
Efficient serving of VPN endpoints
on COTS server hardware

Daniel Raumer, Sebastian Gallenmüller, Paul Emmerich, Lukas Märdian, and Georg Carle
Technical University of Munich, Department of Informatics, Chair of Network Architectures and Services

{raumer|gallenmu|emmericp|maerdian|carle}@in.tum.de

Abstract—Of late an increasing amount of function-
ality in computer networks is provided by commodity
x86 hardware wherein the CPU is the main bottleneck.
Relieving the CPU from a portion of its computational
stress leads to a lowered number of cycles spent on each
single packet. Subsequently, servers are able to deal
with millions of packets per second. We show a case
study in which we used the cryptographic offloading
functionality of commodity NICs to build a VPN IPsec
gateway on an x86 server, where we required only one
CPU core to serve 10GbE line rate. The source code
of the NIC-accelerated VPN gateway in our case study
is publicly available. Our case study shows the trade-
offs between manifold software- and high performance
offloading hardware-provided functionality.

I. Introduction

In today’s network infrastructure, an increasing num-
ber of devices perform actions on commodity hardware,
in software on a general purpose CPU. Although ded-
icated networking devices are still required where high
performance is crucial, commodity hardware catches up
in terms of throughput in bytes or packets per second and
latency. Classical networking devices are being priced out
of the market by masses of low-cost commodity hardware.
Benefits of commodity hardware are manifold: function-
ality comes from software routines which are extensible
and easy to update at scale. Functionality is no longer
directly related to a certain hardware vendor. To increase
the performance of software-based solutions, networking
equipment is accelerated by parallelization across multiple
systems, multi-core architectures, and components that
help to offload frequent workloads from the CPU.

In this paper, we show an example of NIC offload-
ing and how it helps commercial off-the-shelf (COTS)
servers to cope with the performance provided by high-
end networking hardware, at low prices. We focus on NICs
equipped with features to help the CPU by receiving and
transmitting encrypted packets which therefore saves CPU
cycles for other tasks. We discuss how modern NICs speed
up the systems by accelerating packet reception and trans-
mission in Section II. In Section III, we present the state of
the art and its performance in VPN handling. Section IV
contains our case study in which we implemented a NIC-
accelerated VPN endpoint. We analyze the performance
of our implementation in Section V and conclude with
finalizing remarks, in Section VI.

II. NIC and server performance

Traditionally, the upper layers of packet processing are
implemented as part of the operating system and therefore
executed on the CPU. With modern NICs performing tasks
associated with layer 3 and 4 (IP/TCP), the workload
moves from the OS to the NIC hardware. In the following,
we will use the Linux operating system as a basis of our
argumentation.

Cycles spent by the CPU on packet processing are
dominated by large data and protocol processing over-
heads. Continuous small optimizations have reduced this
overhead - e.g. from 2425 cycles/pkt in a Linux 2.6 based
router [6] to 1979 cycles/pkt in Linux 3.7 [21]. However,
with these overheads, it is difficult to handle and process
incoming packets efficiently on standard computer sys-
tems: A 10GbE link that is saturated with 64 byte packets
requires processing a packet each 67 ns which means that
a single 3GHz core only has ∼200 cycles per packet.
A 10-core system would be required to serve packets in
line rate at 2000 cycles/pkt [21]. Specialized software for
fast packet processing like the Data Plane Development
Kit [14] (DPDK) can reduce the consumed cycles per
packet for forwarding of a packet to roughly 120 cycles [9].
In these specialized software systems, any CPU overhead
(e.g. for interrupt handling) is avoided.

However, processing packets in more complex routines,
such as the TCP/IP stack or with cryptographic actions, at
high rates is more challenging [15]. The workload increases
linearly with the number of packets or bytes: cryptographic
actions increase the consumed cycles in terms of per-byte-
costs, TCP stack processing increases the costs in terms of
per-packet-costs. In both cases, performing actions beside
the CPU reduces the load on the CPU.

Commonly used techniques are: IP, TCP, and UDP
checksum offloading; Receive Side Coalescing (RSC); and
TCP segmentation offloading (TSO). NICs help the CPU
with checksum computation and validation and reduce the
per packet costs by combining and splitting packets before
and after receiving and sending by the OS. Hosts can
send and receive packets bigger than the MTU and the
fixed per-packet costs are distributed on the data of differ-
ent lower level packets: splitting (TSO) and combination
(RSC) is done transparently by the NIC.

III. VPN handling on COTS servers
In the following sections, we describe the background

that will lead to our case study about VPN NIC-offloading.

A. IPsec for VPN
IPsec is a set of protocol extensions for authentication

and encryption on the IP layer. IPsec has two extensions:
The Authentication Header provides authentication of IP
packets by adding a header containing a cryptographic
hash of the IP packet payload and parts of the header
to the packet and the Encapsulating Security Payload for
encryption (and authentication) of the IP packet payload
(only). These extensions can either operate in transport
mode, directly applied to the IP packet, or in tunnel mode
where the packets are encapsulated and transported to the
tunnel endpoint where the encapsulating headers are again
removed. Each IPsec secured communication has security
associations which are encryption parameters such as an
encryption algorithm and secret keys. These parameters
have to be negotiated before the secured communication
starts.

encrypted traffic

client client

open InternetLAN LAN

client client

encrypted traffic

Figure 1. IPsec VPN tunnel mode

A Virtual Private Network (VPN) is a private network
that is realized as an overlay network. The connection of
private networks is realized via point-to-point tunneling
protocols. Figure 1 shows a typical setup with IPsec in
tunnel mode used for establishing a VPN that virtually
connects two physically separated LANs.

B. State of the art
Commercially available routers of vendors like Cisco,

have integrated IPsec VPN functionality with very lim-
ited performance if the routers are not accelerated by
hardware add-ons. The Cisco ASR1000 series (Aggrega-
tion Services Router) provides an IPsec throughput of
up to 7Gbit/s in its default configuration [4]. However,
if additional hardware add-ons (Embedded Services Pro-
cessors) and their corresponding licenses are purchased
and aggregation is used, these Cisco routers can deliver
an IPsec throughput of up to 78Gbit/s [5]. Other ven-
dors provide similar routers with VPN security gateway
functionality, such as gateprotect, WatchGuard, etc. The
prices for such hardware VPN solutions, which can deliver
a VPN throughput of around 10Gbit/s, start at about
20,000EUR. A new class of routers that performs arbitrary
data plane and control plane actions in software is gain-
ing momentum. For example, the MikroTik Cloud Core
Router CCR1036-8G-2S+ can be purchased for less than
1,000EUR. This router allows to perform arbitrary func-
tionalities in software; amongst others routing protocols,
firewall functionality, OpenFlow, and IPsec. Due to the
many cores (i.e. 36×1.2GHz), the versatile configurations,

their side effects, and the continuously improving software
performance, an analysis is difficult. Depending on the
configuration, an IPsec throughput from 1.7Gbit/s (1500
MTU) to 7.5Gbit/s (9000 MTU) is possible on such a
router [20].

Hybrid VPN solutions are implemented in software but
make use of acceleration hardware. Through a cooperation
between Microsoft and Intel, the IPsec Task Offload func-
tionality was integrated into the network drivers of Win-
dows Server 2008 which enables an IPsec throughput at
line speed of the NIC [18]. Also, 6WIND offers proprietary
IPsec solutions (6WINDGate). Their solution is based on
DPDK and makes use of cryptography co-processors, such
as the Intel QuickAssist or Cavium NITROX III, each of
which delivering between 5 and 35 Gbit/s VPN throughput
[3], depending on the co-processor in use. Our presented
approach shares the use of DPDK with 6WINDGate. Sabin
and Rashti [23] described 10GbE NICs that can speed
up applications by offloading network tasks (including
cryptography) via a user layer API provided by special
software drivers onto programmable firmware of special
NICs. For Windows, Microsoft announced the azure smart
NICs [10] which make hardware acceleration available to
applications. PacketShader [11] is an open-source GPU-
accelerated software router platform. Although its imple-
mentation suffers from high overheads for the transfer
of data to the GPU memory, the offloading of CPU
workload onto a GPU increases performance especially for
high workload processing tasks. In the concrete scenario,
a server with four 2.66GHz cores configured as IPsec
gateway was able to process between 10 and 20 Gbit/s
depending on the packet size (accelerated by an NVIDIA
GTX480 with 480 cores, 1.4GHz, 1.5GB) instead of 3
to 6 Gbit/s [11]. Although the NIC-accelerated software
was not a router but an OpenFlow Switch in the next
example, Tanyingyong et al. used an Intel 82599-based NIC
to offload parts of the forwarding information base to the
NIC and thus increased the throughput significantly [26].

The Linux network stack does IPsec in software: Route-
Bricks [6] achieved a Linux IPsec performance of 1.9Gbit/s
for 64B traffic and 6.1Gbit/s for larger packets on 8 cores
with 2.4GHz each. In our experiments with Linux 3.16 on
an Intel Xeon E3-1230 v2 CPU with 3.30 GHz, we achieved
comparable processing rates: in our setup, the Linux kernel
was able to process a VPN throughput between 0.5 and
1.3Gbit/s per core, heavily dependent on the packet size.
If we used the Intel AES-NI instruction set, by loading the
aesni_intel kernel module, the VPN throughput increased
to between 0.9 and 4.3Gbit/s per core.

In addition to the Linux implementation, other soft-
ware solutions like Turbo IPsec, provided by 6WIND,
exist. Although Turbo IPsec is based on Intel DPDK it is
different to 6WINDGate: it does not use IPsec hardware
offloading capabilities. TurboIPsec reaches an IPsec VPN
throughput of 5Gbit/s per core on an Intel Xeon E7-
4890v2 processor clocked at 2.8GHz [1] and a throughput
of 47.9Gbit/s on 8 cores of an Intel Xeon E5-2680 v3 at
2.50GHz [25].

IV. Case study
We performed a case study of NIC acceleration by

exploiting the IPsec capabilities of the 10GbE controllers
Intel X540 [12] and Intel 82599 [13].

Both Intel 10GbE NICs (X540 and 82599) support
offloading, encryption, and authentication for up to 1024
security associations in each direction and for up to 128 IPs
at the receiver side. They support IPsec cryptography and
authentication in both the ESP (Encapsulating Security
Payload) and AH (Authentication Header) modes. The
cryptographic algorithm implemented on the chips is AES-
128-GCM/GMAC – up-to-date considered as secure [16].
The AES-128-GMAC algorithm is implemented for au-
thentication (AH or ESP without encryption) and the
AES-128-GCM algorithm for encryption plus authenti-
cation (ESP) [12], [13]. In addition to IPsec the AES-
128-GMAC algorithm finds use in other state-of-the-art
cryptographic protocols, such as TLS 1.2 [17], [24]. The
data sheets do not mention any performance limitations
indicating potential operation speed in line rate [12], [13].
However, the open source driver implementation ixgbe in
the Linux network stack, provided by Intel themselves,
does not make use of this functionality.

Host NIC HW
IPSec

SW
IPSec

Figure 2. NIC accelerated and software IPsec processing path

Figure 2 visualizes the role of the NIC as an IPsec
offloading component compared to a software-based IPsec
connection. For the hardware supported approach, en-
cryption happens later in the data path and the security
association –visualized by a key– has to be passed onto
the NIC. Using a software-based approach, an IP packet
with a valid IPsec header must be prepared by the software
with the unencrypted data as a payload before the NIC is
ordered to finish the incomplete IPsec packet by encrypting
it and creating an authentication hash. On the receiving
path, the NIC decrypts the payload and checks the packet
for authenticity. The host is then notified about the success
or failure of the decryption and the authenticity check.

A. Implementation
Our NIC-accelerated VPN gateway application is built

on DPDK for optimum performance. We decided for In-
tel DPDK [14] as other frameworks like netmap do not
allow access to NIC specific features [7] and provide less
performance [9]. We implemented IPsec offloading in the
librte_pmd_ixgbe userspace driver that is included in
DPDK Our proof-of-concept application is built directly
on top of MoonGen [7], [19] a framework for packet
processing in Lua. It provides an abstraction layer on
top of DPDK for prototyping of DPDK applications. The
LuaJIT compiler achieves roughly the same speed as native
implementations based on C/C++ and DPDK for simple
packet processing tasks [7]. The entire implementation was
merged into MoonGen and is available under the MIT

license in our repository[19], but IPsec functionality has
not been applied or discussed in our previous publications.

U
se
rs
cr
ip
t

M
oo

nG
en

H
W

VPN Gateway Application

NIC NIC

Port

Q0 ... Qn

Port

HW
IPsec

Userscript

Lua VM

Userscript vpnEndpoint
slave

Lua VM

Userscript
master

Lua VM

Config API Data API
Protocol Suite

Config API Data API

esp ah

IP UDP... Data API

dpdkc.luaipsec.lua packet.lua

HW
IPsec

Figure 3. MoonGen architecture: IPsec components

Figure 3 shows the components that were added
to MoonGen for the hardware accelerated IPsec func-
tionality (new and modified components are highlighted
with green-colored, thick borders). The IPsec library
(ipsec.lua) provides utility functions. It contains func-
tions like esp_vpn_encapsulate() which accesses the NIC
registers to trigger the encryption. The dpdkc interface
(dpdkc.lua) was extended to support IPsec security as-
sociations and to configure the IPsec mode. ESP and
AH protocol support was added to the MoonGen
protocol suite (esp.lua and ah.lua). The packet library
(packet.lua) was extended to support options like the
IPsec offload flag.

The proof-of-concept VPN Gateway Appli-
cation was implemented as MoonGen userscript
(vpn-esp-forwarder.lua). Listing 1 shows the new
vpnEndpoint() function. It is executed in a separate
thread as LuaJIT VM that is started after the
cryptographic engine is activated via ipsec.enable()
and the required IPsec security association is installed,
via a call of ipsec.tx_set_key(). First, pre-filled IP packets
(new_mem) are allocated (line 2 – 10). In the main
loop (line 12 – 29) the VPN IPsec ESP tunnel gateway
receives a burst of packets (tryRecv()) and encapsulates
them into the pre-allocated IP packets with an ESP
(esp_vpn_encapsulate()). The encapsulation function is
part of ipsec.lua and calculates the new packet size and
the ESP padding to achieve a 4 byte alignment required
by the cryptographic algorithm on the NIC. Afterwards
the encapsulation function uses performance optimized
functions to copy all bytes of the received IP packet into
the newly allocated ESP packet buffer. Additionally, the
encapsulation function appends an ESP trailer, containing
the new ESP packet length, the number of padding bytes
and 16 bytes of zeros, where the network hardware can
place the integrity check value (ICV) later on. This final
packet buffer is then returned to the main loop where
the DPDK offload flags (ol_flags) for hardware-based

IPsec encryption and authentication (offloadIPSec()) are
activated. The offloadIPSec() function sets IPsec specific
offload flags (ol_flags) in DPDK via the dpdkc.lua
interface. Finally, the encapsulated packets are sent to the
TX interface of the IPsec tunnel and buffers are freed.

Listing 1. MoonGen VPN IPsec ESP encapsulation
1 f u n c t i o n vpnEndpoint (rxQ , txQ , src_mac , src_ip ,
2 dst_mac , dst_ip , spi , sa_idx)
3 l o c a l bufs = memory . bufArray ()
4 l o c a l new_mem = memory . createMemPool (
5 f u n c t i o n (buf)
6 buf : getEspPacket () : f i l l {
7 ethDst = dst_mac ,
8 ip4Dst = dst_ip ,
9 espSPI = spi ,

10 }
11 end)
12 whi le dpdk . running () do
13 l o c a l rx = rxQ : tryRecv (bufs , 0)
14 l o c a l esp_bufs = new_mem: bufArray (rx)
15 f o r i = 1 , rx do
16 l o c a l pkt = bufs [i] : getIPPacket ()
17 l o c a l l e n = pkt . ip4 : getLength ()
18 i f not pkt . ip4 : g e t P r o t o c o l () ==
19 ip .PROTO_ESP then
20 esp_bufs [i] =
21 i p s e c . esp_vpn_encapsulate (bufs [i] ,
22 len , new_mem)
23 end
24 end
25 esp_bufs : off loadIPChecksums ()
26 esp_bufs : o f f l o a d I P S e c (sa_idx , " esp " , 1)
27 txQ : send (esp_bufs)
28 bufs : f r e e A l l ()
29 end
30 end

The RX side of the VPN tunnel works in an analo-
gous way: That is, in-coming packets are decrypted by
the hardware using the installed IPsec RX security as-
sociations. The packet’s RX descriptor is analyzed by
the ixgbe_recv_pkts() function ixgbe_rxtx.c in DPDK in
order to extract the IPsec offloading status (SECP) and
error (SECERR) flags, which are transfered to MoonGen
via the packet’s offload flags (ol_flags). These flags can be
read, using the getSecFlags() function of packet.lua. If the
IPsec decryption was offloaded (SECP = 1) and no errors
are reported (SECERR = 0), the IP packet contained
in the decrypted ESP packet can be decapsulated using
the esp_vpn_decapsulate() function of MoonGen’s IPsec
library in order to re-create the original IP packet which
can then be forwarded into the destination network.

B. Dealing with limitations

Our implementation currently does not support IPsec
AH mode via IPv6 or IP fragmentation. Beside limitations
of our implementation, IPsec NIC offloading is inherently
limited by the available algorithms of the NIC. As men-
tioned in Section IV, AES-128-GCM/GMAC is the (only)
cryptographic algorithm available on our NICs. Another
drawback is that security offloading is limited to fixed IP
packet header lengths. Therefore, our implementation also
cannot handle IPv6 extension headers and IPv4 options.

Due to the limitations, a seamless fall back to software
implementations is necessary whenever hardware support
is not given. To make IPsec offloading functionality avail-
able as a fast path in Linux [2] configuration interfaces

beyond the scope of this paper are required to operate with
software like strongSwan and Racoon (cf. Section III-B).

V. Evaluation
While different network flows may pass a VPN gate-

way, traffic in transport mode is limited by the applica-
tion. Therefore, we evaluate the VPN security gateway
(IPsec/ESP tunnel mode). We assume a statically config-
ured tunnel as the security negotiation process can not
be offloaded to the NIC. Although different tunnels can
be handled by the NIC without additional stress for the
CPU, we only configured one tunnel to have a comparable
setup.

Our evaluation comprises VPN throughput and energy
consumption. We decided against a comparison with rather
unused software based on DPDK or even an own imple-
mentation based on MoonGen as the expressiveness of
such a comparison is very limited. For comparison to our
implemented PoC, we selected Linux-based IPsec as we
consider it to be the state of the art implementation which
has been used as a point of reference in the past [11], [6].
Therefore, we performed measurements with the hardware
accelerated MoonGen IPsec stack, a Linux 3.16 IPsec stack,
and a Linux 3.16 IPsec stack applying the Intel AES-NI
instruction set.

A. Test setup

LAN
10.0.1.0/24

LAN
10.0.2.0/24

forward
packets

generate
packets

ESP
encrypt
packets

ESP
decrypt
& count
packets

encrypted traffic

DuTload generator

NIC

NIC

NIC

NIC

Figure 4. Test setup

Our test setup (cf. Figure 4) consists of two directly
connected servers one acting as load generator and sink
and the other as device under test (DuT). The hardware
used in the DuT was an Intel Xeon E3-1230 v2 CPU,
clocked at 3.30 GHz, and an Intel 82599 based fiber optic
NIC. We configured the DuT to only utilize a single CPU
core, to compare the different network stacks. As load
generator, we configured MoonGen to generate IPv4/UDP
packets from the subnet 10.0.1.0/24, destined for the
subnet 10.0.2.0/24, at line rate (10Gbit/s). The generated
packets are sent to the DuT which acts as a VPN gateway
router that is configured to route the packets back to the
load generator through an encrypted and authenticated
IPsec ESP tunnel between 1.1.1.1 and 2.2.2.2. Finally,
the sink decrypts and authenticates the packets arriving
through the tunnel and counts the inbound data.

B. VPN throughput
We measured the maximal throughput for IPv4/UDP

packet encryption and authentication in IPsec ESP tunnel
mode applying AES-128-GCM. The offered load comprises

64 256 512 1,0240
2,000
4,000
6,000
8,000

10,000

1,462
Packet size [Byte]

[M
bi
t/
s]

(a) VPN throughput at different packet sizes

64 256 512 1,0240

50

100

1,462
Packet size [Byte]

[c
yc
le
s/
by

te
] MoonGen IPsec

Linux 3.16 (AES-NI)
Linux 3.16 (standard)

(b) Consumed CPU cycles per byte

Figure 5. Performance evaluation of MoonGen IPsec

of packet streams differing in size at 10GbE line rate.
Figure 5(a) shows the rates we achieved with the Linux
IPsec stack and with our approach. The VPN throughput
performance of the Linux IPsec stack heavily depends on
the size of the received packets and shows an approxi-
mately linear growth starting at 0.94 Gbit/s (0.48 Gbit/s
without AES-NI) and maxing out at 4.32 Gbit/s (1.33
Gbit/s without AES-NI). However, the VPN throughput
of the MoonGen IPsec stack, using the security offloading
capabilities of the Intel 82599 NIC, constantly reaches the
line speed of 10 Gbit/s for all packet sizes.

Figure 5(b) shows the CPU cycles per byte (Y). It was
computed by dividing the CPU clock rate of 3.30GHz by
the number of processed packets per second (pktCount)
and the size of the packets (pktSize). To exclude idle CPU
cycles the clock rate is multiplied with the CPU usage.
This is expressed by the following formula:

Y [Cycles

byte
] =

CPUload[Cycles
s]

pktCount[1
s] · pktSize[byte]

C. Accounting for the used CPU cycles
To explain the performance limitations (cf. Figure 5)

two aspects of software-based packet processing systems
are important:

(1) Packets are processed by different software func-
tions. We classify these into functional groups for packet
reception, packet processing (mostly encryption in our
case), and packet transmission similar to other publica-
tions [21], [9].

(2) For different task(s) the cycles consumed for it
depend on other factors: The number of packets determines
consumed CPU cycles for tasks that operate on header
data and the number of bytes for tasks that process the
whole packet data. Deeper analysis may require more com-
plex performance modeling, e.g. considering the number of
batches and the batch size.

Here a simplified view is appropriate: CPU cycles
for packet reception and transmission do not depend
on the packet size but on the number of packets [8].
Cryptographic operations also affect the packet payload
and therefore depend on the bytes. The increased Mbit/s
for the Linux setups can be explained by overhead for
packet reception and transmission which is constant per
packet [21] and by a workload in terms of both bytes/s and
pkt/s for cryptography that is also applied on the payload.

When the cryptographic workload is offloaded, the CPU
has only packet dependent workload. MoonGen requires
about 3 cycles/byte, and a bit more at very low packet
sizes, whereas the Linux IPsec stack uses 10 to 20 times
as many CPU cycles per byte of a packet.

Another obstacle comes from the fact that polling-
based packet reception always produces 100% CPU uti-
lization. However, CPU cycles spent for polling an empty
or not fully utilized batch size can be used for other tasks
without lowering the rate of received packets. Metering
an effective CPU usage as input for computing the cycles
per byte Y mitigates this. To account for potentially
unused CPU capacity, an effective CPU usage ratio can be
determined in setups where the maximum throughput is
below line rate. These setups can be achieved by reducing
the CPU clock (cf. Rizzo et al. [22]), by adding additional
load (cf. Gallenmüller et al. [9]), or using a sleep time after
each poll that is increased until throughput falls below line
rate. For MoonGen IPsec we measured an effective CPU
usage of 10%-20%. If we apply the effective CPU usage
to the computation of Y , MoonGen IPsec performance is
even better as depicted in Figure 5.

D. Comparing to commercial software
The 6WIND Turbo IPsec solution is a commercial

software that is also based on DPDK and comes with its
own IPsec implementation. As we did not own a license,
we had to rely on published performance values of 6WIND
Turbo IPsec. For a better comparison we make basic
assumptions that have been shown to hold true in similar
scenarios: The maximum throughput scales linearly with
the number of CPU cores and the clock rate [7], [22].
We extract our support vector from the best available
source of performance data [25]: The 47.9Gbit/s achieved
with 6WIND Turbo IPsec (cf. Section III-B) relate to
∼7.9Gbit/s (≈0.66Mpps) when normalized to one core of
our DuT. The cycles per byte for Turbo IPsec are ∼3.4
cycles/byte which is less efficient than our approach.

E. Energy savings
In addition to throughput, power consumption is an

important performance indicator. We used a GUDE Expert
Power Control 8225-1 system for our measurements. The
idle system has a power consumption of 88W. The Linux
3.16 IPsec stack at a VPN throughput rate of 1Gbit/s
requires one CPU core permanently using 100% of its
capacity, leading to a power consumption of 108W (107W

Table I. Energy comparison

power drain
[W]

throughput
[Gbit/s]

CPU load
at 3.3 GHz

Energy/B
[mJ]

MoonGen 100 1.00 20% 0.100
Linux 3.16
(AES-NI)

108 1.00 100% 0.108

Linux 3.16 107 0.48 100% 0.208

without Intel AES-NI drastically decreased throughput).
To compare the MoonGen IPsec stack, we reduced the
VPN throughput rate to 1Gbit/s, by artificially slowing
down the CPU via a sleep for a few microseconds in
between each burst of processed packets. Thus we reduced
the CPU load to 20% on that CPU core lowering the power
consumption to 100W. Activating the NICs hardware
cryptographic engine uses just 0.2W of extra power [13],
which we consider negligible compared to 80% savings in
CPU load.

Detailed results of the energy measurements are dis-
played in Table I. The worst case scenario – using minimum
sized packets – results in a CPU utilization of 20% for
MoonGen. For packet sizes of ≥ 256 bytes, MoonGen
reaches its maximum efficiency (≈ 3 cycles/byte) and thus
just requires about 10% of the CPU’s capacity.

VI. Conclusion
We demonstrated that commodity hardware perfor-

mance can cope with expensive networking devices even in
challenging CPU consuming scenarios with cryptographic
actions. The open source device driver for the Intel X540
and 82599 NICs, based on DPDK and MoonGen, were im-
proved to make use of their security offloading capabilities.
A VPN security gateway application, based on MoonGen
and implemented using the IPsec ESP tunnel mode, was
created to demonstrate and evaluate the VPN throughput
and energy saving performance of the improved device
driver. All our used source code is available in the Moon-
Gen main git repository.

Although IPsec capabilities of NICs are not new, this
is the first published case study. It discloses the trade-
off between diversity of functionality and performance.
Further steps have to be taken to transparently include
such functionality, e.g. via the Linux kernel’s ixgbe driver
and to connect with applications like strongSwan and
Racoon where possible. The DPDK driver can be used as
reference implementation of the NIC’s security offloading
capabilities.

Finally, we showed that the use of offloading features
lowers the energy consumption of servers when using the
NIC hardware based security offloading functionality in-
stead of calculating cryptographic operations on the CPU.

References
[1] 6WIND Turbo IPsec. http://www.6wind.com/products/

6wind-turbo-ipsec. Last visited 2015-09-21.
[2] H. Agrawal and M. Dev. Accelerating network packet process-

ing in Linux. http://www.embedded.com/design/operating-
systems/4403058/Accelerating, 2015.

[3] Cavium. NITROX III Family of Security Processors. 2014.

[4] Cisco. Network Security Features for Cisco ASR 1000 Series
Routers. 2010.

[5] Cisco. Cisco ASR 1000 Series Embedded Services Processors
Data Sheet. 2015.

[6] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Ian-
naccone, A. Knies, M. Manesh, and S. Ratnasamy. Route-
Bricks: Exploiting Parallelism to Scale Software Routers. In
Proceedings of the ACM SIGOPS 22Nd Symposium on Operat-
ing Systems Principles, SOSP, 2009.

[7] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and
G. Carle. MoonGen: A Scriptable High-Speed Packet Gen-
erator. In 15th ACM SIGCOMM Conference on Internet
Measurement (IMC’15), 2015.

[8] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle. As-
sessing Soft- and Hardware Bottlenecks in PC-based Packet
Forwarding Systems. In Fourteenth International Conference
on Networks (ICN 2015), Best Paper Award, 2015.

[9] S. Gallenmüller, P. Emmerich, F. Wohlfart, D. Raumer, and
G. Carle. Comparison of Frameworks for High-Performance
Packet IO. In ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS), 2015.

[10] A. Greenberg. SDN for the Cloud. Keynote at the ACM
SIGCOMM 2015.

[11] S. Han, K. Jang, K. Park, and S. Moon. PacketShader: A GPU-
accelerated Software Router. SIGCOMM Comput. Commun.
Rev., 40(4), 2010.

[12] Intel. Ethernet controller x540 datasheet. March 2014. Revision
2.7.

[13] Intel. 82599 10 GbE Controller Datasheet. February 2015.
Revision 3.1.

[14] Data Plane Development Kit. http://dpdk.org/. Last visited
2015-10-27.

[15] S. Makineni and R. Iyer. Receive Side Coalescing for Acceler-
ating TCP/IP Processing. In Proceedings of the 13th interna-
tional conference on High Performance Computing(HiPC’06),
2006.

[16] D. McGrew and P. Hoffman. RFC 7321: Cryptographic Al-
gorithm Implementation Requirements and Usage Guidance
for Encapsulating Security Payload (ESP) and Authentication
Header (AH). 2006.

[17] D. McGrew and J. Viega. RFC 4543: The Use of Galois Message
Authentication Code (GMAC) in IPsec ESP and AH. 2006.

[18] Microsoft and Intel. IP Security features: Intel Ethernet Server
Adapters and Microsoft Windows Server 2008. 2009.

[19] MoonGen. https://github.com/emmericp/MoonGen.
[20] K. Myers. 10 Gbps of Layer 2 throughput is possible using

MikroTik’s EoIP tunnel. http://www.stubarea51.net/2015/
10/16/10/, 2015. Last visited 2015-10-27.

[21] D. Raumer, F. Wohlfart, D. Scholz, and G. Carle. Perfor-
mance Exploration of Software-based Packet Processing Sys-
tems. In Proceedings of Leistungs-, Zuverlässigkeits- und Ver-
lässlichkeitsbewertung von Kommunikationsnetzen und Verteil-
ten Systemen, 6. GI/ITG-Workshop, MMBnet, 2015.

[22] L. Rizzo. netmap: a novel framework for fast packet I/O. In
USENIX Annual Technical Conference, 2012.

[23] G. Sabin and M. Rashti. Security offload using the smartnic,
a programmable 10 gbps ethernet nic. In 2015 National
Aerospace and Electronics Conference (NAECON). IEEE,
2015.

[24] J. Salowey, A. Choudhury, and D. McGrew. RFC 5288: AES
Galois Counter Mode (GCM) Cipher Suites for TLS. 2008.

[25] SDxCentral Labs Networking Software Performance Test.
6WIND Speed Series Performance Validation. 2015.

[26] V. Tanyingyong, M. Hidell, and P. Sjodin. Improving per-
formance in a combined router/server. In High Performance
Switching and Routing (HPSR), 2012 IEEE 13th International
Conference on, 2012.

