but
not limited to BBR. The Portability of our framework
shall not be restricted to a specific hardware setup. Re-
producibility of results obtained via the framework must
be ensured. Given a configuration of an experiment, the
experiment itself shall be repeatable. All important con-
figuration parameters and the results should be gathered
to allow replicability and reproducibility by others without
the need for high performance hardware and testbed. The
complete measurement process shall be simplified through
Automation. Via configuration files and experiment de-
scription, including post processing of data and generation
of plots, the experiment should be executed without fur-
ther user interaction.

The full source code of our framework is available on-
line [3].

3.1. Emulation Environment

Our framework uses emulation based on Linux network
namespaces with Mininet. Linux network namespaces pro-
vide lightweight network emulation, including processes,
to run hundreds of nodes on a single PC [23]. A draw-
back is that the whole system is limited by the hardware
resources of a single computer. Thus we use low band-
widths of 10 Mbit/s for the different links in the studied
topology. By showing in Section 4 that our measurements
yield similar results as related work performing measure-
ments beyond 10 Gbit/s, we argue that the difference in
throughput does not affect the validity of the results.

3.2. Setup

Topology: As a TCP connection can be reduced to
the bottleneck link (cf. Section 2.1), our setup uses a

dumbbell topology depicted in Figure 2. For each TCP
flow a new host-pair, sender and receiver, is added for
simplified collection of per-flow data. Both sides are con-
nected via three switches. The middle switch acts as the
bottleneck by performing traffic policing on its interface.
The two additional switches allow capturing the traffic be-
fore and after the policing. Traffic from the receivers to
the senders is not subject to rate limiting since we only
send data from the senders and the returning acknowledg-
ment stream does not exceed the bottleneck bandwidth,
assuming symmetric bottleneck bandwidth.

Delay Emulation & Packet Loss: We use NetEm
to add flow specific delay at the links between the switch
and the respective receivers to allow configurable RTTs.
This approach introduces problems for higher data rates
like 10 Gbit/s where side effects (e.g. jitter) occur [7],
but works well for the data rates we use. Additionally,
a stochastic packet-loss rate can be specified.

Rate Limit & Buffer Size: We use Linux’s Token-
Bucket Filter (TBF) for rate limiting and setting the buffer
size. TBFs also allow a configurable amount of tokens to
accumulate when they are not needed and the configured
rate can be exceeded until they are spent. We set this token
bucket size to only hold a single packet, because exceeding
the bottleneck bandwidth even for a short time interferes
with BBRs ability to estimate the bottleneck bandwidth
correctly [4].

BBR Pacing: To send data at the desired rate, BBR
requires the TCP stack to pace outgoing packets. For
Linux versions before 4.13, pacing support was not part of
the TCP stack but implemented by the Fair Queue (FQ)
queuing discipline. Since we performed our measurements
on Linux 4.9, we explicitly configured the FQ queuing dis-
cipline on each BBR sender, but we verified that using FQ
is no longer required in Linux 4.13.

3.3. Workflow

Each experiment is controlled using a configuration file
describing the flows. For each flow, the desired TCP con-
gestion control algorithm, start time in relation to pre-
vious flow, RTT, and runtime have to be specified. The
runtime of an experiment consists of a negligible period to
set up Mininet, as well as the actual experiment defined
by the length of the running flows. During the execution
of the test only data is collected and nothing is analyzed
yet. Thus, no collected data is altered due to computa-
tional processes running on the same system and the col-
lection and analysis can be split up to different systems
and moments in time. The analysis framework then au-
tomatically extracts data and computes the implemented
metrics. This automation allows to systematically evalu-
ate parameter spaces. For example, Figure 12 shows the
results of more than 800 individual experiments.

The analysis framework outputs CSV files for each com-
puted metric to simplify further processing of the data.
Additionally a plot visualizing all gathered data is gener-
ated in form of a PDF file.

4

3.4. Metric Collection

For each TCP flow we gather the sending rate, through-
put, current RTT, and the internal BBR values. We also
sample the buffer backlog of the TBF in customizable in-
tervals. We capture the packet headers up to the TCP
layer of all packets before and after the bottleneck using
tcpdump.

The raw data is processed afterwards to generate the
metrics listed below. Existing tools like Wireshark (in-
cluding the command line tool tshark) and tcptrace did
not meet all our requirements for flexibility. Instead we
wrote our own analysis program in Python. It uses the
dpkt1 module to extract the information from the packet
captures.

As a result of one experiment, a report containing 14
graphs visualizing the metrics over time is automatically
generated. Sample configuration files can be found with
our source code publication [3].

Sending Rate & Throughput: A useful metric for
analyzing TCP fairness is the sending rate, which can be
larger than the maximum transmission rate of the link,
resulting in congestion at the bottleneck. We compute the
per flow and total aggregated sending rate as the average
bit-rate based on the IP packet size in modifiable intervals,
using the capture before the bottleneck. The time interval
4t should be small enough to deliver precise values and
large enough to avoid oscillations. E.g. if 4t is so small
that either 1 or 0 packets arrive per interval, then the
computed sending rate alternates between 0 and packet size

4t .
The throughput is computed equal to the sending rate,

but is based on the capture after the bottleneck to observe
the effect of the traffic policing.

Fairness: We follow the recommendation of RFC 5166 [24]
and use Jain’s Index [25] as fairness coefficient based on the
sending rate to indicate how fair the bandwidth is shared
between all flows. For n flows, each of them allocating
xi ≥ 0 of a resource,

F = 1/n · [Σn
i=1xi]

2/Σn
i=1x

2
i

is 1 if all flows receive the same bandwidth and 1/n if
one flow uses the entire bandwidth while the other flows
receive nothing. The index allows quantifying the fairness
in different network setups independent of the number of
flows or the bottleneck bandwidth. Graphs displaying the
fairness index in the remaining part of this paper are re-
stricted to the interval [1/n, 1] unless mentioned otherwise.

Round-trip Time: We use the TCP Timestamp op-
tion [26] to measure the current RTT for each arriving
acknowledgment. To reduce the amount of data points,
the average RTT is computed in time intervals.

Retransmissions: We count retransmissions of TCP
segments in the packet capture before the bottleneck. We
use these as an indicator for packet loss in our evaluation.

1https://pypi.python.org/pypi/dpkt

Inflight Data: Refers to the number of bytes sent
but not yet acknowledged. We obtain this value by com-
puting the difference of the maximum observed sequence
and acknowledgment numbers in the capture before the
bottleneck. This metric is only useful when there are no
retransmissions.

Bottleneck Buffer Backlog: We use Linux’ traffic
control tool to extract the current backlog of the bottle-
neck buffer. We count the backlog length in bits in a mod-
ifiable interval, e.g. 20 ms. This interval was chosen to see
the impact of short-lived effects without adding too much
computational and storage overhead. This allows to get a
clearer view of the current congestion of the bottleneck.

Congestion Control Internal Values: Congestion
control algorithms keep different internal metrics, like for
instance the congestion window or the slow start threshold.
In addition, BBR keeps track of the estimated bottleneck
bandwidth and RTT as well as the pacing and window
gain factors. We extract these values every 20 ms using
the ss tool from the iproute2 tools collection.

3.5. Limitations

Due to resource restriction on a single host emulated
network, the framework is limited both by the bottleneck
bandwidth and the number of concurrent flows. We ran
tests both on a normal notebook and on more power-
ful commercial off-the-shelf server hardware with differ-
ent CPUs. In Figure 3 the CPU utilization of different
host systems running the framework is depicted. The
used bandwidth hardly impacts the performance during
the emulation step, but increases the duration of the anal-
ysis step since the packet capture files grow in size. The
number of flows is limited by the CPU since we use indi-
vidual sender and receiver hosts for each flow, each hav-
ing its own network namespace. To provide valid results
the host system’s resources should not be fully utilized.
For example, we observed a drop in the polling rate of
the internal TCP values at about 50 % CPU utilization
for each test. Though, the results show that when us-
ing a bandwidth below 10 Mbit/s and up to 20 concurrent
flows, our methodology provides sufficient accuracy com-
pared to measurements utilizing real hardware. This is
because both approaches use the same network stack, i.e.,
the same implementation of the BBR algorithm.

4. Reproduction & Extension of Related Work

We validate the accuracy of our framework by using it
to reproduce the results of related work that were based
on measurements with hardware devices. The results show
that the behavior of TCP BBR at bandwidths in the Mbit/s
range is comparable to the behavior at higher ranges of
Gbit/s. In the following, we present our reproduced re-
sults with a mention of the respective related work.

We focus on the results of two research groups. Card-
well et al., the original authors of BBR, have described

5

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

Number of Flows

C
P
U

L
o
ad

[%
]

Intel Core i5-2520M (2 cores@2.5GHz)

Intel Xeon E3-1230 (4 cores@3.2GHz)

Intel Xeon E5-2640 v2 (8 cores@2.00GHz)

Figure 3: CPU Utilization when running the framework using
10 Mbit/s (solid) and 100 Mbit/s (dashed) links.

2 BtlBw 3 RTprop

0

10

20

R
at

e
[M

b
it

/s
]

Sending Rate BtlBw

0
40

120

R
T

T
[m

s]

RTT RTprop

0
0.4
0.8
1.2

In
fl
ig

h
t

[M
b
it

] Inflight BDP

0

10

20

R
at

e
[M

b
it

/s
]

Estimated BtlBw

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
0

40

120

Time [s]

R
T

T
[m

s]

Estimated RTprop

Figure 4: Single BBR flow (40 ms, 10 Mbit/s bottleneck) under
changing network conditions. Values sampled every 40 ms. The bot-
tom two plots show BBR’s internal metrics.

their current research efforts towards BBR 2.0 [4, 8]. Goals
are reduced loss rate in shallow buffers, reduced queuing
delay and improved fairness among others. Hock et al.
evaluated BBR in an experimental setup with 10 Gbit/s
links and software-based switches [7]. They reproduced in-
tended behavior of BBR with single flows, but also showed
cases with multiple flows where BBR causes large buffer
utilization.

For all following figures the raw data, post-processed
data and source code to generate the figures can be found
with our source code publication [3]. Unless representing
a single flow, measurements were repeated five times and
standard deviations are shown where applicable.

4.1. Single Flow

Figure 4 shows how a single BBR flow reacts to changes
of the bottleneck bandwidth in a network. Thereby, the
first 55 seconds are our reproduction of [4, Fig. 3]. For
equal network conditions, no significant differences are vis-
ible. The sending rate, measured RTT and inflight data
closely follow the doubling in BtlBw. After the bandwidth
reduction, the internal BtlBw estimation adapts it few sec-
onds later so a queue is generated, as indicated by the

increased RTT, and drained in the following five seconds.
Instead of an additional bandwidth reduction, we tripled

RTprop at the 56 s mark. The results are surprising at
first. Similar to a decrease in BtlBw, BBR cannot adapt
to an increase in RTprop immediately, since the minimum
filter retains an old, lower value for another 10 s. When
RTprop grows, the acknowledgments for the packets take
longer to arrive, which increases the inflight data until the
congestion window is reached, which BBR sets to 2 BDP.
To adapt, BBR has to limit its sending rate, resulting in
lower samples for BtlBw. As soon as the BtlBw estimate
expires, the congestion window is reduced according to
the new, lower BDP. This happens repeatedly until the
old minimum value for RTprop is invalidated (at approx.
62 s). Now, BBR learns about the new value and increases
the sending rate again to match BtlBw with exponential
growth.

While this behavior is not ideal and can cause prob-
lems, the repercussions are not severe for two reasons.
First, even though the sending rate drops, the inflight data
does not decrease compared to before the RTT increase.
However, larger increases of the RTT can lead to BBR uti-
lizing less than 20 % of the available bandwidth for up to
10 s. Second, it is unlikely that such a drastic change in
RTT happens in the Internet in the first place.

The RTprop reduction at 76 s is adapted instantly be-
cause of the RTT minimum filter.

Figure 4 also validates that our framework can sample
events detailed enough (4t = 40 ms), as both Probe Band-
width (small spikes) and Probe RTT phases (large spikes
every 10 s) are displayed accurately. However, in general
we use 4t = 200 ms for less overhead.

4.2. RTT Unfairness

The RTT unfairness of BBR is visualized in [9, Fig. 1].
Two flows share a bottleneck of 100 Mbit/s, one flow hav-
ing a larger RTT than the other (10 ms and 50 ms). The
flow with lower RTT starts three seconds before the other.
We set the bandwidth to 10 Mbit/s and adapted all other
parameters. Our reproduced results (Figure 5a) only dif-
fer slightly: The larger flow receives about 10 % less of the
bandwidth.

As shown in Figure 5b, the behavior can also be ob-
served when increasing the number of flows. Flows with
equal RTT converge to a fair share within their group,
however, groups with higher RTT claim a bigger share
overall.

4.3. Bottleneck Overestimation for Multiple Flows

BBR overestimates the bottleneck when competing with
other flows, operating at the inflight data cap [7]. The
analysis of Hock et al. predicts 2 BDP ≤ ∑

i inflighti <
2.5 BDP. Our experiments using a large enough buffer size
of 5 BDP reproduce the results of this formal analysis as
shown in Figure 6. For five simultaneously started BBR
flows, the sum of the BBR estimations of BtlBw exceeds

6

0 5 10 15 20 25 30 35 40 45 50 55
0

5

10

Time [s]

S
en
d
in
g
R
a
te

[M
b
it
/
s]

10ms RTT 50ms RTT Fair Share

(a) Two BBR flows with different RTTs

40 45 50 55 60 65 70 75 80
0

1

2

3

Time [s]

S
en
d
in
g
R
at
e

[M
b
it
/s
]

40ms RTT 80ms RTT Fair Share

(b) Multiple BBR flows with two groups of RTTs

Figure 5: RTT Unfairness of BBR

9.5

10

10.5

11

B
a
n

d
w

id
th

[M
b

it
/
s]

∑
BtlBwEst. BtlBw

0

1

2

B
a
ck

lo
g

[M
b

it
]

Buffer Backlog 1.5 BDP

5 10 15 20 25 30 35 40 45 50
0

100

200

300

Time [s]

R
T

T
[m

s]

RTT of Flow 1 2.5 RTprop

Figure 6: BDP overestimation for five flows with a 100 ms RTprop
and 10 Mbit/s bottleneck (5 BDP buffer)

the real BtlBw after each Probe RTT phase, increasing
the estimation towards the inflight cap. The backlog of
the bottleneck buffer is kept at 1.5 BDP resulting in a to-
tal of 2.5 BDP.

4.3.1. Insufficient Draining of Queues During Probe RTT

To measure the correct RTprop value, all flows need to
simultaneously drain the queue in Probe RTT. Otherwise,
the queue cannot be drained since the BBR flows not be-
ing in Probe RTT measure an increased BtlBw resulting
in a higher sending rate. This prevents all BBR flows from
measuring a low RTprop value. Figures 7a and 7b show
the overlap of the Probe RTT phase for five synchronized
flows for different RTprop values. While all flows even-
tually are in the Probe RTT phase simultaneously, they
arrive with slight offsets as no perfect inter-flow synchro-
nization can be achieved. As a consequence, the duration
for which all flows are draining the queue (during Probe
RTT) is only a fraction of the actual duration of the Probe
RTT phase. In this case the last flows join the Probe RTT
phase while the first flows are already leaving again. Con-
sequently, the queue is not drained completely, resulting in

30 30.5 31 31.5 32
0

2

4

Time [s]

F
lo
w
s
in

P
ro
b
e
R
T
T

(a) RTprop = 10 ms

30 30.5 31 31.5 32
0

2

4

Time [s]

F
lo
w
s
in

P
ro
b
e
R
T
T

(b) RTprop = 100 ms

0 20 40 60 80 100 120 140 160 180 200
0

200

400

600

800

RTT [ms]

P
ro
b
e
R
T
T

D
u
ra
ti
on

[m
s] Overlap Single Flow

200 + RTT 200 + 2.5 RTT

(c) Overlapping Probe RTT phase duration

Figure 7: Influence of different RTT on simultaneous Probe RTT
phases

an overestimation of the bottleneck. This becomes more
severe for shorter estimated RTTs.

The duration of Probe RTT increases for a wider range
of different RTTs. Figure 7c displays the duration of the
Probe RTT phase for five flows, and the resulting over-
lap. For RTTs below 40 ms the overlap is only half of
the duration of the Probe RTT phase (200 ms + RTT).
This is because all flows enter Probe RTT at slightly dif-
ferent times even though the flows are synchronized. As
a consequence, the queue is not drained enough and BBR
overestimates the bottleneck.

For high RTTs the overlap exceeds the theoretic max-
imum of 200 ms + RTT. Indeed, the duration of the Probe
RTT phase for each individual flow equals 200 ms + 2.5 RTT.
This is because when the previous RTprop value expires,
triggering the Probe RTT phase, BBR chooses the newest
measured RTT as RTprop [22]. As this value, however, is
based on a measurement outside of the Probe RTT phase,
it is influenced by the 2.5 BDP overestimation. As a con-
sequence, the Probe RTT phase is longer, reducing the
performance of BBR.

4.3.2. Retransmissions for Shallow Buffers

BBR is susceptible to shallow buffers as it overesti-
mates the bottleneck, not recognizing that the network
is strongly congested, since packet loss is not interpreted
as congestion. Cardwell et al. have shown that BBR’s
goodput will suffer if the buffer cannot hold the additional
1.5 BDP [8].

We reproduced this effect by analyzing the relation be-
tween bottleneck buffer size and caused retransmissions
for both BBR and CUBIC (cf. Figure 8). Five TCP flows
are started simultaneous and share a 10 Mbit/s, 50 ms bot-
tleneck. We compute the retransmission rate for different
buffer sizes at the bottleneck for BBR and CUBIC indi-
vidually. Since BBR overestimates the bottleneck during
startup and synchronization (cf. Section 6), we focused on
the retransmission rates during normal steady state be-
havior. Thus, we measured the rates about 25 s after the
flows started.

7

0.1 1 10

0.1

1

10

100

2 50

Buffer Size in Multiples of BDP [log]

R
et

ra
n
sm

is
si

on
R

at
e

[l
og

%
] CUBIC≥25 s BBR≥25 s

Figure 8: Retransmission rate after 25 s for 5 simultaneously started
flows with different bottleneck buffer sizes

For shallow buffers up to 2 BDP retransmission for
BBR exceeds the amount for CUBIC by a factor of 10.
This is a consequence of the constant bottleneck overesti-
mation, in contrast to CUBIC’s adaption of the congestion
window for loss events. For larger buffers BBR can operate
without a single packet loss.

CUBIC, as loss-based algorithm, produces loss with all
buffer sizes during congestion avoidance phase. However,
for small buffer sizes it is a factor of 10 below BBR. Only
when exceeding 10 BDP = 5 Mbit a rise in retransmissions
is visible for CUBIC. This is because of taildrop, increasing
the repercussions of a single loss event. However, buffers
with this large capacity are not realistic in the Internet [10]
and therefore only pose a theoretic problem.

5. Inter-protocol Behavior

Our emulation framework creates a new sender/receiver
host pair for each flow. This allows to configure different
congestion control algorithms per flow and analyze the in-
teraction thereof. The following section presents our case
study on BBR’s inter-protocol behavior, when competing
with either the loss-based CUBIC and Reno, the delay-
based Vegas or the loss-delay-based Illinois congestion con-
trol algorithms.

Liu et al. define requirements for congestion control al-
gorithms [16]. Amongst others, two requirements are im-
portant if a newly proposed algorithm should be usable in
the Internet. First, the new algorithm should not perform
significantly worse when competing against any other al-
gorithm which is used in the Internet. Otherwise, there is
no incentive for anyone to use the algorithm at all. Second,
other algorithms should not receive major throughput re-
ductions, i.e., the bandwidth should be shared in a fair
manner between different algorithms.

To accomplish these two goals BBR should neither be
too aggressive nor too gentle towards other algorithms. We
focus our comparison mainly on TCP CUBIC, as it is the
current default congestion control algorithm in the Linux
kernel.

5.1. Competing with Loss-based Algorithm

In this section BBR’s fairness towards loss-based con-
gestion control algorithms such as Reno or CUBIC is eval-
uated.

0 10 20 30 40 50 60
0

2

4

6

8

Time [s]

B
a
n
d
w
id
th

[M
b
it
/
s]

0

50

100

150

200 R
T
p
rop

[m
s]

CUBIC
BBR
BtlBw
RTprop

Figure 9: Competing BBR and CUBIC flow

Influence of Changing Network Parameter: In
the best case, regarding fairness, a competing BBR and
CUBIC flow reach an oscillating steady-state [8]. This is
caused by the RTprop estimation of BBR as shown in Fig-
ure 9. CUBIC’s aggressive probing for bandwidth causes
the queues to fill up, resulting in BBR to measure a higher
delay, increasing its BDP. In turn, this causes packet loss,
resulting in reduced inflight data for CUBIC. Once the
queue is drained, CUBIC starts to probe again, while BBR
measures the correct RTprop value. This oscillation re-
sults in F being constantly low, however, both flows reach
an equal average throughput. For the following analysis
related to the inter-protocol behavior we use Ftp as fair-
ness index based on the average throughput to reduce the
impact of these oscillations.

The size of the bottleneck buffer is crucial for the fair-
ness between competing BBR and CUBIC flows [4, 7]. Fig-
ure 10a shows our reproduction of this result, displaying
the bandwidth share and fairness for one BBR and one
CUBIC flow for different bottleneck buffer sizes. Up to
1.5 BDP buffer size, BBR causes constant packet loss as
explained in the previous section. CUBIC interprets this
as congestion signal and reduces its sending rate. Up to
3 BDP both flows reach a fair share, while for further
increasing buffer sizes CUBIC steadily claims more. The
reason is that CUBIC fills up the ever growing buffers. For
BBR this results in ever growing Probe RTT phases, i.e.,
reduced sending rate. The length of and the gap between
Probe Bandwidth phases increases too, reducing BBR’s
ability to adapt. However, these buffer sizes pose only a
theoretical problem (cf. Section 4.3.2).

While showing the same overall behavior, RTT changes
have a smaller influence on the fairness if applied to both
flows as shown in Figure 10b. For all tested RTTs the
fairness remained above 80 %. However, when fixating one
flow at 50 ms RTT and varying the RTT of the other flow,
unfairness emerges (Figure 10c). For small RTTs or shal-
low buffers BBR suppresses CUBIC for the already dis-
cussed reasons. In the other cases, the bandwidth share
remains independent of the RTT. Only when having large
buffers, CUBIC gains a growing share with increasing RTT.
Our conclusion is that the fairness between CUBIC and
BBR largely depends on the bottleneck buffer size, while
the RTT only has a small impact.

Increasing Number of Competing Flows: Lastly,
we evaluate how the number of flows competing with each

8

0.5

0.75

1

F t
p

10−1 100 101
0

25

50

75

Buffersize in multiples of BDP [log]

B
a
n
d
w
id
th

A
v
g
.

[%
]

BBR

CUBIC

(a) Increasing buffer with 50 ms RTT

0.5

0.75

1

F t
p

101 102 103
0

25

50

75

RTT [log ms]

B
a
n
d
w
id
th

A
v
g
.
[%

] BBR CUBIC

(b) Increasing RTT with 2.3 BDP buffer

50 100 150 200
0

25

50

75

100

RTT [ms]

B
an

d
w
id
th

A
v
g.

[%
]

BBR5

CUBIC5

BBR2.5

CUBIC2.5

BBR1

CUBIC1

(c) One flow 50 ms RTT for 1, 2.5 and 5 BDP
buffer

Figure 10: One CUBIC vs. one BBR flow for changing network conditions

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Number of CUBIC Flows

T
o
ta

l
S

h
a
re

o
f

C
U

B
IC

F
lo

w
s

[%
]

BBR flows: 1 2 5 10

Figure 11: Bandwidth share of different number of CUBIC and BBR
flows competing. Dashed lines show fair share.

other influences the throughput share per congestion avoid-
ance algorithm.

Figure 11 shows that CUBIC is suppressed indepen-
dent of the number of flows in a scenario with 50 ms RTT
and 2.5 BDP bottleneck buffer, the bottleneck configura-
tion with highest Ftp (cf. Figure 10). A single BBR flow
claims more bandwidth than its fair share already when
competing against two CUBIC flows. In fact, independent
of the number of BBR and CUBIC flows, BBR flows are
always able to claim at least 35 % of the total bandwidth.

Beside the absolute values of the bandwidth share BBR
claims, we also analyzed how far the share deviates from
their actual fair share. For this purpose, we run measure-
ments with one to ten flows of different congestion control
algorithms against one to ten BBR flows for 240 s on a
50 ms, 10 Mbit/s bottleneck with a buffer size of 2.5 BDP.
We compute the difference between the average through-
put share BBR achieves for each test and the actual fair
share. The results are visualized in Figure 12. Positive
values mean that BBR is unfair towards the other algo-
rithm. This is the case for most of the test while BBR
never falls more than 10 % below its fair share.

For example, when running against CUBIC, BBR gets
a larger share for all tests with more than two CUBIC
flows independent of the number of BBR flows (see Fig-
ure 12b). Furthermore, an increase of the CUBIC flows
enhances this unfairness and for more than five flows, CU-
BIC gets at least 20 % less than its fair share. The reason
for this is that more CUBIC flows fill the buffer faster gen-
erating packet loss more often. This makes the CUBIC
flows back off and allows BBR to claim a larger band-
width share. Additionally, more loss-based flows prevent
BBR from draining the queue during Probe RTT result-
ing in an overestimation of RTprop which leads to an even

larger share for BBR. Only two or less CUBIC flows can
manage to get more bandwidth than their fair share at all.

There is a visible optimum for CUBIC when running
with one flow against five or six BBR flows. For this, we
found the two following reasons.

First, an increasing number of BBR flows allows it to
drain the whole queue during Probe RTT and thus all
BBR flows have lower RTprop estimations. If the queue
is not completely drained, the RTprop estimation usually
oscillates between the actual RTprop and a larger overes-
timation (cf. Figure 9). Thus, when BBR can measure
a low RTprop, the estimated BDP also decreases and it
keeps less data inflight leaving more space for CUBIC.
Figure 13 shows the distribution of RTprop estimations
with increasing number of BBR flows competing against
one CUBIC flow. The overestimations decrease while more
BBR flows are running since more flows drain the queue
simultaneously. Actually, more than four BBR flows can
empty the queue for most of the Probe RTT phases, which
allows measuring low values for RTprop.

Secondly, more BBR flows require a larger buffer to
hold the persistent queue and run without any determin-
istic loss. Although, we use the optimal buffer size of
2.5 BDP from Figure 10a in the experiments, however,
more flows create even larger queues (Figure 14). This
results in BBR failing to completely drain the queue since
the time when all flows are in Probe RTT is too short for
the given RTT of 50 ms. For more than seven BBR flows,
this persistent queue is even larger than the used buffer
size, which leads to constant packet loss caused by BBR.
Furthermore, since BBR does not react to this implicit sig-
nal for congestion, it has higher retransmission rates than
CUBIC. When running each ten BBR and CUBIC flows,
80 to 90 % of all retransmissions are sent by BBR.

These two reasons result in CUBIC getting about 10 %
more bandwidth than its fair share with one flow against
five BBR flows, which is the optimum for CUBIC (see
Figure 12b).

We also compared BBR to TCP Reno. Competing with
BBR, Reno shows similar results as CUBIC, since both are
loss-based algorithms (see Figure 12a). However, CUBIC
improved many of Reno’s weaknesses and thus the overall
performance of Reno against BBR is worse.

9

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

Number of BBR Flows

N
u
m
b
er

o
f
R
en

o
F
lo
w
s

(a) Reno

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

Number of BBR Flows

N
u
m
b
er

o
f
C
U
B
IC

F
lo
w
s

(b) CUBIC

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

Number of BBR Flows

N
u
m
b
er

o
f
V
eg

a
s
F
lo
w
s

(c) Vegas

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

Number of BBR Flows

N
u
m
b
er

o
f
Il
li
n
o
is

F
lo
w
s

(d) Illinois

0

20

40

60

Figure 12: BBR’s fairness towards other algorithms. The shading describes the difference between the actual gained share of all BBR flows
and the fair share in percent. Positive values indicate that BBR is claiming more bandwidth than it should. Contour lines are given for 0
(dashed) and 20 % (dotted).

0
10
20

R
el
at
iv
e
F
re
q
u
en
cy

[%
]

1 BBR Flow

0
10
20 2 BBR Flows

0
10
20 3 BBR Flows

0
10
20 4 BBR Flows

0
10
20 5 BBR Flows

50 60 70 80 90 100 110 120 130 140
0

10
20

Estimated RTprop [ms]

10 BBR Flows

Figure 13: Relative frequency of RTprop estimations for different
number of BBR flows competing with one CUBIC flow on a 50 ms
link.

5 10 15 20 25 30
0

2

4

6

8

Number of BBR Flows

Q
u
eu
e
S
iz
e
[B
D
P
]

Max Mean Min 2.5 BDP

Figure 14: Size of the persistent queue at the bottleneck buffer with
increasing number of BBR flows. More than ten BBR flows fail to
drain the queue completely.

5.2. Competing with Delay-based Algorithm

Similar to BBR, Vegas also tries to keep the delay as
low as possible. Therefore, not only the fairness between
Vegas and BBR is evaluated, but also whether both algo-
rithms can keep the bottleneck queue small when running
simultaneously.

Regarding the throughput, Vegas performs poorly when
running parallel with BBR. Independently of the order in
which the flows are started, Vegas receives only 5 to 10 %
of the total bandwidth (see Figure 15). After the BBR
flow starts, a queue is created at the bottleneck since Ve-
gas already fully utilizes the link. This induces additional
delay and Vegas reacts accordingly by decreasing its con-

0 10 20 30 40 50 60
0

5

10

Time [s]

T
h
ro
u
gh

p
u
t

[M
b
it
/s
]

Vegas Flow
Vegas Flow
BBR Flow

Figure 15: BBR competing with Vegas

gestion window. Hence, BBR can measure higher values
for BtlBw increasing its sending rate further until Vegas’
congestion window cannot get any lower.

In this experiment, BBR makes accurate RTprop and
BtlBw estimates. Still, it does not reach its desired opera-
tion point and is capped by its congestion window, which
adds one BDP of data to the queue. When the BBR flow is
in Probe RTT, the Vegas flow measures a lower RTT and
starts increasing its congestion window. After Probe RTT,
BBR returns to its previous sending rate. The total send-
ing rate of both flows exceeds the link’s bandwidth and
a queue is created. Since Vegas cannot decrease its con-
gestion window further and BBR only adjusts its sending
rate to its BtlBw estimation, this queue cannot be removed
until the next Probe RTT phase. Then the whole process
repeats. Thus, a parallel Vegas flow does hardly impact
the throughput of BBR but it manages to push BBR into a
state in which BBR maintains a persistent queue without
the capability of draining it.

When considering throughput, Vegas performs poorly
against BBR independently of the number of Vegas flows
(Figure 12c).

5.3. Competing with Loss-delay-based Algorithm

Lastly, we compare BBR to the loss-delay-based Illinois
algorithm.

Figure 12d is similar to the other loss-based algorithms
since Illinois still uses packet loss as primary signal for
congestion. However, Illinois can achieve higher through-
put against BBR than Reno, because Illinois slows down
when increasing delay is measured, which also increases

10

0.2

0.6

1

F

50 55 60 65 70 75 80 85 90 95 100 105 110
0

2

4

6

T
jo
in

T
F

9
5

Time [s]

S
en

d
in
g
R
a
te

[M
b
it
/
s]

Existing Flows

New Flow

Figure 16: BBR inter-flow synchronization behavior

the time until the next congestion event occurs. Addi-
tionally, Illinois is affected less by the constant packet loss
with increasing number of BBR flows due to the smaller
multiplicative decrease.

5.4. Summary

Overall, there are several different factors, as buffer
size, RTT or number of flows which influence the fairness
of BBR towards other algorithms. For competing loss-
based algorithms, the deciding factor is the used buffer
size while Vegas completely starves but manages to move
BBR’s operation point towards a persistent queue at the
bottleneck. For most configurations, BBR received a too
large share, mostly due to being too aggressive and not
considering any implicit congestion signals. However, BBR
did not starve against another algorithm in any of our
tests.

6. Inter-flow Synchronization

Different BBR flows synchronize themselves to avoid
faulty estimations, e.g., when one flow probes for band-
width causing a queue to form at the bottleneck, while
another probes for RTT. In contrast to loss-based algo-
rithms, this does not correlate with congestion, as the flows
are impervious to loss.

6.1. Theory & Questions

Cardwell et al. demonstrate in [4, Fig. 6] how differ-
ent BBR flows synchronize whenever a large flow enters
the Probe RTT phase. We visualize the process in Fig-
ure 16 with one new flow joining four already synchronized
flows. The new flow immediately overestimates the bottle-
neck link and claims a too large share of the bandwidth.
10 s later it enters Probe RTT. The flow with bigger share
drains a large portion of packets from the queue, which
results in all other flows measuring a better RTprop es-
timate. Consequently, the flows are synchronized as the
RTprop samples of all flows expire at the same time, caus-
ing them to enter Probe RTT together at the 81 s mark.
Considering the fairness, it takes approximately 35 s after
the new flow joined until equilibrium is reached.

To maximize performance, BBR should only spend 2%
of time in Probe RTT [4, 22]. Therefore, new flows have
trouble to measure the correct RTprop as active flows
likely probe for more bandwidth and create queues. It

0.2

0.8
0.9
1

F a
v
g

−6 −4 −2 0 2 4 6 8 10 12
0

10

20

30

Flow joining in relation to Probe RTT phase [s]

T
F

9
5
[s
]

(a) Join during different times of the Probe RTT cycle. Red area marks
Probe RTT phases.

0

200

400

R
T
p
ro
p
[m

s]

Startup Drain Probe RTT

-2 0 2 4 6 8 10 12 14 16 18 20 22 24 26
0

200

400

Time in relation to Probe RTT phase [s]

Sync. flows New flow

(b) Correlation between Startup/Drain and Probe RTT for joining 2 s
and 1.7 s before next Probe RTT phase

Figure 17: Single BBR flow joining synchronized BBR flows

causes the new flow to overestimate the BDP, inducing
queuing delay or packet loss.

This raises two questions regarding the synchroniza-
tion behavior of BBR flows: Is there an optimal and worst
moment regarding the time until equilibrium is reached for
a single flow to join a bottleneck containing already syn-
chronized BBR flows? And secondly we want to determine
if constantly adding new flows can result in extended or
accumulated unfairness.

6.2. Synchronization Metrics

To quantify the impact of a new flow joining we use
two metrics based on Jain’s fairness index F . For better
comparison we define Tjoin as the point in time when the
flow of interest, i.e. the last flow, has joined the network
(cf. Figure 16). As first metric, we define TF95 as the point
after Tjoin for which F remains stable above 0.95, i.e. no
longer than 2 s below this threshold. Second, we compute
the average fairness Favg in the interval [Tjoin, Tjoin +30 s].

In the following we analyze the behavior of flows with
equal RTTs. We assume that all effects described in the
following will scale similarly as described in Section 4.2
with RTT unfairness between flows.

6.3. Single Flow Synchronization Behavior

To analyze the basic synchronization behavior, we use
the scenario of one new BBR flow joining a network with
four other BBR flows already synchronized and converged
to a fair share. Figure 17a shows our experimental evalua-
tion when joining a new flow in relation to the Probe RTT
phase of the synchronized flows.

11

0.2

0.6

0.8

1

F a
v
g

0 2 4 6 8 10 12 14 16 18 20 22
0

10

20

30

40

Interval length [s]

T
F

9
5
[s
]

Figure 18: Different join intervals for subsequent flows

As expected, a periodic behavior is revealed, with the
best case for a new flow to join being during the Probe
RTT phase. It synchronizes immediately as the queues
are drained and the new flow can measure the optimal
RTT, leading to low TF95 and high Favg. The worst case
is if the flow joins directly after the other flows left the
Probe RTT phase. At this point, the queue is building
again as the flows keep 2 BDP inflight, resulting in the
new flow severely overestimating the BDP. It remains in
this state until the old flows enter Probe RTT again (up to
10 s later), draining the queue and synchronizing with the
new flow. This behavior of aggressively taking bandwidth
from existing flows can be harmful when many short living
BBR flows join, leading to starvation of long-living flows.

In general, it lasts 20 s until TF95 is reached, but the
later the new flow joins during the cycle, the higher varies
TF95 (10 to 30 s). The local optimum when joining 2 s be-
fore the Probe RTT phase with TF95 = 10 s is because
the existing flows enter the Probe RTT phase while the
new flow drains after the Startup as shown in Figure 17b.
Consequently, all flows drain the queue and measure a new
optimal RTprop, synchronizing immediately, yet overesti-
mating the bottleneck because the queue created during
Startup is not entirely drained yet. In contrast, the worse
case directly afterwards (1.7 s before next Probe RTT)
with TF95 = 22 s is caused by the existing flows enter-
ing Probe RTT, draining the queue, while the new flow is
in Startup. This causes the new flow to drastically over-
estimate the bottleneck until leaving Startup, suppressing
other flows.

Considering the prevalence of short-lived flows in the
Internet [27, 5], this high TF95 value poses a significant
disadvantage of TCP BBR. Initially, flows during this time
suppress other flows through unfair bandwidth claims, which
is only solved when reaching a fair share.

6.4. Accumulating Effects

To evaluate if negative effects of multiple flows joining
can accumulate, i.e. whether the duration of unfairness can
be prolonged, we change the scenario to have a new flow
join every x seconds up to a total of five BBR flows (cf.
Figure 18).

Optima are visible for intervals matching the duration
of the Probe RTT phase of the already active flows at ap-

proximately 10 s and 20 s. When all flows join at the same
time, they all measure a good RTprop value within the
first few packets, synchronizing them immediately. For in-
tervals smaller than 10 s accumulating effects are visible
as new flows rapidly join, not allowing the fairness to sta-
bilize. As for a single flow, TF95 and Favg improve with
increasing interval. For flows joining every 5 s an addi-
tional local optimum is visible as every second flow joins
during the Probe RTT phase of the other flows. For in-
tervals larger than one Probe RTT cycle (after flows leave
Probe RTT, approximately 10.5 s), TF95 and Favg show
the behavior for a single flow joining. This is because all
prior flows have already synchronized, resulting in them
already converging towards an equilibrium before the next
flow joins.

Analyzing the effect of a new flow joining on individual
existing flows, e.g. the longest running flow, is difficult for
the lack of a good metric. We therefore select the best
and worst case join intervals displayed in Figure 19 for a
visual analysis. As the minimum value of F depends on the
number of flows (1/n), it is normalized using percentages.

Figures 19a and 19b show the effects of subsequent
flows joining during (best case) or immediately after (worst
case) the Probe RTT phase. Similar to the effects on the
last flow joining, existing flows are only influenced by the
timing of the next flow joining. Within the group of syn-
chronized flows, they converge to their fair share. The
synchronization itself depends on the timing and happens
at most after 10 s. The resulting unfairness is only caused
by the new flow. The overall time until bandwidth equi-
librium is approximately 55 s and 70 s, respectively. We
attribute the 15 s difference to the longer synchronization
phase in the latter case (10 s) and bigger unfairness thereof.

6.5. Further Observations

Further measurements showed that many BBR flows
also have problems to synchronize. When running 50 BBR
flows, the required buffer size to run without packet-loss
is about 10 BDP on a 10 Mbit/s, 100 ms link. If the buffer
is too small, BBR constantly overwhelms the network and
completely fails to synchronize. In this case no more than
10 % of the flows are in Probe RTT at the same time. Oth-
erwise, the flows can synchronize and reach a fair band-
width share. However, two issues are remaining. First, if
the RTT of the flows is too short not all flows are in Probe
RTT at the same time. This leads to undrained queues
and RTprop overestimations (cf. Figure 7). Second, the
whole synchronization process takes more than one minute
when starting the flows in intervals of 0.2 s.

Summarizing, the fair sharing of bandwidth is inter-
twined with the timing of new flows joining the network.
Except during the brief Probe RTT phase, equilibrium is
only reached after 20 s and can extend up to 30 s. How-
ever, there are no effects accumulating beyond the interval
of one Probe RTT phase. The timing only has a short term
effect on the amplitude of unfairness, not TF95 .

12

0
50
100

F
[%

]

0 10 20 30 40 50 60 70 80
0
2
4
6
8

Time [s]

S
en
d
.
R
a
te

[M
b
it
/
s]

Flow #: 1 2 3 4 5

(a) 10.1 s join interval (during Probe RTT)

0
50
100

F
[%

]

0 10 20 30 40 50 60 70 80

2
4
6
8

Time [s]

S
en
d
.
R
a
te

[M
b
it
/
s]

(b) 10.5 s join interval (immediate after Probe RTT)

Figure 19: Identified best/worst case join intervals

7. Related Work

7.1. Quality of Scientific Experiments

Quality of scientific experiments includes aspects like
objectivity, validity, reliability, repeatability, provability
and consistency. However, not all aspects defined are of
relevance for scientific experiments in general. E.g. objec-
tivity is not an issue for a machine counting packets per
second.

To judge and demonstrate the quality and validity of
scientific experiments, reproduction through independent
scientists is required. For this, not only experiment results
have to be published, but also access to meta-data, includ-
ing configuration files, tools, and scripts used throughout
the experiment, has to be granted. Reliability, meaning
overall consistency, of measurements is a continuous con-
cern in the scientific computer networks community [33,
34]. It characterizes if a result can be reproduced by rep-
etition of the test. Reliability has different facets whereof
the usage differs with the field of science and is even within
a field not used consistently [33].

Different definitions of and processes to reach repro-
ducibility exist [33], e.g. as a three stage process as defined
by an ACM policy [34]. Thereby, the minimum require-
ment is repeatability. It refers to recreating the results
for an experiment conducted by the same scientists with
the same tools. The term replicability is used for results
that can be reproduced by other scientists given the same
experiment setting. To allow replicability, all measurement
data, tools, scripts and artifacts of the experiment have
to be made accessible. Finally, reproducibility defines
that results have to be validated in different experiments,
by different scientists and tools, requiring significant time
and resource investment. [33, 35, 36]

Although reproducibility is acknowledged as valuable
in research, it is mostly not provided in publications. As
identified by Bajpai et al. [37] this is a consequence of a
missing incentive to perform the additional efforts that are
required to achieve reproducibility. A way out is suggested
by Scheitle et al. [38] who demand to include checks and
rewards for reproducible research in the review process to
provide incentives.

Our group has expressed dedication to foster repro-
ducible research in computer networking [35, 38]. This not
only includes proposing a new ecosystem that incentivizes

reproducible research [38], but also adjusting methodolo-
gies to implement workflows orchestrating reproducible mea-
surements [35].

Our paper contributes to these quality aspects by re-
producing results of other scientists with different methods
(i.e. reproducibility) as shown in Table 1. By providing our
framework as open source software, we increase the value
of our results by allowing others to replicate them (i.e.
replicability). This also includes configuration files and
scripts to repeat all measurements and figures presented
in this work [3].

7.2. Reproducible Measurements with Network Emulation

Our framework relies on Mininet as a basis for evalu-
ating the performance of TCP. Handigol et al. [39] have
shown that various network performance studies could be
reproduced using Mininet. The Mininet authors published
an editorial note [40] in 2017, wherein they describe efforts
in reproducing research. They reproduced performance
measurements of DCTCP, Multi-Path TCP (MPTCP),
the TCP Opt-ack Attack, TCP Fast Open, and many
more. Other research groups used Mininet in studies about
TCP, such as the work from Paasch et al. [41], with a per-
formance evaluation of MPTCP.Girardeau and Steele use
Mininet in Google Cloud VMs to perform simple BBR
measurements [42]. They use a patched kernel and, com-
pared to our approach, their setup and runtime for one
experiment is significantly higher with up to 50 minutes.

BBR support is announced to be available for the net-
work simulator ns3 [43]. The Pantheon allows researchers
to test congestion control algorithms in different network
scenarios [44]. The results of Internet measurements are
used to tune the parameters of emulated network paths
which provides better reproducibility.

7.3. TCP BBR in Other Domains

BBR deployed in domains with different requirements
yields varying results. Kuhn has shown promising re-
sults over SATCOM links, which have latencies in the
range of 500 ms [28]. They state that a “late-comer un-
fairness” [28] exists. Leong et al. claim that BBR can be
further improved for mobile cellular networks [29], which
is a recent research area of Cardwell et al. [8]. Li et al.
have compared TCP CUBIC and BBR “under highway
driving conditions” [31]. Their results show that BBR

13

Table 1: State of TCP BBR

Related Work Our Contribution Notes

Validation and Extended Insights

Single flow behavior [4] Section 4.1, Reprod. Fig. 4 -
Adaption to RTprop increase Section 4.1 Slow adaption
RTT unfairness [7, 8, 9] Section 4.2, Reprod. Fig. 5a BBQ [9], Work-In-Progress [8]
Multi-flow bottleneck overestimation [7, 8] Section 4.3, Reprod. Fig. 6 BBR 2.0: “drain to target” [8]
Insufficient queue draining [7, 8] Section 4.3.1 Probe RTT not overlapping
Shallow buffer loss rate [7, 8] Section 4.3.2 BBR 2.0: “full pipe+buffer” [8]

New Aspects

Inter-protocol suppression: CUBIC, [7, 8] Section 5 BRR suppresses delay-, loss- and
Reno, Vegas, Illinois loss-delay-based algorithms

Inter-flow synchronization [4] Section 6 Best/Worst case analysis

BBR in Other Domains

SATCOM [28] 7.3 “Late-comer unfairness” [28]
Mobile Cellular Networks [29, 30] 7.3 Improvements planned [8]
BBR over LTE (driving on highway) [31, 30] 7.3 Comparison with CUBIC
Integration with QUIC [32] 7.3 Planned [32]

achieves similar throughput with decreased average delay
compared to CUBIC for large files, but higher throughput
with higher self-inflicted delay for small downloads [31].
Atxutegi et al. also tested BBR on cellular networks, re-
sulting in BBR performing better than other algorithms
such as CUBIC and Reno [30]. However, they also de-
tected that BBR has problems when encountering long or
4G latencies. Crichigno et al. measured an improved per-
formace of BBR flows with larger maximum segment sizes
using parallel streams [45]. This especially effects long
living flows transporting huge amounts of data, so called
elephant flows. Integration of BBR for QUIC is work in
progress [32].

7.4. Further Development of BBR

Since its first publication, BBR has been under active
development by the authors and research community. At
IETF 102 Cardwell et al. proposed ideas for improving
on several of the discovered issues [46], calling the algo-
rithm BBR2.0. The slow synchronization is addressed by
reducing the time span between the Probe RTT phases for
example to 2 s. This is supposed to improve the fairness
towards other BBR and also CUBIC flows. Still, it re-
mains a challenging task to reach fairness with loss-based
flows. Other areas of research are how BBR can handle
fluctuating RTTs, as in WiFi environments or in the pres-
ence of delayed acknowledgements, and the influence of
ACK aggregation [47]. Furthermore, explicit congestion
notifications (ECN) and also packet-loss are taken into
account to improve BBR’s network model. This reduces
the retransmission rate of BBR when running on shallow
buffers. Lastly, the problem of BBR maintaining a persis-
tent queue when running parallel with other BBR flows is
addressed by adding mechanisms to drain existing queues
more frequently.

Once these improvements are included in the Linux
kernel, our framework can easily be used for validation by
rerunning all tests and see how the results have changed.
For all tests in this paper the scripts to generate the con-
figurations and analyze the results are published at [3].

8. Conclusion

We presented a framework for TCP congestion con-
trol measurements focusing on flexibility, portability, re-
producibility and automation. Using Mininet to emulate
different user-configured flows, it allows to perform exper-
iments analyzing a concrete algorithm, or the interaction
with multiple flows using even different algorithms. We re-
produced related work to validate the applicability of our
approach.

We use the new TCP BBR algorithm as case study for
our framework, summarizing the current state of the al-
gorithm and extending existing insights in several aspects.
In particular, we have shown that the algorithm to deter-
mine the duration of the Probe RTT phase has problems
and that in most cases BBR does not share bandwidth in
a fair manner with any of the tested algorithms like Reno,
CUBIC, Vegas and Illinois.

Our final contribution is an experimental analysis of
the synchronization mechanism. We identified two pri-
mary problems. Depending on the timing of new flows
joining existing flows in relation to their Probe RTT phase,
bandwidth can be shared severely unfair. This boils down
to BBR’s general problem of overestimating the BDP. The
second problem is the time until a bandwidth equilibrium
is regained. This can last up to 30 s, which is bad for
short-lived flows, common in today’s Internet. We iden-
tified that this is correlated with the trigger for synchro-
nization, i.e. the Probe RTT phase, draining the queues.

14

Consequently, without reducing the time between Probe
RTT phases, the worst case time until flows synchronize
cannot be improved further.

As BBR’s underlying model is flawed in several aspects,
drastic changes are proposed for BBR 2.0. Our framework
aids the active development and improvement, as all ex-
periments can easily be repeated and reproduced. This
allows to easily verify the impact of changes to the algo-
rithm, quantify improvements and avoid regressions. Our
framework as well as the raw data for all figures presented
is available online [3] for replicability of our results and to
allow further investigations by the research community.

Acknowledgment

This work was supported by the High-Performance Cen-
ter for Secure Networked Systems and the German BMBF
project SENDATE-PLANETS (16KIS0472).

The paper at hand is an extended version of our paper
presented at IFIP 2018 conference [48]. This paper focuses
more on the framework for reproducible measurements and
expands the former explanations about congestion control
and the framework. Furthermore, the evaluation of BBR’s
inter-protocol fairness has been extended significantly.

[1] A. Afanasyev, N. Tilley, P. Reiher, L. Kleinrock, Host-to-host
congestion control for TCP, IEEE Communications surveys &
tutorials 12 (3) (2010) 304–342.

[2] P. Yang, J. Shao, W. Luo, L. Xu, J. Deogun, Y. Lu, TCP con-
gestion avoidance algorithm identification, IEEE/Acm Transac-
tions On Networking 22 (4) (2014) 1311–1324.

[3] Framework and Data Publication, URL https://gitlab.lrz.

de/tcp-bbr, 2018.
[4] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, V. Jacob-

son, BBR: Congestion-based Congestion Control, ACM Queue
14 (5).

[5] S. Ha, I. Rhee, L. Xu, CUBIC: a new TCP-friendly high-speed
TCP variant, ACM SIGOPS Operating Systems Review 42 (5).

[6] L. Kleinrock, Power and Deterministic Rules of Thumb for
Probabilistic Problems in Computer Communications, in: Pro-
ceedings of the International Conference on Communications,
vol. 43, 1979.

[7] M. Hock, R. Bless, M. Zitterbart, Experimental Evaluation of
BBR Congestion Control, in: 25th IEEE International Confer-
ence on Network Protocols (ICNP 2017), 2017.

[8] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, V. Jacob-
son, I. Swett, J. Iyengar, V. Vasiliev, BBR Congestion Control:
IETF 100 Update: BBR in shallow buffers, IETF 100 URL
https://datatracker.ietf.org/meeting/100/materials/

slides-100-iccrg-a-quick-bbr-update-bbr-in-shallow-

buffers/, Presentation Slides.
[9] S. Ma, J. Jiang, W. Wang, B. Li, Towards RTT Fairness of

Congestion-Based Congestion Control, CoRR abs/1706.09115,
URL http://arxiv.org/abs/1706.09115.

[10] J. Gettys, K. Nichols, Bufferbloat: Dark Buffers in the Internet,
Commun. ACM 55 (1), ISSN 0001-0782, doi:\bibinfo{doi}{10.
1145/2063176.2063196}.

[11] M. Allman, V. Paxson, E. Blanton, TCP Congestion Control,
Tech. Rep., 2009.

[12] L. S. Brakmo, L. L. Peterson, TCP Vegas: End to End Conges-
tion Avoidance on a Global Internet, IEEE Journal on selected
Areas in communications 13 (8).

[13] R. Mittal, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, D. Zats, et al., TIMELY:
RTT-based Congestion Control for the Datacenter, in: ACM
SIGCOMM Computer Communication Review, ACM, 2015.

[14] M. Hock, F. Neumeister, M. Zitterbart, R. Bless, TCP LoLa:
Congestion Control for Low Latencies and High Throughput,
in: 2017 IEEE 42nd Conference on Local Computer Networks,
2017.

[15] K. Tan, J. Song, Q. Zhang, M. Sridharan, A Compound
TCP Approach for high-speed and long Distance Networks, in:
Proceedings-IEEE INFOCOM, 2006.

[16] S. Liu, T. Başar, R. Srikant, TCP-Illinois: A loss-and delay-
based congestion control algorithm for high-speed networks,
Performance Evaluation 65 (6-7) (2008) 417–440.

[17] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Pa-
tel, B. Prabhakar, S. Sengupta, M. Sridharan, Data Center
TCP (DCTCP), in: Proceedings of the 2011 ACM SIGCOMM
Conference, vol. 41, ACM, doi:\bibinfo{doi}{10.1145/1851275.
1851192}, 2011.

[18] K. Winstein, H. Balakrishnan, TCP Ex Machina: Computer-
generated Congestion Control, in: Proceedings of the 2013 con-
ference on ACM SIGCOMM Conference, vol. 43, ACM, doi:
\bibinfo{doi}{10.1145/2534169.2486020}, 2013.

[19] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, M. Schapira, PCC:
Re-architecting congestion control for consistent high perfor-
mance, in: 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15), 2015.

[20] L. Xu, K. Harfoush, I. Rhee, Binary increase congestion con-
trol (BIC) for fast long-distance networks, in: INFOCOM 2004.
Twenty-third AnnualJoint Conference of the IEEE Computer
and Communications Societies, vol. 4, IEEE, 2004.

[21] J. Mo, R. J. La, V. Anantharam, J. Walrand, Analysis and com-
parison of TCP Reno and Vegas, in: INFOCOM’99. Eighteenth
Annual Joint Conference of the IEEE Computer and Communi-
cations Societies. Proceedings. IEEE, vol. 3, IEEE, 1556–1563,
1999.

[22] N. Cardwell, Y. Cheng, S. Yeganeh, V. Jacobson,
BBR Congestion Control, Internet-Draft draft-cardwell-
iccrg-bbr-congestion-control-00, IETF Secretariat, URL
http://www.ietf.org/internet-drafts/draft-cardwell-

iccrg-bbr-congestion-control-00.txt, 2017.
[23] B. Lantz, B. Heller, N. McKeown, A Network in a Laptop:

Rapid Prototyping for Software-Defined Networks, in: Proceed-
ings of the 9th ACM SIGCOMM Workshop on Hot Topics in
Networks, 2010.

[24] S. Floyd, Metrics for the Evaluation of Congestion Control
Mechanisms, RFC 5166, RFC Editor, 2008.

[25] R. Jain, D.-M. Chiu, W. R. Hawe, A Quantitative Measure of
Fairness and Discrimination for Resource Allocation in Shared
Computer System, vol. 38, Eastern Research Laboratory, Digi-
tal Equipment Corporation Hudson, MA, 1984.

[26] V. Jacobson, R. Braden, D. Borman, RFC 1323, TCP exten-
sions for high performance .

[27] S. Ebrahimi-Taghizadeh, A. Helmy, S. Gupta, TCP vs. TCP:
a systematic study of adverse impact of short-lived TCP flows
on long-lived TCP flows, in: INFOCOM 2005. 24th Annual
Joint Conference of the IEEE Computer and Communications
Societies. Proceedings IEEE, vol. 2, IEEE, 2005.

[28] N. Kuhn, MPTCP and BBR performance over Internet satel-
lite paths, IETF 100 URL https://datatracker.ietf.org/

meeting/100/materials/slides-100-iccrg-mptcp-and-bbr-

performance-over-satcom-links/, Presentation Slides.
[29] W. K. Leong, Z. Wang, B. Leong, TCP Congestion Control Be-

yond Bandwidth-Delay Product for Mobile Cellular Networks,
in: Proceedings of the 13th International Conference on emerg-
ing Networking EXperiments and Technologies, ACM, 2017.

[30] E. Atxutegi, F. Liberal, H. K. Haile, K.-J. Grinnemo, A. Brun-
strom, A. Arvidsson, On the Use of TCP BBR in Cellular Net-
works, IEEE Communications Magazine 56 (3) (2018) 172–179.

[31] F. Li, J. W. Chung, X. Jiang, M. Claypool, TCP CUBIC versus
BBR on the Highway, in: International Conference on Passive
and Active Network Measurement, Springer, 269–280, 2018.

[32] A. M. Kakhki, S. Jero, D. Choffnes, C. Nita-Rotaru, A. Mis-
love, Taking a Long Look at QUIC, in: Proceedings of the 2017
Internet Measurement Conference, 2017.

15

[33] D. G. Feitelson, From Repeatability to Reproducibility and Cor-
roboration, SIGOPS Oper. Syst. Rev. 49 (1), ISSN 0163-5980,
doi:\bibinfo{doi}{10.1145/2723872.2723875}.

[34] O. Bonaventure, April 2016: Editor’s Message, in: ACM SIG-
COMM CCR, 2016.

[35] S. Gallenmüller, D. Scholz, F. Wohlfart, Q. Scheitle, P. Em-
merich, G. Carle, High-Performance Packet Processing and
Measurements (Invited Paper), in: 10th International Confer-
ence on Communication Systems & Networks (COMSNETS
2018), Bangalore, India, 2018.

[36] A. Brooks, J. Daly, J. Miller, M. Roper, M. Wood, Repli-
cation’s role in experimental computer science, EfoCS–5–94
(RR/94/171) .

[37] V. Bajpai, M. Kühlewind, J. Ott, J. Schönwälder, A. Sperotto,
B. Trammell, Challenges with Reproducibility, in: ACM SIG-
COMM’17 Workshop on Reproducibility, 2017.

[38] Q. Scheitle, M. Wählisch, O. Gasser, T. C. Schmidt, G. Carle,
Towards an Ecosystem for Reproducible Research in Com-
puter Networking, in: ACM SIGCOMM’17 Workshop on Re-
producibility, 2017.

[39] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, N. McK-
eown, Reproducible Network Experiments Using Container-
based Emulation, in: Proceedings of the 8th International
Conference on Emerging Networking Experiments and Tech-
nologies, CoNEXT ’12, ACM, ISBN 978-1-4503-1775-7, doi:
\bibinfo{doi}{10.1145/2413176.2413206}, 2012.

[40] L. Yan, N. McKeown, Learning Networking by Reproducing
Research Results, SIGCOMM Comput. Commun. Rev. 47 (2),
ISSN 0146-4833, doi:\bibinfo{doi}{10.1145/3089262.3089266}.

[41] C. Paasch, R. Khalili, O. Bonaventure, On the Benefits of Ap-
plying Experimental Design to Improve Multipath TCP, in:
Proceedings of the Ninth ACM Conference on Emerging Net-
working Experiments and Technologies, CoNEXT ’13, ACM,
ISBN 978-1-4503-2101-3, doi:\bibinfo{doi}{10.1145/2535372.

2535403}, 2013.
[42] B. Girardeau, S. Steele, Reproducing Network Research (CS

244 ’17): Congestion-based Congestion Control With BBR,
URL https://reproducingnetworkresearch.wordpress.

com/2017/06/05/cs-244-17-congestion-based-congestion-

control-with-bbr/, 2017.
[43] C. A. Grazia, N. Patriciello, M. Klapez, M. Casoni, A cross-

comparison between TCP and AQM algorithms: Which is the
best couple for congestion control?, in: Proceedings of the 14th
International Conference on Telecommunications (ConTEL),
IEEE, 2017.

[44] F. Y. Yan, J. Ma, G. D. Hill, D. Raghavan, R. S. Wahby,
P. Levis, K. Winstein, Pantheon: the training ground for
Internet congestion-control research, in: 2018 USENIX An-
nual Technical Conference (USENIX ATC 18), 731–743, URL
http://pantheon.stanford.edu, 2018.

[45] J. Crichigno, Z. Csibi, E. Bou-Harb, N. Ghani, Impact of Seg-
ment Size and Parallel Streams on TCP BBR, in: 2018 41st In-
ternational Conference on Telecommunications and Signal Pro-
cessing (TSP), IEEE, 1–5, 2018.

[46] N. Cardwell, Y. Cheng, et al., BBR Congestion Con-
trol Work at Google IETF 102 Update, IETF 102 URL
https://datatracker.ietf.org/meeting/102/materials/

slides-102-iccrg-an-update-on-bbr-work-at-google-00,
Presentation Slides.

[47] N. Cardwell, Y. Cheng, et al., BBR Congestion Con-
trol Work at Google IETF 101 Update, IETF 101 URL
https://datatracker.ietf.org/meeting/101/materials/

slides-101-iccrg-an-update-on-bbr-work-at-google-00,
Presentation Slides.

[48] D. Scholz, B. Jaeger, L. Schwaighofer, D. Raumer, F. Geyer,
G. Carle, Towards a Deeper Understanding of TCP BBR Con-
gestion Control, in: IFIP Networking 2018, Zurich, Switzerland,
2018.

16

