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Agile Network Access Control in the Container Age
Cornelius Diekmann, Johannes Naab, Andreas Korsten, and Georg Carle

Abstract—Linux Containers, such as those managed by Docker,
are an increasingly popular way to package and deploy complex
applications. However, the fundamental security primitive of
network access control for a distributed microservice deployment
is often ignored or left to the network operations team. High-level
application-specific security requirements are not appropriately
enforced by low-level network access control lists. Apart from
coarse-grained separation of virtual networks, Docker neither
supports the application developer to specify nor the network
operators to enforce fine-grained network access control between
containers.

In a fictional story, we follow DevOp engineer Alice through
the lifecycle of a web application. From the initial design and soft-
ware engineering through network operations and automation,
we show the task expected of Alice and propose tool-support to
help. As a full-stack DevOp, Alice is involved in high-level design
decisions as well as low-level network troubleshooting. Focusing
on network access control, we demonstrate shortcomings in
today’s policy management and sketch a tool-supported solution.
We survey related academic work and show that many existing
tools fail to bridge between the different levels of abstractions a
full-stack engineer is operating on.

Our toolset is formally verified using Isabell/HOL and is
available as Open Source.

Index Terms—Security management, Centralized management,
Operations & Administration, Tools, Access control, Policy,
Firewall, Formal methods, Isabelle/HOL, Docker, Container

I. INTRODUCTION

NETWORK-LEVEL access control is a fundamental se-
curity mechanism, not only in traditional networks, but

also in distributed applications, clouds, and microservice ar-
chitectures. Unfortunately, configuring network-level access
control still is a challenging, manual, and thus error-prone
task [1]–[3]. It is a known and unsolved problem for over
a decade that “corporate firewalls are often enforcing poorly
written rule sets” [4]. Also, “access list conflicts dominate the
misconfiguration errors made by administrators” [5]. A recent
study confirms that this problem persists as a “majority of
administrators stated misconfiguration as the most common
cause of failure” [6]. In addition, not only is implementing a
policy error-prone, but also designing it is challenging, even
for experienced administrators [7].

In this article, we tell a fictional story about administrator
Alice. Alice is responsible for designing and operating a dis-
tributed web application. She uses Linux containers managed
by Docker [8]. The story covers both the design phase and
operations. Alice is not responsible for the application logic,
but she is responsible for helping the application scale and
for network security. In modern terminology, Alice can be
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called a DevOp or SRE (Site Reliability Engineer) [9]. Alice
knows that when using Docker it is best practice to decrease
the attack surface by limiting container networking [10] and
our story primarily focuses on network-level access control.

We present two tools which help Alice in various situa-
tions. First, topoS [11] is a constructive, top-down greenfield
approach for network security management. topoS translates
high-level security goals to Linux iptables firewall configura-
tions, which can be installed on a Docker host. The automatic
translation steps prevent manual translation errors. Further-
more, topoS visualizes the results of all translation steps to
help Alice uncover specification errors and allow low-level
tuning. The second tool fffuu [12] is complementary to topoS:
fffuu digests existing iptables rules and visualizes their filtering
behavior. This direction is particularly challenging due to the
vast amount of modules and low-level features which can be
used in iptables. We chose Docker as a particularly challenging
environment as Docker in its early days was known to “thrash
and [destroy] you [sic] iptables rules, network interfaces hier-
archy and routing tables” [13]. An overview of our tools is
sketched in Figure 1.

topoS & fffuu are not specific to our case study. Both
tools are formally verified [14], [15] with Isabelle/HOL [16].
Isabelle is an LCF-style interactive theorem prover; the cor-
rectness of all proven facts is based on the correctness of
a small mathematical inference kernel. This architecture is
very robust and not a single bug which practically affects a
user’s proof emerged since nearly 20 years. As Isabelle is an
interactive proof assistant—in contrast to automated theorem
provers—proofs in Isabelle often require a significant amount
of work. In return, Isabelle provides a high level of confidence
about the correctness of the proven facts. Our tools topoS
and fffuu took several years to be developed and verified.
As a result, we contribute formally verified tools which are
proven correct for all inputs, can run stand-alone without
Isabelle, do not require any manual proof from Alice, nor
expose overformalization. Their core functionality can also be
reused as a library in further projects. In this article, we will
not present the formal background [7], [12], [14], [15], [17],
instead, we demonstrate applicability from an operator’s point
of view; not requiring a single formula.

It would have been possible to carry out the development in
a different interactive theorem prover, for example Coq [18].
In contrast, tools such as model checkers, automated theorem
provers (atp), or smt solvers are not sufficient for this task.
Traditional model checkers are unsuitable since one cannot
simply exhaust all the state space of our model (for example,
our model includes an arbitrary function to model an oracle
for iptables match conditions, thus also supporting match
conditions which are not even developed yet [19]). In addition,
atps and smt solvers usually fail or time out on the complicated
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iptables
(e.g., Figure 8)

topoS Policy Construction topoS Serialize

fffuu Policy InferencetopoS Verification

Fig. 1. Overview of the Tools topoS and fffuu Bridging Between High Abstraction Levels (left) and Low-Level Details (right)

proof obligations. Isabelle employs many state-of-the-art atps
and smt solvers to help automatically discharging proof obli-
gations, but very often, the core ideas of a proof or ingenious
helping lemmas are discovered by a human.

This article is partly based on our previously published pa-
per [11]. Our previous publication discusses the design phase
and provides a formally-verified method to translate security
requirements to a security policy (§ II). In this article, we use
those initial results and show its integration with Docker (§ III).
Additionally, we use fffuu to verify the low-level iptables rules,
which is crucial for the non-trivial interaction of the Docker-
generated rules and our topoS-generated iptables rules.
Ultimately, this enables the usage of our tools not only in a
clean slate design, but also in non-trivial operations (§ IV). To
the best of our knowledge, this is the first time that formally-
verified tools are presented to help operators bridging the gaps
between the abstraction level of Figure 1 in both directions.
Our key contribution are:

• We apply the formally verified tools topoS and fffuu for
network access control management in container cloud
environments.

• We investigate how a network operator can create a
formally verified firewall ruleset based on high level
security goals.

• We provide a method to easily understand feedback on
changes to the low level firewall rules.

• We review the related work to show that this is the first
time, that a comprehensive solution to map from security
policies to enforcement device implementation and back
has been provided.

The rest of this article is structured as follows. We tell
how Alice is designing the network in Section II (based
on previous publication [11]). Alice deploys her setup with
Docker in Section III. In Section IV, the service goes live
and we track Alice as operator. We present related Docker
work in Section V and related academic work in Section VI
(extending on previous publication [11]). Finally, we discuss
at the example of the fictional story in Section VII how the
two tools presented enhance the state-of-the-art.

II. DESIGNING THE NETWORK WITH topoS

The security requirements of distributed applications depend
on the usage scenario. Alice utilizes the tool topoS to configure
and design the network architecture according to the needs

of her specific web application. Alice specifies the high-
level security requirements and topoS synthesizes the low-level
iptables rules for her. topoS suggests the following workflow:

A. Formalize high-level security goals
a) Categorize security goals
b) Add scenario-specific knowledge
c) Auto-complete information (?)

B. Construct security policy (?)
C. Construct stateful policy (?)
D. Serialize iptables configurations (?)

All steps annotated with an asterisk are automated by topoS.
As the (?)-steps illustrate, once the security goals are specified,
the process is completely automatic. Between the automated
steps, Alice may manually refine the intermediate result. topoS
supports re-verification of the manual refinement to prevent the
introduction of human errors.

The automated intermediate (?)-steps are proven correct
for all inputs [14]. The proofs are machine-verified with
Isabelle/HOL [16]. Thus, it is guaranteed that topoS performs
correct transformations. As a side note, since the intermediate
transformations are proven correct once and for all for all
inputs, Alice does not need to prove anything manually. The
final serialization of iptables configurations is not verified
since it is merely syntactic rewriting of the result of the
previous step. Alice will also later change this rewriting
slightly to better accommodate for her Docker environment. To
prevent errors in this ad-hoc low-level step, Alice later verifies
her resulting configuration with fffuu.

INET

Network

WebFrnt

WebApp
Log

DB

Uplink
DMZ

Internal

Fig. 2. Network Schematic

Now we consider the actual web application. The scenario
was chosen because it has been used previously [11], is
minimal and comprehensible for an article, but also realistic
and features many important aspects. Alice schematically
illustrates the overall architecture in Figure 2. The grey box
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represents the Docker network. The setup hosts a news aggre-
gation web application, accessible from the Internet (INET). It
consists of a web application backend server (WebApp) and
a frontend server (WebFrnt). The WebApp is connected to
a database (DB ) and actively retrieves data from the Internet.
All servers send their logging data to a central, protected log
server (Log).

Alice implements the network-related aspects of the sce-
nario with different protocols and technologies. The custom
backend, the WebApp is written in python. The WebFrnt
runs lighttpd. It serves static web pages directly and
retrieves dynamic websites from the WebApp. All components
send their syslog messages via UDP (RFC 5426 [20])
to Log . Since the implementation details are irrelevant, we
prototyped the setup and checked connectivity with busybox
container images.

For details on the architecture and working principles of
topoS we refer to the original publication [7].

A. Formalizing High-Level Security Goals

Formalizing the security goals, i.e., step A. in the process of
using topoS, is the most crucial and manual part. First, Alice
collects the entities in her setup: INET , WebApp, WebFrnt ,
DB , and Log . Now, topoS provides a modular, attribute-based
language [7] to specify the security requirements. topoS comes
with a pre-defined library of security invariant templates as
listed in Table I.

Name Description
Simple BLP Simplified Bell-LaPadula
Bell-LaPadula Label-based Information Flow Security with

trusted entities
ACL Simple ACLs (Access Control Lists)
Comm. With White-listing transitive ACLs
Not Comm. With Black-listing transitive ACLs
Dependability Limit dependence on certain hosts
Domain Hierarchy Hierarchical control structures
NoRefl Allow/deny reflexive flows. Can lift sym-

bolic policy identifiers to role names (e.g.,
symbolic host name corresponds to an IP
range.)

NonInterference Transitive non-interference properties
PolEnforcePoint Central application-level policy enforce-

ment point. Master/Slave relationships.
Sink Information sink. Hosts (or host groups)

must not publish any information
Subnets Collaborating, protected host groups
SubnetsInGW Simple, collaborating, protected or accessi-

ble host groups
Simple Tainting Simplified label-based Privacy
Tainting Label-based Privacy with untainting

TABLE I
SECURITY INVARIANT TEMPLATES DEFINED BY topoS

A template formalizes generic, scenario-independent aspects
of a security goal and must be formally defined in topoS
using Isabelle/HOL. Alice only instantiates those templates by
adding scenario-specific information. She does so by assigning
attributes to entities. topoS does not require Alice to assign
attributes to all entities. Alice must only provide all security-
relevant information and topoS auto-completes the missing

values with provably secure default values [7]. For this sce-
nario, Alice instantiates four invariant templates to define her
security goals. We now explain the invariants in the language
of topoS. Figure 3 shows the final specification Alice writes.

Subnets {DB 7→ internal,
Log 7→ internal,
WebApp 7→ internal,
WebFrnt 7→ DMZ}

Sink {Log 7→ sink}

Bell LaPadula {DB 7→ confidential,
Log 7→ confidential,
WebApp 7→ declassify}

ACL {DB 7→ Access allowed by : WebApp}

Fig. 3. Security Invariants

1) First, as illustrated in Figure 2, DB , Log , and WebApp
are considered internal hosts. Alice uses a template called
Subnets. She labels internal hosts with the internal at-
tribute. The WebFrnt must be accessible from outside,
it is a classical DMZ member and labeled accordingly.

2) Next, Alice wants to ensure that logging data must not
leave the log server. Therefore, using a template called
Sink, she classifies Log as information sink.

3) Using a template called Bell LaPadula, Alice speci-
fies that DB contains confidential information. Since
it sends its log data to the log server, she labels Log
as confidential. Finally, the WebApp is allowed to
retrieve data from the DB and to publish it to the
WebFrnt . Therefore, the WebApp is trusted and allowed
to declassify data.

4) A traditional access control list, using the ACL template,
specifies that only WebApp may access the DB .

This is all the information topoS needs to operate. Based
on this, topoS can now compute a security policy as access
control graph, shown in Figure 4. This policy is much more
fine-grained than the simple DMZ architecture Alice initially
drafted in Figure 2.

For the sake of brevity, our story omits an important aspect:
Alice did not specify a perfect set of security goals at the first
attempt. It took her some iteration to arrive at the specification
shown in Figure 3. Fortunately, topoS has proven extremely
helpful in this process. As described in the previous paragraph,
once Alice instantiates a set of security invariant templates,
topoS can compute a policy from them. This provides Alice
with feedback about what she is specifying and what her
specification actually means. In addition, topoS also allows
Alice to define her own policy and topoS visualizes any flow
which contradicts a specified security goal or highlights flows
which Alice did not consider but which would be valid w.r.t.
specified security goals. Alice iterated this process several
times and refined her security goals until she was certain that
the specification carries the intended meaning.

Due to this motivating feedback-driven process, Alice has
now documented a clear and formal specification of her
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security requirements. The specification is modular and split
into four invariants. Consequently, in the future, it is easy to
add new security requirements or verify whether a proposed
change violates the existing invariants.

B. Policy Construction with topoS

Given the specification of the security goals (Figure 3),
topoS computes the security policy shown in Figure 4. Alice is
happy with the policy, but she makes one small change. While
the web frontend must be accessible from the Internet, there
is currently no need that the web frontend also establishes
connections to the Internet by itself. Alice modifies the policy
as shown in Figure 5 and topoS verifies that her new policy
complies with the security goals specified earlier.

A careful reader may already notice the subtle semantics we
gave to the arrows in Figure 5: For example, the arrow from
the Internet to the web frontend means that the Internet may
set up connections to the web frontend, but not vice versa.
A connection usually implies that—once it is established—
packets may flow in both directions. But the policy does
currently not permit packets to flow from the web frontend to
the Internet. Therefore, using the specification of the security
goals again, topoS can convert a security policy into a stateful
policy [17]. The result is shown in Figure 6. The orange dashed
arrows represent connections which may be stateful, i.e., once
established by the corresponding entity (solid black arrow),
packets may travel in both directions (solid black + dashed
orange arrow).

To compute the stateful policy, topoS distinguishes between
access control (invariants 1 and 4) and information flow
(invariants 2 and 3). This distinction is inherently built into the
invariant templates [7] and Alice does not need to configure
anything for this step. In this scenario, the two stateful flows
can be justified as they do not introduce access control
violations since the initiator needs to establish a connection
before a bidirectional flow is allowed. However, it can be
seen that all flows which send data to the logging server are
not allowed to be stateful. This is because of information
flow security: a bidirectional channel here would allow the
confidential logging information to leak.

III. DEPLOYING TO A DOCKER HOST

Now, Alice wants to enforce the stateful policy of Figure 6
on her Docker host. Docker uses the iptables firewall inter-
nally. The first question Alice raises is whether she wants to
operate custom firewall rules or whether Docker can enforce
her policy out of the box.

Since Docker version 1.10, it is possible to create custom
internal networks [21]. The --internal flag protects a
network from accesses from the outside. However, by default,
all containers in an internal network can reach each other.
It is possible to configure the network such that containers
cannot access each other. Unfortunately, a bug in Alice’s
version of Docker allowed containers to communicate [22]. In
addition, there was no possibility to enable fine-grained access
control between the containers in a network. A --link option
exists to connect two containers within a custom network, but

it merely sets environment variables, it does not influence
the actual IP connectivity. The Docker design philosophy
is to decouple the application developer from networking
details [23]. Only a coarse-grained network abstraction in
terms of different networks is exposed to the application
developer. The network IT team —i.e., Alice— should manage
the network. Since one compromised container in an internal
network can attack all other containers in its network, Alice
desires further network-level access control than the coarse
grained separation provided by Docker.

The web application as a whole should be isolated from
other containers on the host. Therefore, Alice creates a new
Docker network. She disables inter-container communication
(icc) for this network. Due to the lack of fine-grained access
control, Alice decides to install additional custom firewall
rules on her host. In addition, the fact that the fix to the bug
mentioned above was initially not considered a security issue
by the Docker developers confirms Alice’s choice of running
her own firewall. As it turns out, many administrators are
looking for means to fine-tune their Docker firewall because of
certain shortcomings in Docker [24]. Alice chooses to enhance
the default Docker-generated rules with rules for fine-grained
access control generated by topoS. She merges both rulesets
manually. Figure 8 shows the final ruleset of her Docker host.
Everything which does not mention MYNET is part of the
default ruleset of docker. Alice added the custom chain MYNET
and a jump to it. The contents of the chain MYNET, i.e.,
the actual fine-grained access control rules, are generated by
topoS. For brevity, the name of the bridging interface created
by Docker for Alice’s new network is dbr.

As a side note, Alice is well aware that Docker itself does
not provide security out of the box [25], [26]. The security
provided by containerization heavily depends on the specific
Docker and container setup. For example, if a container has
the privilege to access raw sockets, the container can spoof
arbitrary IP addresses or perform ARP spoofing [27]. This
spoofing cannot be blocked by traditional firewall rules since
all containers in Alice’s network are connected to the same
interface dbr. Hence, in a generic case, Docker networking
does not provide authenticity. Consequently, since a malicious,
privileged container can perform ARP spoofing, no guarantees
can be given that the connectivity structure enforced by
Alice’s firewall actually corresponds to Figure 6. Alice solves
this problem by teaching her application developers about
Linux capabilities and rejecting containers which require any
additional capabilities or are otherwise ‘naked’ [28].

IV. OPERATIONS

The design and development of the firewall policy are only
the initial phase of the app’s life cycle. After the firewall has
been deployed, additional and changing requirements necessi-
tate updates to the previously designed ruleset. In contrast to
network design and tool development, operations is usually
an unstructured ad-hoc discipline which has to deal with
unexpected events and usually is not taught in any course of
studies [29]. In this section, we follow Alice while she deals
with unexpected events, ad-hoc requests, overlapping issues,
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Fig. 5. Security Policy
(manually refined)
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Fig. 6. Stateful Policy
(computed by topoS)

{0.0.0.0..9.255.255.255} ∪
{11.0.0.0..255.255.255.255}

{10.0.0.4}

{10.0.0.3}
{10.0.0.2}

{10.0.0.1}

{10.0.0.0} ∪ {10.0.0.5..10.255.255.255}

Fig. 7. Firewall Overview
(reconstructed by fffuu)

*filter
:INPUT ACCEPT [0:0]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]
:DOCKER - [0:0]
:DOCKER-ISOLATION - [0:0]
:MYNET - [0:0]
-A FORWARD -j DOCKER-ISOLATION
-A FORWARD -j MYNET
-A FORWARD -o dbr -j DOCKER
-A FORWARD -o dbr -m conntrack ←↩

--ctstate RELATED,ESTABLISHED -j ACCEPT
-A FORWARD -i dbr ! -o dbr -j ACCEPT
-A FORWARD -o docker0 -j DOCKER
-A FORWARD -o docker0 -m conntrack ←↩

--ctstate RELATED,ESTABLISHED -j ACCEPT
-A FORWARD -i docker0 ! -o docker0 -j ACCEPT
-A FORWARD -i docker0 -o docker0 -j ACCEPT
-A FORWARD -i dbr -o dbr -j DROP
-A DOCKER-ISOLATION -i docker0 -o dbr -j DROP
-A DOCKER-ISOLATION -i dbr -o docker0 -j DROP
-A DOCKER-ISOLATION -j RETURN
-A MYNET -m state --state ESTABLISHED ←↩

! -i dbr -o dbr -d 10.0.0.4 -j ACCEPT
-A MYNET -m state --state ESTABLISHED ←↩

-i dbr -s 10.0.0.1 ! -o dbr -j ACCEPT
-A MYNET -i dbr -s 10.0.0.1 -o dbr -d 10.0.0.1 -j ACCEPT
-A MYNET -i dbr -s 10.0.0.1 -o dbr -d 10.0.0.2 -j ACCEPT
-A MYNET -i dbr -s 10.0.0.1 -o dbr -d 10.0.0.4 -j ACCEPT
-A MYNET -i dbr -s 10.0.0.3 -o dbr -d 10.0.0.3 -j ACCEPT
-A MYNET -i dbr -s 10.0.0.3 -o dbr -d 10.0.0.2 -j ACCEPT
-A MYNET -i dbr -s 10.0.0.3 -o dbr -d 10.0.0.4 -j ACCEPT
-A MYNET -i dbr -s 10.0.0.2 -o dbr -d 10.0.0.2 -j ACCEPT
-A MYNET -i dbr -s 10.0.0.4 -o dbr -d 10.0.0.1 -j ACCEPT
-A MYNET -i dbr -s 10.0.0.4 -o dbr -d 10.0.0.3 -j ACCEPT
-A MYNET -i dbr -s 10.0.0.4 -o dbr -d 10.0.0.2 -j ACCEPT
-A MYNET -i dbr -s 10.0.0.4 -o dbr -d 10.0.0.4 -j ACCEPT
-A MYNET -i dbr -s 10.0.0.4 ! -o dbr -j ACCEPT
-A MYNET ! -i dbr -o dbr -d 10.0.0.1 -j ACCEPT
-A MYNET -i dbr -j DROP
COMMIT

Fig. 8. Docker iptables firewall (only filter table shown).

and long-term improvements of her setup within limited time
budget.

Alice used topoS to help her with static configuration
management. Consequently, Alice now needs tools to help
her in dynamic contexts. Alice installs a cronjob which runs
iptables-save regularly and looks for changes. If a
change to the ruleset is discovered, fffuu is run to compute an
overview of the firewall policy currently enforced. The result
is visualized with tikz and emailed to Alice. The result for the
initial firewall rules is visualized in Figure 7.

For an deeper look into operating principles and implemen-
tation of fffuu we refer to the original publication [12].

Since fffuu operates on the raw iptables rules, it does not
know the hostnames of the containers. Further comparing the

designed policy in Figure 6 with Figure 7, Alice realizes that
her firewall policy is already non-optimal. The reason is that
the default Docker-generated rules are interacting with her
rules. One oddity in fffuu’s visualization is the IP range at
the bottom which corresponds to all unused IPs in Alice’s
new network 10.0.0.0/24. Those IPs are potentially accessible
from the Internet and the WebApp. Since no containers are
assigned to these IP addresses, Alice decides that this is
acceptable for now. For her, a more concerning observation
is that the Internet can access almost all internal containers.
But Alice knows that she does not export internal services to
the Internet in her Docker configuration, which is not visible
in the firewall setup. Due to time pressure, Alice decides that
the current firewall rules are good enough and she will add
a second line of defense later. This will also protect against
attacks from containers running on the same host but in a
different Docker network. Alice runs one last check with
fffuu, verifying that INET →WebFrnt (10.0.0.1) is the only
stateful flow; as discussed, WebApp → INET is already
allowed bidirectionally. Due to time constraints, Alice decides
not to ask fffuu about stateful flows furthermore.

On Friday afternoon, Alice receives a call from a friend at
heise.de (193.99.144.80), who is complaining that one of her
containers is pinging his webserver excessively. Alice knows
that the web backend tests connectivity from time to time by
sending one echo request to Heise. She decides to postpone
investigating the core of the problem and installs a short-term
mitigation by just rate limiting all connections to Heise. We
print changes to the ruleset in unified diff format. Alice
installs the following rules.

:DOCKER-ISOLATION - [0:0]
:MYNET - [0:0]
-A FORWARD -j DOCKER-ISOLATION
+-A FORWARD -d 193.99.144.80 -m recent ←↩

--set --name rateheise --rsource
+-A FORWARD -d 193.99.144.80 -m recent ←↩

--update --seconds 60 --hitcount 3 ←↩
--name rateheise --rsource -j DROP

-A FORWARD -j MYNET
-A FORWARD -o dbr -j DOCKER
-A FORWARD -o dbr -m conntrack ←↩

--ctstate RELATED,ESTABLISHED -j ACCEPT

While this change to the ruleset is identified by her cronjob,
fffuu confirms that the overall access control structure of the
firewall has not changed: It still corresponds to Figure 7.

While Alice is updating the ruleset, she remembers from
Figure 7 that the Internet still has too many direct access rights
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to her internal containers. While working on the ruleset, Alice
decides to fix this issue right away mow.

-A MYNET -i dbr -s 10.0.0.4 -o dbr -d 10.0.0.3 ←↩
-j ACCEPT

-A MYNET -i dbr -s 10.0.0.4 -o dbr -d 10.0.0.2 ←↩
-j ACCEPT

-A MYNET -i dbr -s 10.0.0.4 -o dbr -d 10.0.0.4 ←↩
-j ACCEPT

--A MYNET -i dbr -s 10.0.0.4 ! -o dbr -j ACCEPT
--A MYNET ! -i dbr -o dbr -d 10.0.0.1 -j ACCEPT
+-A MYNET -i dbr -s 10.0.0.4 ←↩

! -o dbr ! -d 10.0.0.0/8 -j ACCEPT
+-A MYNET ! -i dbr ! -s 10.0.0.0/8 ←↩

-o dbr -d 10.0.0.1 -j ACCEPT
-A MYNET -i dbr -j DROP
+-A MYNET -o dbr -j DROP
+-A MYNET -s 10.0.0.0/8 -j DROP
+-A MYNET -d 10.0.0.0/8 -j DROP
COMMIT

After a few seconds, she receives the new firewall overview
generated by fffuu, shown in Figure 9. Comparing this figure to
Figure 7, it can be seen that the Internet is now appropriately
constrained. Alice also happily realizes that her firewall ruleset
now corresponds to the original design of Figure 6.

{0.0.0.0..9.255.255.255} ∪
{11.0.0.0..255.255.255.255}

{10.0.0.4}

{10.0.0.3}

{10.0.0.2}

{10.0.0.1}

{10.0.0.0} ∪ {10.0.0.5..10.255.255.255}

Fig. 9. Overview computed by
fffuu after call from Heise

{0.0.0.0..9.255.255.255} ∪
{11.0.0.0..255.255.255.255}

{10.0.0.4}

{10.0.0.3}

{10.0.0.2}

{10.0.0.1}

{10.0.0.0} ∪ {10.0.0.5..10.255.255.255}

Fig. 10. Overview computed by
fffuu after WebDev call (HTTP)

The next week, Alice receives a call from her web developer.
He requests ssh access to all containers. In addition, he
requests that the log server (10.0.0.2) may access a status page
of the web frontend (10.0.0.1) over HTTP. Both permissions
should only be granted temporarily for debugging purposes.
Alice sets up the appropriate firewall rules.

-A FORWARD -j DOCKER-ISOLATION
-A FORWARD -d 193.99.144.80 -m recent ←↩

--set --name rateheise --rsource
-A FORWARD -d 193.99.144.80 -m recent ←↩

--update --seconds 60 --hitcount 3 ←↩
--name rateheise --rsource -j DROP

+-A FORWARD -m state ←↩
--state ESTABLISHED,RELATED -j ACCEPT

+-A FORWARD -p tcp --dport 22 -j ACCEPT
+-A FORWARD -s 10.0.0.2 -d 10.0.0.1 -p tcp ←↩

--dport 80 -j ACCEPT
-A FORWARD -j MYNET
-A FORWARD -o dbr -j DOCKER
-A FORWARD -o dbr -m conntrack ←↩

--ctstate RELATED,ESTABLISHED -j ACCEPT

While the Docker container connectivity works as intended,
fffuu now computes two interesting access control overviews.1

1By default, fffuu only computes the overview for a fixed service, by default
ssh and HTTP.

First, it visualizes that there are no longer any restrictions
for ssh, i.e., fffuu only shows one node. This single node
comprises the complete IPv4 address space and may access
itself, i.e., unconstrained ssh access. Second, fffuu presents a
new overview of the HTTP connectivity, shown in Figure 10.
The only difference is that the log server may now access
the web frontend. The two overviews underline that Alice
implemented her web developer’s request correctly.

While the policy overview computed by fffuu is still com-
prehensible for Alice due to the pooling of equivalent IP
addresses, the raw firewall ruleset, now comprising 37 rules,
is slowly becoming a mess2. The ruleset partly contains
unused artifacts installed by Docker and Alice’s hot fixes are
cluttered all over it. While Alice is poring over about how
she could clean up the rules, she receives an emergency call.
Her manager tells her that the webservice was mentioned on
reddit and that the web frontend cannot cope with the increased
load. Alice is spawning an additional frontend container with
IP address 10.0.0.42.

Alice’s firewall adheres to best practices and implements
whitelisting. Consequently, the new container does not have
any connectivity. Alice now is in the urgent situation to get
the firewall rules set up which permit connectivity for the
second frontend instance. Just permitting everything is not an
acceptable option for security-aware Alice.

Fig. 11. Uncovered violation
(screenshot of topoS)

Fig. 12. Stateful Policy
(screenshot of topoS)

Fortunately, Alice remembers that she has previously spec-
ified the security requirements with topoS (Figure 3). First,
Alice loads the policy overview for HTTP computed by fffuu
(Figure 10) into topoS. She immediately gets a visualization
(Figure 11) which tells her that her policy has already diverged
from the security requirements: The dotted red arrow, visual-
ized by topoS, reveals a flow which is violating the security
requirements. It corresponds to the flow installed upon the
request of her web developer previously. Based on the security
requirements, Alice should probably have rejected the request
from her web developer in the very beginning. But this is
neither the time to cast the blame nor to discuss security
requirements. Given the time pressure and the many odd-
looking Docker-generated rules in her ruleset, Alice decides
that her current ruleset is not salvageable. Alice is not the first

2In a study of 15 real world iptables rulesets with up to 4946 rules, we
observed at most 13 groups of IP addresses for the SSH or HTTP [12]. For
a specific group, the behaviour can be determined by the interaction with the
remaining groups
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person to notice that the Docker daemon may make surprising
changes to an iptables configuration [24], [30]. She decides to
take over complete control over the ruleset. Therefore, Alice
prohibits Docker from making any changes to the firewall by
setting --iptables=false.

-A FORWARD -i dbr -s $WebFrnt -o dbr -d $WebFrnt -j ACCEPT
-A FORWARD -i dbr -s $WebFrnt -o dbr -d $Log -j ACCEPT
-A FORWARD -i dbr -s $WebFrnt -o dbr -d $WebApp -j ACCEPT
-A FORWARD -i dbr -s $WebFrnt -o $INET_iface -d $INET ←↩

-j ACCEPT
-A FORWARD -i dbr -s $DB -o dbr -d $DB -j ACCEPT
-A FORWARD -i dbr -s $DB -o dbr -d $Log -j ACCEPT
-A FORWARD -i dbr -s $DB -o dbr -d $WebApp -j ACCEPT
-A FORWARD -i dbr -s $Log -o dbr -d $Log -j ACCEPT
-A FORWARD -i dbr -s $WebApp -o dbr -d $WebFrnt -j ACCEPT
-A FORWARD -i dbr -s $WebApp -o dbr -d $DB -j ACCEPT
-A FORWARD -i dbr -s $WebApp -o dbr -d $Log -j ACCEPT
-A FORWARD -i dbr -s $WebApp -o dbr -d $WebApp -j ACCEPT
-A FORWARD -i dbr -s $WebApp -o $INET_iface -d $INET ←↩

-j ACCEPT
-A FORWARD -i $INET_iface -s $INET -o dbr -d $WebFrnt ←↩

-j ACCEPT
-A FORWARD -i $INET_iface -s $INET ←↩

-o $INET_iface -d $INET -j ACCEPT
-I FORWARD -m state --state ESTABLISHED -i $INET_iface ←↩

-s $INET -o dbr -d $WebApp -j ACCEPT

Fig. 13. Fresh ruleset generated by topoS, considering only the requirements

To start over, Alice asks topoS to compute a completely
new ruleset for her, based only on the requirements specified
before. topoS computes the stateful policy shown in Figure 12;
the dashed orange flow indicates a connection with stateful
semantics. The result is serialized to the firewall rules shown
in Figure 13. All containers are attached to the same Docker
bridge. Alice only needs to fill in the IP addresses of the
machines and the Internet-facing interface. Alice sticks to the
IP addresses of her containers as before, except for the web
frontend which now has two active containers running. She
sets $WebFrnt = 10.0.0.1,10.0.0.42. This syntax is supported
by iptables and iptables will automatically expand this syntax
to several rules upon loading. To specify the interface and IP
range of the Internet, Alice defines that the Internet is ‘every-
thing except the Docker subnet’. Therefore, Alice negates her
Docker interface and internal Docker IP range. For example,
the second last rule becomes the following:
-A FORWARD ! -i dbr ! -s 10.0.0.0/8 ←↩

! -o dbr ! -d 10.0.0.0/8 -j ACCEPT

Yet, for some rules, the iptables command refuses to
load her rules and complains that negation is not al-
lowed with multiple source or destination IP addresses.
For example in line four, iptables prohibits the use
of ! -d 10.0.0.0/8 in combination with the two
source addresses -s 10.0.0.1,10.0.0.42 specified for
$WebFrnt . To work around this iptables limitation, Alice uses
the iprange module to declare the IP range of the Internet.
For example, the fourth rule now becomes
-A FORWARD -i dbr -s 10.0.0.1,10.0.0.42 ! -o dbr ←↩

-m iprange ! --dst-range ←↩
10.0.0.0-10.255.255.255 -j ACCEPT

This loads fine. Fortunately, fffuu understands those match-
ing modules. The new firewall overview is visualized in
Figure 14. It is remarkably similar to Figure 9, the last, old vi-
sualization when the ruleset was still in a good state. The main
difference is that the web frontend is now represented by two
machines and that it may establish connections to the Internet

{0.0.0.0..9.255.255.255} ∪
{11.0.0.0..255.255.255.255}

{10.0.0.4}

{10.0.0.3}

{10.0.0.2}

{10.0.0.1, 10.0.0.42}

{10.0.0.0} ∪ {10.0.0.5..10.0.0.41} ∪
{10.0.0.43..10.255.255.255}

Fig. 14. Overview of Figure 13
computed by fffuu

{0.0.0.0..9.255.255.255} ∪
{11.0.0.0..255.255.255.255}

{10.0.0.4}

{10.0.0.3}

{10.0.0.2}

{10.0.0.1, 10.0.0.42}

{10.0.0.0} ∪ {10.0.0.5..10.0.0.41} ∪
{10.0.0.43..10.255.255.255}

Fig. 15. HTTP access control
overview with state (by fffuu)

itself. This has been prohibited by the old manually-refined
policy, but it does not contradict any security requirement. A
final test confirms that the container connectivity works as
expected and the two frontend instances can cope with the
load.

Looking at her todo list, Alice decides to install some old
rules again. This time, she designs a clean ruleset and handles
all of her temporary rules in a chain she calls CUSTOM.
After her custom chain, she hands over control to the topoS-
generated rules. Alice still has not investigated why some
container is excessively pinging 193.99.144.80, so she installs
the rate limiting again. Alice is more careful about the other
temporary rules. topoS has shown her that the log server must
not communicate with the web frontend, so she is not enabling
this rule. However, since her ssh server is securely configured,
she does not see a problem with the ssh exception and enables
it again. She installs the following rules:

:INPUT ACCEPT [0:0]
:FORWARD DROP [0:0]
:OUTPUT ACCEPT [0:0] +:CUSTOM - [0:0]
+-A FORWARD -j CUSTOM
+-A CUSTOM -d 193.99.144.80 -m recent ←↩

--set --name rateheise --rsource
+-A CUSTOM -d 193.99.144.80 -m recent ←↩

--update --seconds 60 --hitcount 3 ←↩
--name rateheise --rsource -j DROP

+-A CUSTOM -m state --state ESTABLISHED -j ACCEPT
+-A CUSTOM -p tcp -m tcp --dport 22 -j ACCEPT
-A FORWARD -i dbr -s 10.0.0.1,10.0.0.42 ←↩

-o dbr -d 10.0.0.1,10.0.0.42 -j ACCEPT
-A FORWARD -i dbr -s 10.0.0.1,10.0.0.42 ←↩

-o dbr -d 10.0.0.2 -j ACCEPT
-A FORWARD -i dbr -s 10.0.0.1,10.0.0.42 ←↩

-o dbr -d 10.0.0.4 -j ACCEPT

Alice knows that it is a good practice to have a rule which
allows all packets belonging to an established connection [31].
She definitely needs an ESTABLISHED rule to make ssh
work so she just copies it from a guide. Though, Alice
wonders why topoS did not generate such a rule. She becomes
skeptical about her decision and wants to double check. Asking
fffuu about the potential packet flows once a connection is
initiated, fffuu confirms that there are currently no limitations
at all, not even for HTTP. She compares this to the stateful
implementation computed by topoS, shown in Figure 12. The
dashed orange line indicates a flow with stateful semantics,
i.e., packets may flow in both directions once the connection
was initiated by the web application. She realizes that topoS
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takes great care to enforce unidirectional information flow to
the log server. This is due to the information sink security in-
variant specified in the requirements. Alice knows from recent
news that a badly protected log server may leak information
which may lead to the compromise of all her machines [32].
Therefore, Alice restricts her ESTABLISHED rule to ssh.
She uses the multiport module which conveniently allows
matching on either source port or destination port in one rule.
She makes the following final adjustment to her ruleset.

-A CUSTOM
-A CUSTOM -d 193.99.144.80/32 -m recent ←↩

--set --name rateheise --rsource
-A CUSTOM -d 193.99.144.80/32 -m recent ←↩

--update --seconds 60 --hitcount 3 ←↩
--name rateheise --rsource -j DROP

--A CUSTOM -p tcp -m state --state ESTABLISHED ←↩
-j ACCEPT

+-A CUSTOM -p tcp -m state --state ESTABLISHED ←↩
-m multiport --ports 22 -j ACCEPT

-A CUSTOM -p tcp -m tcp --dport 22 -j ACCEPT
COMMIT

Alice runs one final verification of the implemented policy
with fffuu, shown in Figure 15. This time, she also includes the
stateful flows. fffuu identifies only one stateful flow, visualized
with an orange dashed line. The direction of the stateful flow
is the other way round compared to Figure 12. This is merely
an artifact of the visualization, a stateful flow is essentially
bidirectional once it is established. Otherwise, Figure 12 and
Figure 15 show isomorphic graphs. This verifies that Alice’s
firewall rules are correct.3

V. RELATED DOCKER WORK

Tools to improve firewall management for Docker hosts
exist [33], [34]. Docker-fw [33] is a convenient iptables wrap-
per with Docker-specific features, such as retrieving the IP
address of a container using the Docker API. It currently only
supports the default Docker bridge, but not custom networks.
DFWFW [34] is also a convenient tool to manage the iptables
firewall on a Docker host. It runs as daemon and can apply
changes dynamically if the Docker setup is modified, e.g., if
new containers are instantiated.

Both tools provide features that could help to make the
management process with topoS and fffuu more convenient.
At the moment, topoS generates raw iptables rules but leaves
the actual IP addresses to be set by the user, e.g., $WebFrnt
in Figure 13. To further automate the setup, topoS could
generate Docker-fw [33] rules which automatically resolve the
correct IP address. To further automate firewall management,
topoS could directly generate DFWFW [34] configurations.
This would mean that no manual configuration is required any
longer if multiple instances of the same container are spawned.

Alice tests topoS together with DFWFW. For this, Alice
simply adapts the topoS serialization step to generate rules in
the DFWFW configuration format. Since DFWFW is also built
to primarily support whitelisting, the translation is straight-
forward. A rule in this format first matches on the Docker
network, then it allows specifying the source and destination
container, an arbitrary string which will be added to the
iptables match expression, and finally the iptables action. The

3For HTTP. Alice disregards ssh.

match on the container names permits the use of Perl regular
expressions. To allow dynamic spawning of multiple instances
of a container, Alice writes a regex which matches on the
container name and any trailing number, e.g., webfrnt,
webfrnt1, webfrnt-1, webfrnt200. The beginning of
the configuration file looks as follows:
{
"container_to_container": {
"rules": [
{

"network": "alicewebappnet",
"src_container": "Name =˜ ˆwebfrnt-?\\d*$",
"dst_container": "Name =˜ ˆwebfrnt-?\\d*$",
"filter": "",
"action": "ACCEPT"

},
{
"network": "alicewebappnet",
"src_container": "Name =˜ ˆwebfrnt-?\\d*$",
"dst_container": "Name =˜ ˆlog-?\\d*$",
"filter": "",
"action": "ACCEPT"

},
. . .

Disregarding the JSON formatting, it is similar to Figure 13,
but only the first two rules are shown. Alice tests that all con-
tainers have the necessary connectivity with this setting. Alice
also tests that the firewall gets dynamically updated once she
instantiates new containers and that the most obvious attempts
to subvert the security policy are successfully blocked. She
also verifies the generated iptables rules with fffuu. This reveals
that the overall setting is indeed good, but two open issues
exist: First, Internet connectivity is again unconstrained and
the stateless semantics are not enforced correctly, i.e., once
a connection with the log server is established, bidirectional
communication is permitted. Alice leaves these engineering
issues of fine tuning the DFWFW configuration to future work.

Ultimately, Alice already enhances the state-of-the-art of
Docker container management by combining a dynamic
Docker firewall framework with the static policy management
tool topoS. While the Docker firewall deploys the security pol-
icy, topoS generates it. This combination lifts topoS to dynamic
contexts since it allows dynamic spawning and deletion of
containers at runtime while still providing strong guarantees
about the enforced security requirements. In addition, fffuu
can verify the correctness of potentially modified firewall rules
according to the policy at runtime.

VI. SURVEY OF RELATED ACADEMIC WORK

We first define four management abstraction layers to sub-
sequently classify related work in the field of network man-
agement and security, not limited to Docker. Each abstraction
layer is responsible for an individual problem domain. We
illustrate the four layers in Figure 16. The layers have well-
defined interfaces, thus, it is possible to combine solutions of
individual problems.

We propose the following four layers of abstraction.
Security Invariants Defines the high-level security goals.

Representable as predicates. For example, Figure 3.
Access Control Abstraction Defines the allowed accesses

between policy entities. Representable as global access
control matrix. For example, Figure 4.
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Fig. 16. Four Layer Abstractions

Interface Abstraction Defines a model of the complete net-
work topology. Representable as a graph, packets are
forwarded between the network entity’s interfaces.

Box Semantics Describes the semantics (i.e., behavior) of
individual network boxes. Usually, the semantics are
vendor-specific (e.g., iptables, Cisco ACLs, Snort IDS).

The main difference between the interface abstraction and
the box semantics is that the latter describes the behavior of
only one network entity, whereas the former describes the
interconnection of many, possibly different, network boxes.
In our story, both coincide since only one Docker host is
considered. By separating the box semantics from the interface
and access control abstraction, the low level implementation of
the enforcement device can be exchanged, if the new devices
can provide equal semantics. Only the generation of the target
configuration must be adapted. For example, topoS can also
used to generate an OpenFlow configuration [11].

In Figure 17, we summarize how related work bridges the
abstraction layers. With regard to the abstractions, work may
be horizontal or vertical: Vertical work bridges abstraction
layers, for example, translating security invariants (Figure 3)
to the access control abstraction (Figure 4) is a vertical step.
Horizontal work adds features or conducts safety checks on the
same abstraction level, for example, augmenting the directed
policy (Figure 4) to a stateful policy (Figure 6) is a horizontal
step. A direct arrow from the access control abstraction to the
box semantics (and vice versa) means that the solution only
applies to a single enforcement box. Solutions such as Firmato
and Fireman achieve more and are thus listed multiple times.

Security Invariants → Access Control Abstraction: Zhao
et al. [35] present a policy refinement framework for network
services. They state the need to express security requirements
in high-level terms and present a high-level logic language
to encode them. For this language, an automated translation
procedure to the access control abstraction is presented. Also,
low-level policies which can be enforced directly by certain
security mechanisms are presented (not shown in Fig. 17
since their current prototype implementation only supports one

Security Invariants

Access Control Abstraction

Interface Abstraction

Box Semantics

Zhao et al. [35];
topoS step B

VALID [36];
topoS

one big
switch [37];

Firmato [38];
FLIP [3];

FortNOX [39];
Merlin [40];
Kinetic [41];

PBM [42];
NetKAT [43]

Xie [44];
Lopes [45]

RCP [46];
OpenFlow [47];

Merlin [40];
optimized one

big switch [48];
NetKAT [43];

VeriFlow [49];
FML [50]

Firmato [38];
FLIP [3];
NetKAT [43];
Mignis [51];
Or-BAC [52];
topoS step C+D

HSA [53];
Anteater [54];
Config-
Checker [55]

Fireman [2];
HSA [53];
Anteater [54];
ConfigChecker [55];
VeriFlow [49]

Fireman [2];
ITVal [56];
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Iptables Semantics [19]

translates

m
aps
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Fig. 17. Four Layer Abstraction in Related Work

single policy rule). The logic-based, abstract policy language
roughly corresponds to first-order logic with set theory, or-
derings, and relations over an UML class diagram. It allows
to express almost unrestricted statements. The downside for
a user of such a language may be that it is hard to specify
and hard to follow. The system does not provide a reader
with feedback about whether the encoded high-level security
requirement actually corresponds to the policy author’s inten-
tion. In contrast, topoS comes with a library of pre-specified
logic formulas (security invariant templates). A policy author
only needs to assign attributes, but is not required to manually
encode requirements as formulas. In addition, topoS gives
immediate feedback to a policy author by visualizing the
resulting access control policy as graph. This enables a policy
author to verify the requirement specification and perform
“What-if?” analyses.

Access Control Abstraction 99K Security Invariants:
Bleikertz and Groß also state the need to express security
requirements in a high-level language and verify policies
against them. They propose VALID [36] which is a speci-
fication language to express security invariants in cloud in-
frastructures. VALID has aspects in common with topoS, for
example, it requires a network’s connectivity and information
flow structure in the format of a graph as input and allows
specifying predicates over it. The language is formally defined
in the AVISPA Intermediate Format. It can verify that a given
network topology conforms to specified high-level goals, but
it cannot translate these goals to a network topology nor give
feedback about the meaning of the specified goals.

Access Control Abstraction → Interface Abstraction:
From the point of view of our fictional story, Firmato [38]
is probably the work most closely related to topoS. It defines
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an entity relationship model to structure network management
and compile firewall rules from it, illustrated in Figure 18.
Firmato focuses on roles, which in our model correspond
to container names. A role has positive capabilities and is
related to other roles, which can be used to derive an access
control matrix. Zones, Gateway-Interfaces, and Gateways de-
fine the network topology, which corresponds to the interface
abstraction. As illustrated in Figure 18, the abstraction layers
identified in this work can also be identified in Firmato’s
model. The Host Groups, Role Groups, and Hosts definitions
provide a mapping from policy entities to network entities,
which is Firmato’s approach to the naming problem. With
close correspondence in the underlying concepts to Firmato,
Cuppens et al. [57] propose a firewall configuration language
based on Or-BAC [58]. Similar to Firmato (with more support
for negative capabilities) is FLIP [3], which is a high-level
language with focus on service management (e.g., allow/deny
HTTP). Essentially, both FLIP and Firmato enhance the access
control abstraction horizontally by including layer four port
management and traverse it vertically by serializing to firewall
rules.

FML [50] is a flow-based declarative language to define,
among others, access control policies in a DATALOG-like
language. Comparably to our directed (stateless) policy, FML
operates on unidirectional network flows. FML solves the
naming problem by assuming that all entities are authenticated
with IEEE 802.1X [59].

Gateway-Interface

Zone

Gateway

Host Group Host

RoleRole Group

Service Group
Capability

Service
Access Control Abstraction

Interface Abstraction

naming
mapping

Fig. 18. Firmato ERM

Policy-based management (PBM) [42] was introduced to
simplify network administration. Similar to our work, it pro-
poses different levels of abstraction and describes how to
translate between them. Policy-based management defines a
generic information model [60], [61] which is not limited
to access control, however, we focus our discussion solely
on access control and security. In a central policy repository,
global policy rules are stored. Policy decision points retrieve
these rules and interpret them. Using our terminology, this
step translates the access control abstraction to the interface
abstraction. A policy decision point forwards decisions to
policy enforcement points, implementing the translation from
the interface abstraction to box semantics. This last step may
be very device-specific [62] and is not the core focus of PBM.
While PBM was built on the idea of specifying business-level
abstractions in terms of requirements [42], the IETF specified a
rule-based policy repository [60], [61], which restricts storing
high-level requirements that cannot easily be expressed as
rules. In strong contrast to topoS, which focuses on specifying

higher-level requirements (i.e., security invariants), the IETF
Policy Framework working group focused on the specification
of lower-level policies [60, §2.1. Policy Scope]. This can also
be witnessed in many languages which were developed over
the years [63] since, in particular when it comes to security,
they usually only provide access control abstractions.

The “One Big Switch” Abstraction [37], [48], [64] allows
to manage a network as if it were only one, central big switch.
This effectively allows solutions which only support to manage
one device to be applied to a complete network, consisting
of multiple switches. With regard to Figure 17, any solution
which supports translating the access control abstraction to
box semantics can also be applied to translate from the access
control abstraction to the interface abstraction by translating
to the “One Big Switch”.

NetKAT [43], [65] is a SDN programming language with
well-defined semantics. It features an efficient compiler for
local, global, and virtual programs to flow table entries [43].
Among others, it allows implementing the “One Big Switch”
Abstraction [43].

Access Control Abstraction → Box Semantics: Mig-
nis [51] proposes a declarative language to manage Netfil-
ter/iptables firewalls. They focus on packet filtering and NAT.
Their policy language is restrictive to avoid the usual policy
conflicts. In particular, it only allows to write blacklisting-style
policies, additionally NAT and filtering cannot arbitrarily be
mixed to provide consistent policies.4 Apart from fffuu, it is the
only work we are aware of which provides a formal semantics
of an iptables firewall. They describe a semantics of the packet
filtering and NAT behavior of iptables. Their semantics only
models the aspects of iptables which are required for their
policy language. While it supports NAT (which the semantics
of fffuu does not5), it does not support user-defined chains
or arbitrary match conditions.6 Though supporting NAT and
stateful filtering, advanced iptables features such as NOTRACK
or connmark are not considered.

Craven et al. [66] present a generalized (not network-
specific) process to translate access control policies, enhanced
with several aspects, to enforceable device-specific policies;
the implementation requires a model repository of box se-
mantics and their interplay. Pahl [67] delivers a data-centric,
network-specific approach for managing and implementing
such a repository, further focusing on things.

Interface Abstraction 99K Access Control Abstraction :
As illustrated in Figure 17, Fireman [2] is a counterpart to Fir-
mato. It verifies firewall rules against a global access policy. In
addition, Fireman provides verification on the same horizontal
layer (i.e., finding shadowed rules or inter-firewall conflicts,
which do not affect the resulting end-to-end connectivity but

4The assumptions for the translation impose many restrictions [51, §5].
5Note that Docker utilizes iptables NAT features, but not in the filter

table, where usually all access control decisions are made. This is the reason
that fffuu (though it does not support NAT) could be used to analyze Docker
firewall filtering.

6Mignis supports match conditions but imposes additional assumptions on
them to ensure that they are consistent with NAT. For example, the iprange
module is not allowed. Without inspecting all matching modules manually,
there is no generic way to assure whether a filter condition is compatible with
Mignis.
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are still most likely an implementation error). Abstracting to
its uses, one may call rcc [68] the fireman for BGP. fffuu is
unique as it not only verifies rules, but also translates them
back to the access control abstraction.

Header Space Analysis (HSA) [53], Anteater [54], and
ConfigChecker [55] verify several horizontal safety properties
on the interface abstraction, such as absence of forwarding
loops. By analyzing reachability [44], [45], [53]–[55], hori-
zontal consistency of the interface abstraction with an access
control matrix can also be verified. Verification of incremental
changes to the interface abstraction can be done in real-time
with VeriFlow [49] and NetPlumber [69], the former can also
prevent installation of violating rules. These models of the
interface abstraction have many commonalities: The network
boxes in all models are stateless and the network topology is
a graph, connecting the entity’s interfaces. A function models
packet traversal at a network box. These models could be
considered as a giant (extended) finite state machine (FSM),
where the state of a packet is an (interface×packet) pair and
the network topology and forwarding function represent the
state transition function [45], [70]. In contrast to arbitrary state
machines, it is believed that those derived from networks are
comparatively well-behaved [70]. Anteater [54] differs in that
interface information is implicit and packet modification is
represented by relations over packet histories.

Horizontal Enhancements: Most analysis tools make
simplifying assumptions about the underlying network boxes.
Diekmann et al. [19] present simplification of iptables fire-
walls. This makes complex real-world firewalls available for
tools which were built with simplifying assumptions about
rulesets. This horizontally simplifies the box semantics and
fffuu is built on top of these simplification procedures [12].

FortNOX [39] horizontally enhances the access control
abstraction as it assures that rules by security apps are not
overwritten by other apps. Technically, it hooks up at the
access control/interface abstraction translation. Kinetic [41],
[71] is an SDN language which lifts static policies (as con-
structed by topoS) to dynamic policies. To accomplish this,
an administrator can define a simple FSM which dynamically
(triggered by network events) switches between static policies.
In addition, the FSM can be verified with a model checker.

Features are horizontally added to the interface abstraction:
a routing policy allows specifying paths of network traffic [48].
Merlin [40], [72] additionally supports bandwidth assignments
and network function chaining. Both translate from a global
policy to local enforcement and Merlin provides a feature-rich
language for interface abstraction policies. Conceptually simi-
lar (but with a completely different implementation), RCP [46]
allows to logically centralize routing while remaining compat-
ible with existing routers.

VII. COMPARISON TO ACADEMIC STATE-OF-THE-ART

We are not aware of any academic related work about
network access control management specifically for docker.
To the best of our knowledge, topoS and fffuu are the only
academic works where applicability for a Docker environment
has been specifically demonstrated. But Docker is merely an

application example, both tools were not specifically designed
for it but worked out of the box.7 We broaden the scope and
compare their underlying theory to the general state of the art
of tools for helping network management and administration.
The comparison is outlined in Figure 19. It is aligned similar
to Figure 17, but we omit the Interface Abstraction. The
solid single arrows visualize work which is able to translate
between the corresponding abstractions. The dashed single
arrow represents work which is only capable of verification:
Given an access control policy and security invariants as input,
their conformance can be verified. But one cannot be derived
from the other. In general, a translation from an access control
policy to security invariants is not possible without guessing
a policy author’s intention.

Security Invariants

Access Control Abstraction

Box Semantics

topoS,
Zhao et al.

topoS,
VALID

topoS,
Mignis

fffuu,
ITVal

PBM;
NetKAT;
one big switch;
. . .

Fireman
. . .

translates

verifies

Fig. 19. Overview of Comparison to Related Work (cf. Fig. 17)

Our combination of topoS and fffuu is the only compatible
toolset which is able to bridge all levels of abstractions in
both directions out of the box. The fictional story reveals that
this back-and-forth is useful in several scenarios. The story
also reveals features an administrator may wish for. We now
compare topoS and fffuu with related work specifically for the
following use cases, considered in isolation.

Build Networks Based on a Security Requirement Speci-
fication: Instead of writing a policy or low-level configuration
by hand, the fictional story shows that it is useful to generate
working network configurations directly from a scenario-
specific security requirement specification. This is useful for
the initial design and implementation, as well as for starting
over in certain scenarios.

VALID [36] allows to express security requirements, but
it cannot derive network configurations from them. Zhao
et al. [35] also propose a framework which allows to express
security requirements. In contrast to VALID, their framework
additionally allows to derive working network configurations.
The language proposed by Zhao et al. exposes a lot of formal-
ism to the administrator and almost bears more resemblance
to programming than it bears to a specification. Compared
to this, topoS distinguishes strongly between templates and
instantiating a template. While defining new templates also
bears resemblance to programming and is only intended for
expert users, the common operation to define a specification is

7The power of formally verified code.



TNSM PREPRINT 12

by instantiating those templates, which only requires configu-
rations and exposes very little formalism to the administrator.

Allow Intervention and Low-Level Control for the Ad-
ministrator: The fictional story revealed several occasions
where Alice wanted to fine-tune the low-level policy by hand.
One example was the temporary, ad-hoc permission for ssh.
Another example was the rate limiting to heise.de. It may
also be imaginable that Alice needs to reorder some rules at
some point for performance reasons. Both are true low-level
operation which should not be achievable on a higher level of
abstraction.8

The Mignis [51] firewall configuration language allows to
specify filtering policies. It gives the administrator the optional
possibility to add arbitrary additional low-level iptables match
conditions to the high-level rules. These additional match
conditions may introduce soundness issues. The language does
not permit the administrator to change the generated iptables
rules directly, e.g., reordering, restructuring, or ad-hoc changes
without recompiling are not allowed. In contrast, topoS permits
arbitrary changes to the generated iptables rules since fffuu can
be used to verify correctness of the changes.

Detect Erosion and Drift of the Implemented Policy vs.
the Specified Policy: The terms erosion and drift are usually
used for software architectures [73]. However, our fictional
story shows that network security policies and the correspond-
ing configurations also decay, become unmaintainable, and
violations of the original requirements sneak in. In addition,
being able to detect differences between a configuration and
a specified policy is an important step towards understanding
legacy configurations or verifying manual low-level changes,
as discussed in the previous paragraph.

To analyze the current policy enforced by an iptables ruleset,
ITVal [56], [74] can be used. Similar to fffuu, it allows to
partition the complete IPv4 address range into equivalence
classes. ITVal computes one set of equivalence classes jointly
for all layer 4 ports. In contrast, fffuu can only compute them
for one selected port. It depends on the scenario which of
the two approaches is more suitable: ITVal’s overview is very
helpful for a first, quick, overview of a firewall. fffuu’s service-
specific overview provides better granularity, once one knows
which ports one is interested in. ITVal only supports IPv4
while fffuu supports IPv4 and IPv6. In addition, ITVal is known
to have bugs [12] while fffuu is formally proven correct [15].
Ironically, ITVal segfaults for some Docker rulesets of this
article while fffuu processes them without complaint.

Distributed Enforcement?: Our work only focuses on one
single, central enforcement device. However, having only one
central firewall or only one central Docker host is not a satisfy-
ing scenario. This raises the question whether our work is use-
less for large installations or whether distributed enforcement
is an orthogonal issue. The Interface Abstraction—discussed
in Section VI and omitted in Figure 19—corresponds to
distributed enforcement. Figure 17 lists several related work
which takes one centralized policy and enforces it in a
distributed fashion. Therefore, distributed enforcement is an
orthogonal issue and our tools can help to develop, verify,

8tautologically, higher levels of abstraction abstract over low-level details.

and maintain the centralized policy which is then enforced
in a distributed fashion. For example, policy-based manage-
ment [42] systems or the NetKAT compiler [43] for SDN
could be used. We explicitly visualize an interface boundary

in Figure 19 to highlight that topoS produces an access
control matrix, which is understood by many technologies for
distributed enforcement. Therefore, topoS can be used as a
module for access control within another system. In addition,
algorithms for distributed firewall analysis (as supported by
Fireman [2]) can also benefit from the pre-processing and
simplification provided by fffuu.

VIII. CONCLUSION

We presented our tools topoS and fffuu, demonstrating
design, management, and operations of network-level access
control. In a fictional story about an operator in a Docker-based
environment, we showed how this toolset helps both for the
design of a setup and for daily operations. We demonstrated
several situations in which our tools provide useful feedback,
uncover bugs, and even help to migrate setups. The duality
of topoS and fffuu in combination with their common policy
abstraction makes them a powerful combination and enhances
the academic state-of-the-art.

The underlying theory of both tools is formally verified
and their code is directly generated by Isabelle/HOL, pro-
viding strong correctness guarantees about their results. Hav-
ing proven the correctness of the tools, no theorem prover
is required at runtime; the code is correct for all inputs.
Our tools are the first, jointly designed, formally machine-
verified, open source, real-world-approved tools which bridge
the gaps between high-level security requirements and low-
level firewall behavior in both directions. Notably, they are
not limited to Docker environments, but also applicable to
different scenarios. This becomes explicit since they were
never designed for Docker specifically, but worked flawlessly
for the Docker scenarios. We surveyed related work, showed
how our tools enhance the state-of-the-art, and how different
tool may interact given common abstractions.

Availability: topoS and fffuu can be obtained at

https://github.com/diekmann/topoS
https://github.com/diekmann/Iptables Semantics

A stable version of the theory files can also be obtained from
the Archive of Formal Proofs (AFP) [14], [15], [75]–[77]. AFP
maintenance policy ensures that our formalization will keep
working with future Isabelle releases. The raw data of the
Docker story and many other iptables dumps can be found at

https://github.com/diekmann/net-network

To the best of our knowledge, this is the largest, publicly-
available collection of real-world iptables firewall rulesets.
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