
A Framework for Reproducible Data Plane
Performance Modeling

Dominik Scholz
1
, Hasanin Harkous

2
, Sebastian Gallenmüller

1
, Henning Stubbe

1
,

Max Helm
1
, Benedikt Jaeger

1
, Nemanja Deric

2
, Endri Goshi

2
, Zikai Zhou

2
,

Wolfgang Kellerer
2
, Georg Carle

1

1
Chair of Network Architectures and Services,

2
Chair of Communication Networks

Technical University of Munich, Munich, Germany

firstname.lastname@tum.de

ABSTRACT
Languages for programming data planes like P4 sparked a

plethora of new applications in the data plane. The dynamic,

evolving environment makes it challenging to understand

what performance can be expected when running a program

in a specific data plane target. However, knowing this is cru-

cial for network operators when upgrading their networks.

We present a framework for the reproducible analysis and

modeling of P4 program components. By defining and gener-

ating precise specifications of the experiments, we separate

fully auto-generated components from testbed- or target-

specific parts. Measurement results are used to derive per-

formance models automatically. These can then be used to

compare the measured with the theoretical performance, or

to model the cost of entire paths through the data plane.

In two case studies, we use our framework to discover and

model selected behavior for a DPDK-based software target

and for the NFP-4000 SmartNIC platform.

CCS CONCEPTS
• Networks→ Network performance modeling.

KEYWORDS
P4, Data Plane, Performance Modeling Framework

ACM Reference Format:
Dominik Scholz, Hasanin Harkous, Sebastian Gallenmüller, Hen-

ning Stubbe, Max Helm, Benedikt Jaeger, Nemanja Deric, Endri

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

ANCS ’21, December 13–16, 2021, Layfette, IN, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-9168-9/21/12.

https://doi.org/10.1145/3493425.3502756

Goshi, Zikai Zhou, Wolfgang Kellerer, Georg Carle. 2021. A Frame-

work for Reproducible Data Plane PerformanceModeling. In Sympo-
sium on Architectures for Networking and Communications Systems
(ANCS ’21), December 13–16, 2021, Layfette, IN, USA. ACM, New

York, NY, USA, 7 pages. https://doi.org/10.1145/3493425.3502756

1 INTRODUCTION
High-level domain-specific languages (DSLs) like P4 [3] for

data plane programming are the next step towards fully pro-

grammable networks. The ability to customize details of

switch and router internals without the need for long de-

velopment cycles attracted researchers and industry alike.

Consequently, the P4 landscape has enjoyed steady growth

in recent years, resulting in not only a shift of entirely new

applications to the data plane, but also new software and

hardware targets. Keeping an overview of all applications

and targets has become challenging, in particular, regarding

performance metrics, i.e., how certain applications behave

for specific target platforms. However, answering this ques-

tion can be crucial, as network operators typically have QoS

requirements to fulfill.

Analyzing or modeling the performance of each applica-

tion for each potential target platform is infeasible due to

the sheer complexity of the landscape. However, using an ab-

stract DSL like P4 allows splitting the processing pipeline of

a program into individual components, including the parser

stage and match-action tables. The complexity of each com-

ponent can be described using a set of parameters, e.g., the

number of parser states or match-action table entries. Each

component or feature can then be evaluated and modeled

individually by only varying the respective parameter.

We present a framework that analyzes and automatically

models the behavior of individual P4 language components.

The derived models can then be used to compare their behav-

ior with the expected theoretical behavior. Deviations may

point to limitations of the device or not ideally implemented

data structures. We identified multiple challenges when im-

plementing the framework: First, like the P4 language itself,

the framework needs to be portable. The framework has

https://doi.org/10.1145/3493425.3502756
https://doi.org/10.1145/3493425.3502756

ANCS ’21, December 13–16, 2021, Layfette, IN, USA D. Scholz et al.

to support a wide range of software and hardware P4 tar-

gets, and vastly different testbed environments. Furthermore,

results must be reproducible, so that the resulting models

can be extended or verified by others. To achieve this, our

framework employs a high degree of automation. Further,

we carefully separate our framework into three parts: auto-

generated, testbed-, and target-specific.We show the value of

our framework by highlighting findings for two different P4

targets: the DPDK-based t4p4s and the NFP-4000 SmartNIC.

The paper is structured as follows: The framework for

automated analysis and modeling of P4 components is in-

troduced in Section 2. We present our findings in two case

studies that apply our modeling framework to a software-

based and a SmartNIC-based P4 target in Section 3. Section 4

discusses related work, before Section 5 concludes our paper.

2 MODELING FRAMEWORK
Just like the language itself, performance evaluation of P4

targets should be protocol-independent, i.e., should not ex-

clusively work for existing protocol headers like IP or UDP.

Similarly, applications are manifold, wherefore the evalua-

tion should be independent of existing or future applications.

2.1 Concept
We use short synthetic experiments targeting P4 language

constructs, similar to the approach introduced by Dang et

al. [5]. We evaluate the basic components of P4 programs,

i.e., any feature of the P4 language [24] that can be scaled

like the number of parsed headers or table entries. Analyzing

small building blocks individually instead of full programs

serves multiple purposes. First, we reduce side effects caused

by components interacting with each other. Second, these

experiments can be used as regression tests by developers of

the compilers. Lastly, the measurements allow application de-

velopers to gain a fundamental understanding of the cost of

P4 language constructs. This is required as, based on the con-

crete target, the impact of one component on performance

and resource metrics can change drastically. A model for the

impact of components on a concrete target can be used to es-

timate the cost of the complete application by extrapolating

and adding up the costs of individual components.

Each measurement series only contains a single language

component in addition to our baseline program. The goal is

to understand and model the impact introduced by this com-

ponent, i.e., how does the latency change when including

this construct 𝑛 times in a program. As these simple P4 pro-

grams are composed of the language primitives investigated

in the component measurements, a theoretical performance

can be calculated. The comparison between theoretical per-

formance based on the model and measured performance of

the composed measurement results in a relative error, which

can be used to describe the quality of the model.

TestbedConfiguration

Testbed
Setup

LoadGen

P4 DuT

Measurement

Artifacts Evaluation

Visual.

Model

Evaluation

Metrics

Traffic

Program

P4
Component

Specification

User-selected Auto-generated
Testbed-specific Target-specific

Figure 1: Measurement Framework

Our open-source framework [20] conducts the automated

evaluation of a single P4 program component in three phases

as shown in Fig. 1: experiment specification, measurement

execution, and evaluation of generated artifacts.

Component Experiment Specification. For the sake
of reproducibility, each experiment analyzing a single P4

component is defined by a threefold specification. First, it

specifies the performance metrics of interest. Throughput,

packet rate, and latency metrics are collected on the load gen-

erator (LoadGen) per default. Furthermore, internal target-

specific parameters can be measured on the device under test

(DuT), e.g., CPU cycle usage, cache misses, or the resource

consumption of the P4 program complexity. The specifica-

tion of performance metrics is vital for all other components,

including the load generator, P4 program, and the evaluation.

Second, the traffic generated by the load generator and

sent to the DuT is specified. This includes targeted through-

put, packet size, traffic pattern, and the headers and payload

of each packet. In particular, it is defined whether specific

bytes of the generated packets have to be changed through-

out a measurement series. This is required to generate traffic,

e.g., matching different entries of match-action tables.

Lastly, the specification defines the parameters of the P4

program. Based on a baseline program, i.e., the minimal pro-

gram required to forward packets, program complexity is

increased only for the respective component that should be

analyzed. The specification contains the number of occur-

rences for every component and further details, e.g., how

many bits each parser state parses. As a result, the compo-

nents of the whole P4 program are specified such that the

program for a specific target can be generated.

Measurement Execution. Running ameasurement poses

two challenges: First, independent of performing P4 data

plane evaluations, each testbed environment is different, be it

the hardware of the testbed’s management node, the testbed

orchestration software used to performmeasurements, or the

actual testbed nodes. Therefore, the testbed setup requires a

testbed-specific implementation. This includes starting and

synchronizing individual measurement runs between differ-

ent nodes, in our case, the load generator and the P4 DuT,

as well as gathering all artifacts. We have implemented the

setup component for testbeds using the plain orchestrating

service (pos) [8, 9] and using a purpose-built approach.

Although P4 programs are intended to be portable, i.e.,

target-agnostic, in theory, target-specific knowledge is still

required. This includes, e.g., the P4 architecture model that

A Framework for Reproducible Data Plane Performance Modeling ANCS ’21, December 13–16, 2021, Layfette, IN, USA

the P4 program needs to adhere to, supported extern inter-

faces, and the control plane interface required for loading the

program and inserting match-action table entries. Therefore,

the automatically generated P4 program specification needs

to be translated to an actual P4 program fitting the P4 tar-

get. For this work, we have implemented this target-specific

component for the DPDK-based t4p4s target. Further, the

testbed-specific component needs to implement means to

manage the concrete P4 device.

The MoonGen-based [7] load generator is automatically

generated based on the specification. By default, two sets

of measurements are performed with constant bitrate (CBR)

traffic. First, the maximum throughput and packet rate that

the DuT can process without packet loss are determined by

subjecting the DuT to traffic at line-rate. We then measure

the device’s latency at 10 %, 50 %, and 70 % of the maximum

packet rate, respectively. Other experiments, e.g., using pois-

son or bursty traffic, are supported by MoonGen [7].

Artifact Evaluation. As the configuration and execution

of the load generator are fully automated, all metrics obtained

from this source are evaluated and visualized automatically.

Only data obtained from the DuT requires a target-specific

processing implementation.

2.2 Automated Model Derivation
We describe our DuT as packet processing system 𝑠 that,

for input values 𝐼 like the program, packet rate, packet size,

or traffic pattern, produces output values 𝑂 , e.g., the max-

imum packet rate, latency, CPU cycles per packet, etc. As

it is infeasible to determine, measure, and model all inputs

and outputs of 𝑠 , we limit both inputs 𝐼 ∗ and outputs 𝑂∗
of

our model𝑚 that we want to derive for individual compo-

nents of 𝑠 : To derive the model for an individual component,

we use the fully automated experiments of the framework

to obtain measurement data 𝑔 that defines the behavior of

this component expressed as 𝑔(𝑥) = 𝑦 with 𝑥 ∈ 𝐺 defining

the measurement domain. Based on 𝑔, we want to derive a

model𝑚(𝐼 ∗) ↦→ 𝑂∗
represented by a modeling function 𝑀

with an error metric 𝐻 that quantizes the quality of𝑀 . For

each component that we analyze individually we also derive

a separate model, e.g., denoted as𝑚parser or𝑚MAT.

Curve Fitting. To derive a model for the measurement

data 𝑔 for the whole or a part of the measurement domain

𝑋 ⊆ 𝐺 , we use curve fitting applying the non-linear least

squares Levenberg-Marquardt algorithm [17]. We use the

curve_fit algorithm of the python scipy module [25], which

works as follows: for a given function prototype 𝜏 with free

parameters ®𝑝∗ the algorithm tries to determine ®𝑝 to fit the

given measurement data using 𝜏 as close as possible. The

result is the parameterized free parameter vector ®𝑝 . An exam-

ple for such a function prototype with three free parameters

is the polynomial of degree two 𝜏 (𝑥) = 𝑝∗
1
𝑥2 + 𝑝∗

2
𝑥 + 𝑝∗

3
.

To improve the quality of generated models, we use a set

Λ∗
of different function templates 𝜆. Each template 𝜆 = (𝜏,𝜓)

is defined by the function prototype 𝜏 for curve fitting and

an associated rank 𝜓 that will be explained later. As pro-

totypes we use polynomials of degrees zero to five, expo-

nential and logarithmic functions, and the inverse of all

mentioned functions. For every template 𝜆 from the set

of function templates Λ∗
, the curve fitting algorithm is ap-

plied to solve for the free parameters ®𝑝 . The result is the

set of possible solutions Λ for the given measurement data

Λ := {curve_fit(𝜆) = (𝜏,𝜓, ®𝑝, 𝜂)
�� ∀𝜆 ∈ Λ∗}.

Model Quality. We use an error metric 𝜂 defined by the

experiment specification to quantify the quality of each cal-

culated fitting in Λ. Currently, the framework supports the

mean absolute percentage error (MAPE) [4] and the sym-

metric MAPE (sMAPE) [4] metrics for regular measurement

data. However, other metrics can be added as plugins.

MAPE has drawbacks, e.g., it is sensitive to outliers or ar-

tifacts in the measurement data [4]. sMAPE improves on the

issues of MAPE, wherefore, we use the following variation

as default error metric for the remainder of this work:

𝜂sMAPE =
∑︁
𝑥 ∈𝑋

|𝜏 (𝑥) − 𝑔(𝑥) |
|𝑔(𝑥) | + |𝜏 (𝑥) | (1)

MAPE, sMAPE, and other metrics are vulnerable to over-

fitting, resulting in complex functions being preferred. E.g.,

we assume measurement data with linear dependency. Due

to measurement inaccuracies, a high degree polynomial will

likely have a lower error and would be preferred according to

the sMAPE-based error metric 𝜂. Thereby, the polynomial’s

high degree factors are close to zero, i.e., they are of low

relevance for the overall model. While it is mathematically

correct to choose the higher degree polynomial, semantically

a polynomial of degree one is desired to fit the linear depen-

dency. We counteract this behavior using two independent

strategies to improve the calculated error metric 𝜂.

First, we forbid small parameters by defining an absolute

minimum value 𝛾 . All free parameters 𝑝 returned by the

curve fitting algorithm are processed accordingly:

𝑝 ′ =

{
sgn(𝑝) · 𝛾, if |𝑝 | < 𝛾

𝑝, otherwise

(2)

Eq. 1 then uses the capped parameters 𝑝 ′
. We argue, that

limiting the granularity of the free parameters is justified as

it reflects the limited measurement accuracy.

The second strategy is based on the Akaike information

criterion (AIC) [4]: we assign a rank𝜓 to every function that

is equal to the number of free parameters 𝜓 = | ®𝑝∗ |. If the
difference in error metric for two fittings is between a certain

margin 𝜔 , we choose the simpler function. 𝜔 is based on the

minimum of both fitting errors multiplied by a margin factor

𝜅rel. As this would have close to no effect for already small

ANCS ’21, December 13–16, 2021, Layfette, IN, USA D. Scholz et al.

errors, we also define an absolute minimum margin 𝜅. For

two fittings for the same domain 𝐹1 and 𝐹2, if |𝜂1 − 𝜂2 | ≤ 𝜔 ,

we choose the fitting with lower rank𝜓 :

𝜏chosen =

𝜏1, |𝜂1 − 𝜂2 | ≤ 𝜔,𝜓1 < 𝜓2

𝜏2, |𝜂1 − 𝜂2 | ≤ 𝜔,𝜓1 ≥ 𝜓2

𝜏1, 𝜂1 < 𝜂2

𝜏2, otherwise

(3)

with 𝜔 = 𝑚𝑎𝑥 (𝑚𝑖𝑛(𝜂1, 𝜂2) · 𝜅rel, 𝜅). We consider an error

metric increased by up to 𝜅 = 10 % acceptable to prioritize

simpler model functions. We do not directly use the AIC

formula since experiments have shown that this metric is too

aggressive in preferring simpler functions in some scenarios,

a common point of critique for AIC [4]. The framework is

designed to support other metrics like MAPE that can be

used as plugins instead. For measurement data that should

be modeled using probability distributions, e.g., gaussian or

trapezoid, other metrics, like the earth mover’s distance [19],

can easily be integrated.

Resulting Model. The result of this process is a func-

tion prototype 𝜏 and the calculated free parameters ®𝑝 be-

ing the best solution according to the error metric 𝜂 and

function rank 𝜓 out of all calculated fittings Λ. The func-

tion models a part of or the full measurement domain, i.e.,

𝑋 := {𝑥 ∈ 𝐺
�� 𝛼 ≤ 𝑥 < 𝛽}. We denote this chosen fit-

ting as 𝐹 = (𝜆, ®𝑝, 𝛼, 𝛽, 𝜂). For simple systems, 𝐹 and the ad-

justable parameters 𝜅, 𝜅rel, and 𝛾 represent the complete

model𝑚 : (𝐹, 𝜂;𝜅, 𝜅rel, 𝛾).
Multiple Partial Fittings. The behavior of complex sys-

tems cannot be modeled using only a single function. Events

like overloading the system or exceeding the capacity of

CPU caches can drastically worsen the performance behav-

ior. Therefore, behavior before and after an event should be

modeled independently.

For this, we split the measurement domain 𝐺 into 𝑛 sepa-

rate domains and use the above outlined approach for every

individual segment. The combined fitting F is denoted as:

F (𝑥) =

𝐹𝑛
1
(𝑥), 𝑠0 ≤ 𝑥 < 𝑠1

𝐹𝑛
2
(𝑥), 𝑠1 ≤ 𝑥 < 𝑠2
...

𝐹𝑛𝑛 (𝑥), 𝑠𝑛−1 ≤ 𝑥 ≤ 𝑠𝑛

(4)

The 𝑛 individual fittings 𝐹𝑛𝑖 = (𝜆𝑖 , ®𝑝𝑖 , 𝑠𝑖−1, 𝑠𝑖 , 𝜂𝑖) are delimited

by 𝑛 + 1 splitting points ®𝑠 from the set of possible splitting

points 𝑆𝑛 . The points 𝑠0 and 𝑠𝑛 denote the lower and upper

bound of the measurement domain𝐺 , respectively. The error

𝜃 and rank Φ for the combined fitting is a weighted sum of

the individual fitting errors 𝜂𝑖 and function ranks.

To determine the best combined fitting, we apply the AIC-

based metric of Eq. 3 to always compare two combined fit-

tings F1 and F2 using 𝜃 andΦ. Eventually, this selects the best

modeling function M consisting of multiple partial fittings

for this number of splitting points denoted asM = (F , 𝜃,Φ).
The final model is then defined as𝑚 : (M, 𝜃 ;𝜅, 𝜅rel, 𝛾).

Determining Splitting Points. For up to three fittings,

we use brute force, i.e., we calculate fittings for all possible

combinations of splitting points. This results in a total of up

to O(|𝐺 |𝑛) fittings that need to be calculated. Calculating

these can be parallelized, while a single curve fitting requires

less than 0.5 s, depending on the number of data points.

For a higher degree of splitting points, brute force is not

feasible due to increased computational time. Instead, we

use a heuristic to determine the set 𝑆𝑛 . We assume that a

performance-altering event is indicated by a drastic change

in inclination of the measurement data, i.e., a point after

which the slope of the curve alters its direction. Therefore,

we calculate the second derivative of the measurement data,

approximated by local piecewise derivates using finite dif-

ferences, and select the x-axis index of local maxima and

minima. From these indices we use the 𝑙 highest absolute

extrema as splitting points.

To reduce the impact of measurement artifacts on deriva-

tive calculation, we repeat this process while including one

or more intermediate steps. E.g., we smooth the measure-

ment data using local linear or polynomial regression. We

intentionally perform different rounds of manipulating the

measurement data and determining splitting points as each

operation, e.g., smoothing measurement data, may improve

or worsen the quality of the determined splitting points for

the current scenario. We further extend this set 𝑆𝑛 by adding

the 𝑗 surrounding data points for each determined splitting

point. Extending the set of possible splitting points improves

the overall accuracy at the cost of computation time. How-

ever, compared to brute force, the number of splitting points

can be limited through 𝑙 and 𝑗 .

Similar to our error metric, the method to calculate deriva-

tives can be replaced with other approaches [2] as plugins.

E.g., different filters to reduce the impact of noise, like the

Savitzky-Golay filter [18], can be applied to the measure-

ment data before calculating the derivative function. How-

ever, these only provide scenario-specific optimized solu-

tions, wherefore, the outlined approach is used by default.

3 USE CASE EVALUATIONS
Testing every language component for all target platforms

might be infeasible. Therefore, we apply the proposed model-

ing framework to two different P4 platforms in a case study:

a software switch and a SmartNIC hardware platform.

Setup. The load generator produces CBR traffic and is

directly connected to the DuT. The DuT running the DPDK-

based t4p4s [26] P4 switch is equipped with an Intel Xeon

CPU E5-2640 v2 clocked at 2.0 GHz and an Intel X540-AT2

A Framework for Reproducible Data Plane Performance Modeling ANCS ’21, December 13–16, 2021, Layfette, IN, USA

100 101 102 103 104 105 106
0

100
200
300
400
500
600

Table Entries [log]

C
y
cl
es

p
er

P
a
ck
et

[-
]

Data

F 4
1,exact F 4

2,exact

F 4
3,exact F 4

4,exact

0

1

2

3

·107

C
a
ch
e
M
is
se
s
[-
]

L2 cache
L3 cache

Figure 2: Single core performance on software system
for increasing number of match-action table entries

NIC. Otherwise, the DuT is equipped with an Agilio CX

NFP-4000 SmartNIC from Netronome [1]. Turbo boost and

hyperthreading were disabled to reduce performance jitter.

The measurements for the t4p4s target were performed in

the pos-managed testbed [9], while the NFP-4000 was inves-

tigated using the purpose-made testbed. We also extended

the framework to gather target-specific metrics on the DuT:

CPU cycles and cache misses for t4p4s and frame drops at

the ingress buffer for the NFP-4000.

t4p4s Exact Match-Action Table Entries. Fig. 2 shows
our reproduction of related work [23] for the t4p4s target

when measuring the CPU cycles per packet for an increasing

number of exact match entries. The modeling framework has

identified four different parts that are modeled individually.

These can be explained by cache misses also shown in Fig. 2.

Initially, a model with a linear factor of 0.072 is proposed,

i.e., the behavior is almost constant for less than 100 table

entries. DPDK exact match tables use cuckoo hashing with

constant worst-case lookup time [6]. Fetching packet header

data used for match keys is also constant as it is independent

of the number of table entries. However, for the linearly

increasing number of table entries, the memory that has to

be loaded is also increasing linearly. Starting with approx.

10
2
table entries, the data no longer fits into the L2 cache,

resulting in the increase of L2 misses. At circa 10
3
table

entries, the model switches to a logarithmic function. For

more than 10
5
table entries, data has to be fetched from main

memory as indicated by the increase in L3 cache misses.

These fetches take significantly longer than fetches from fast

caches, doubling the CPU cycles per packet. This transition

period is modeled independently as linear function. After the

transition, the load operations from main memory outweigh

other effects, resulting in a constantmodel. The overall model

has a combined error of 0.730 %.

To model the memory consumption𝑚𝑟
e
we use a modified

version of the model proposed by Scholz et al. [22, Eq. 4]:

𝑚𝑟
e
(𝑒, 𝑟k, 𝑟a) = 128 B + 𝑒 · (𝑟k + 𝑟a + 72 B) (5)

with the number of table entries 𝑒 , total key size 𝑟k in bytes,

and size of the action data 𝑟a in bytes. We solve Eq. 5 for

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

Load [Gbit/s]

T
h
ro
u
gh

p
u
t

[G
b
it
/s
]

1500B 134B

F 2
1,134 F 2

2,134

0

10

20

30

40

D
ro
p
p
ed

F
ra
m
es

[%
]

134B drops
1500B drops

Figure 3: Throughput and percentage of dropped pack-
ets for the investigated NFP-4000 platform

𝑒 , using 𝑟k = 16 B and 𝑟a = 64 B: Setting 𝑚𝑟
exact

= 20MB,

the L3 cache size of the used processor, results in 1.32 · 105
entries to fully fill the L3 cache. This point, marked in Fig. 2,

is an overestimation as the cache is not exclusively used for

table entries. Similarly, the increase in L2 cache misses can

be approximated (1.68 · 103 table entries for𝑚𝑟
exact

= 256 kB).

While this estimation is close to the point of the detected

event, due to access time difference between the L2 and

L3 caches of less than 5 ns, the performance loss is not as

noticeable as when exceeding the L3 cache [14]. The increase

in L1 cache misses is not detected by the automated modeling

approach. This is due to the even smaller difference in cache

access times from L1 to L2 cache.

NFP-4000 Recirculation. In contrast to the software

target, the NFP-4000 is capable of handling a scaled number

of match-action table entries without packet loss [10], i.e.,

processes traffic at line-rate even for a large number of table

entries, resulting in a constant model. Instead, we use P4’s

recirculation feature. Packets are sent once from the egress

stage back to the ingress stage that also processes the traffic

received from the load generator. For this scenario, MoonGen

generates VXLAN packets with a size of 134 B and 1500 B

and a load between 1Gbit/s and 10Gbit/s.

Fig. 3 shows the received rate and percentage of dropped

packets as a function of the send rate for both packet sizes.

We observed that the NIC is capable of handling all incom-

ing traffic without packet drops when processing maximum-

sized packets. However, when the packet size is set to 134 B,

the received rate decreases after 5.7 Gbit/s and then saturates

at around 4.9 Gbit/s when further increasing the load. The

modeling framework detects this event using a linear and

a constant function with a combined error of 0.23 %. The

percentage of dropped frames by the NFP-4000 increases

proportionally with the observed loss in throughput after

5.7 Gbit/s. This happens because the NFP-4000 fails to pro-

cess the cumulative throughput of incoming traffic recircu-

lated according to the loaded P4 program. Here, the process-

ing capacity of the NIC is reached when this cumulative

throughput approaches the 10Gbit/s line rate of the NIC.

The latter is observed when the packet size is equal to 134 B,

ANCS ’21, December 13–16, 2021, Layfette, IN, USA D. Scholz et al.

i.e., high packet rate, as the ingress buffer of the NFP-4000 is

filled faster with original and recirculated packets. This is fur-

ther confirmed when looking at the percentage of dropped

frames collected at the ingress buffer of the NFP-4000. The

minimum packet size at which no packet drop is recorded is

equal to 275 B for this scenario.

Discussion. While analyzing the impact of the number

of table entries is interesting for the software target, it is

trivial for the NFP-4000 as it shows a constant model. We

chose the presented findings as a case study as they high-

light the capabilities of the framework, supporting multiple

targets, investigated in different testbeds, using general and

target-specific metrics. The generalization of the framework

is vital, as it does not only evaluate one component, but all

P4 language components that are currently supported. The

entire set of microbenchmarks is generated and, depending

on the testbed, can be executed and evaluated entirely au-

tomatically. Customization is available by selecting metrics

of interest or tuning the model’s parameters. The resulting

reproducible models provide an overview of the target’s be-

havior. Potential outliers can then be further investigated. As

future step, we want to use the individual models to deduce

a combined model for entire P4 programs. Based on such

a model, network operators can decide whether a certain

target will suit their requirements, without having to test

the program itself.

The framework is limited by its target-dependency. Espe-

cially for software targets, a model derived for one platform

might not be valid for another. This, however, is counter-

acted by the huge degree of automation, allowing a new

model for a concrete platform to be derived quickly and with

low effort. Similar, using individual component models to

derive a model for the whole application, e.g., by summing

up the models for the components times their occurence in

the program, is target specific. Side-effects and interactions,

e.g., compiler optimizations, cache effects, etc., will result

in inaccuracies, however, the final model will still provide

a rough estimate. The model’s accuracy is limited by the

number of data points used for the curve fitting algorithm.

This may become a problem for a language component that

permits measurements only with few data points, e.g., adding

or removing headers is limited by the maximum packet size.

4 RELATEDWORK
As more targets support P4 programmability, evaluating the

performance of these targets becomes more crucial to iden-

tify the strengths and limitations of these targets for a des-

ignated use case scenario. A benchmarking suite for P4 tar-

gets was first proposed by Dang et al. [5]. In [11] and [12]

benchmarks of different P4 devices identify the influential

P4 constructs on packet processing latency. Accordingly, a

model that relates the packet processing latency on different

P4 targets to the loaded P4 programs is derived. In [21], the

key properties of different P4 devices are investigated. For

software P4 switches, the packet processing rate is evaluated

and modeled, whereby the resource utilization is studied

for ASIC-based devices. The study in [10] models the im-

pact of flow scalability on processing latency and the data

plane’s reaction time to control plane commands. Helm et

al. [13] derive analytical models for the performance of P4

and SDN-based switches using network calculus. Lukács et

al. [15, 16] propose a probabilistic model of the program exe-

cution to calculate the expected cost for a given control flow

graph. Thereby, this cost is a result of the sum of the cost

of all possible execution paths times their respective execu-

tion probability. Through incremental refinement, modeling

more parts of the program and providing target-dependent

information, Lukács et al. plan to improve the accuracy of

the model as future work.

While prior work focuses on benchmarking and modeling

the performance of P4 programmable devices, in this work,

we focus on providing a methodology and a framework that

guarantee a reproducible and automated evaluation of this

class of devices.

5 CONCLUSION
We have presented our automated modeling framework that

analyzes data plane components in isolation using a model-

first approach. The framework focuses on deriving math-

ematically correct models, which can be used to discover

unexpected or wrong performance behavior. Our case study

has shown that this is accomplished for different target plat-

forms and metrics. While our modeling approach was devel-

oped to analyze data plane components, it can be applied for

general network measurement data.

We focus on a high degree of automation to achieve re-

producible results. Only a testbed- and a target-specific com-

ponent have to be contributed for a new testbed or P4 target.

These components of the framework have to implement the

respective generated specifications.

In the future, we want to combine the models of individ-

ual components to predict the performance of entire paths

through the data plane. This allows determining average- or

worst-case paths, enabling, e.g., worst-case evaluation of the

data plane program.

ACKNOWLEDGMENT
The Deutsche Forschungsgemeinschaft (DFG, German Re-

search Foundation) partially funded this project (Modanet,

grant no. 397973531, 316878574).Wewant to thank the anony-

mous reviewers and our shepherd Antonio Barbalace for

their valuable feedback.

A Framework for Reproducible Data Plane Performance Modeling ANCS ’21, December 13–16, 2021, Layfette, IN, USA

REFERENCES
[1] 2016. NFP-4000 Theory of Operation. Technical Report. Netronome

Systems Inc. https://www.netronome.com/static/app/img/products/

silicon-solutions/WP_NFP4000_TOO.pdf Last accessed: 2021-08-23.

[2] Karsten Ahnert and Markus Abel. 2007. Numerical differentiation

of experimental data: local versus global methods. Comput. Phys.
Commun. 177, 10 (2007), 764–774. https://doi.org/10.1016/j.cpc.2007.

03.009

[3] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,

Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George

Varghese, and David Walker. 2014. P4: Programming Protocol-

Independent Packet Processors. Computer Communication Review
44, 3 (2014), 87–95. https://doi.org/10.1145/2656877.2656890

[4] Tiberiu S. Chis. 2016. Performance Modelling with Adaptive Hidden
Markov Models and Discriminatory Processor Sharing Queues. Ph.D.

Dissertation. Imperial College London, UK. http://hdl.handle.net/

10044/1/39049

[5] Huynh Tu Dang, Han Wang, Theo Jepsen, Gordon J. Brebner,

Changhoon Kim, Jennifer Rexford, Robert Soulé, and Hakim Weath-

erspoon. 2017. Whippersnapper: A P4 Language Benchmark Suite.

In Proceedings of the Symposium on SDN Research, SOSR 2017, Santa
Clara, CA, USA, April 3-4, 2017. ACM, 95–101. https://doi.org/10.1145/

3050220.3050231

[6] DPDK. 2021. DPDK documentation—Hash Library. https://doc.dpdk.

org/guides/prog_guide/hash_lib.html Last accessed: 2021-09-14.

[7] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohl-

fart, and Georg Carle. 2015. MoonGen: A Scriptable High-Speed Packet

Generator. In Proceedings of the 2015 ACM Internet Measurement Con-
ference, IMC 2015, Tokyo, Japan, October 28-30, 2015, Kenjiro Cho, Ken-

suke Fukuda, Vivek S. Pai, and Neil Spring (Eds.). ACM, 275–287.

https://doi.org/10.1145/2815675.2815692

[8] Sebastian Gallenmüller, Dominik Scholz, Florian Wohlfart, Quirin

Scheitle, Paul Emmerich, and Georg Carle. 2018. High-performance

Packet Processing and Measurements (Invited Paper). In 10th Inter-
national Conference on Communication Systems & Networks, COM-
SNETS 2018, Bengaluru, India, January 3-7, 2018. IEEE, 1–8. https:

//doi.org/10.1109/COMSNETS.2018.8328173

[9] Sebastian Gallenmüller, Dominik Scholz, Henning Stubbe, and Georg

Carle. 2021. The pos Framework: A Methodology and Toolchain for

Reproducible Network Experiments. In CoNEXT ’21: The 17th Interna-
tional Conference on emerging Networking EXperiments and Technolo-
gies, Munich, Germany, December, 2021. ACM. https://doi.org/10.1145/

3485983.3494841

[10] Hasanin Harkous, Mu He, Michael Jarschel, Rastin Priest, Ehab Man-

sour, and Wolfgang Kellerer. 2021. Performance study of P4 pro-

grammable devices: Flow scalability and rule update responsiveness.

In IFIP Networking Conference (IFIP Networking). IEEE.
[11] Hasanin Harkous, Michael Jarschel, Mu He, Rastin Pries, and Wolf-

gang Kellerer. 2019. Towards Understanding the Performance of

P4 Programmable Hardware. In 2019 ACM/IEEE Symposium on Ar-
chitectures for Networking and Communications Systems, ANCS 2019,
Cambridge, United Kingdom, September 24-25, 2019. IEEE, 1–6. https:

//doi.org/10.1109/ANCS.2019.8901881

[12] Hasanin Harkous, Michael Jarschel, Mu He, Rastin Pries, andWolfgang

Kellerer. 2020. P8: P4 with predictable packet processing performance.

IEEE Transactions on Network and Service Management (2020). https:

//doi.org/10.1109/TNSM.2020.3030102

[13] Max Helm, Henning Stubbe, Dominik Scholz, Benedikt Jaeger, Se-

bastian Gallenmüller, Nemanja Deric, Endri Goshi, Hasanin Harkous,

Zikai Zhou, Wolfgang Kellerer, and Georg Carle. 2021. Application of

Network Calculus Models on Programmable Device Behavior. In 33rd
International Teletraffic Congress, ITC 2021, Avignon, France,.

[14] Intel 2021. Intel 64 and IA-32 Architectures Optimization Reference
Manual. Intel. https://software.intel.com/content/www/us/en/

develop/download/intel-64-and-ia-32-architectures-optimization-

reference-manual.html Last accessed: 2021-08-23.

[15] Dániel Lukács, Gergely Pongrácz, and Máté Tejfel. 2019. Performance

guarantees for P4 through cost analysis. In 2019 IEEE 15th International
Scientific Conference on Informatics. IEEE, 000305–000310.

[16] Dániel Lukács, Gergely Pongrácz, and Máté Tejfel. 2021. Control flow

based cost analysis for P4. Open Comput. Sci. 11, 1 (2021), 70–79.

https://doi.org/10.1515/comp-2020-0131

[17] Jorge J Moré. 1978. The Levenberg-Marquardt algorithm: implementa-

tion and theory. In Numerical analysis. Springer, 105–116.
[18] William H Press and Saul A Teukolsky. 1990. Savitzky-Golay smooth-

ing filters. Computers in Physics 4, 6 (1990), 669–672.
[19] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. 1998. A Metric

for Distributions with Applications to Image Databases. In Proceedings
of the Sixth International Conference on Computer Vision (ICCV-98),
Bombay, India, January 4-7, 1998. IEEE Computer Society, 59–66. https:

//doi.org/10.1109/ICCV.1998.710701

[20] Dominik Scholz. 2021. P4 Component Modeling Framework Reposi-

tory. https://github.com/p4-modeling Last accessed: 2021-11-26.

[21] Dominik Scholz, Andreas Oeldemann, Fabien Geyer, Sebastian Gal-

lenmüller, Henning Stubbe, Thomas Wild, Andreas Herkersdorf, and

Georg Carle. 2019. Cryptographic Hashing in P4 Data Planes. In 2019
ACM/IEEE Symposium on Architectures for Networking and Communi-
cations Systems, ANCS 2019, Cambridge, United Kingdom, September
24-25, 2019. IEEE, 1–6. https://doi.org/10.1109/ANCS.2019.8901886

[22] Dominik Scholz, Henning Stubbe, Sebastian Gallenmüller, and Georg

Carle. 2020. Key Properties of Programmable Data Plane Targets. In

32nd International Teletraffic Congress, ITC 2020, Osaka, Japan, Septem-
ber 22-24, 2020, Yuming Jiang, Hideyuki Shimonishi, and Kenji Leibnitz

(Eds.). IEEE, 114–122. https://doi.org/10.1109/ITC3249928.2020.00022

[23] Dominik Scholz, Henning Stubbe, Sebastian Gallenmüller, and Georg

Carle. 2020. Key Properties of Programmable Data Plane Targets. In

ITC. Osaka, Japan.
[24] The P4 Language Consortium. 2021. The P4 Language Specification,

Version 1.2.2. https://p4.org/specs/ Last accessed: 2021-12-03.

[25] The SciPy community. 2021. SciPy documentation—curve_fit.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.

curve_fit.html Last accessed: 2021-09-14.

[26] Péter Vörös, Dániel Horpácsi, Róbert Kitlei, Dániel Leskó, Máté Tejfel,

and Sándor Laki. 2018. T4P4S: A Target-independent Compiler for

Protocol-independent Packet Processors. In IEEE 19th International
Conference on High Performance Switching and Routing, HPSR 2018,
Bucharest, Romania, June 18-20, 2018. IEEE, 1–8. https://doi.org/10.

1109/HPSR.2018.8850752

https://www.netronome.com/static/app/img/products/silicon-solutions/WP_NFP4000_TOO.pdf
https://www.netronome.com/static/app/img/products/silicon-solutions/WP_NFP4000_TOO.pdf
https://doi.org/10.1016/j.cpc.2007.03.009
https://doi.org/10.1016/j.cpc.2007.03.009
https://doi.org/10.1145/2656877.2656890
http://hdl.handle.net/10044/1/39049
http://hdl.handle.net/10044/1/39049
https://doi.org/10.1145/3050220.3050231
https://doi.org/10.1145/3050220.3050231
https://doc.dpdk.org/guides/prog_guide/hash_lib.html
https://doc.dpdk.org/guides/prog_guide/hash_lib.html
https://doi.org/10.1145/2815675.2815692
https://doi.org/10.1109/COMSNETS.2018.8328173
https://doi.org/10.1109/COMSNETS.2018.8328173
https://doi.org/10.1145/3485983.3494841
https://doi.org/10.1145/3485983.3494841
https://doi.org/10.1109/ANCS.2019.8901881
https://doi.org/10.1109/ANCS.2019.8901881
https://doi.org/10.1109/TNSM.2020.3030102
https://doi.org/10.1109/TNSM.2020.3030102
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-optimization-reference-manual.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-optimization-reference-manual.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-optimization-reference-manual.html
https://doi.org/10.1515/comp-2020-0131
https://doi.org/10.1109/ICCV.1998.710701
https://doi.org/10.1109/ICCV.1998.710701
https://github.com/p4-modeling
https://doi.org/10.1109/ANCS.2019.8901886
https://doi.org/10.1109/ITC3249928.2020.00022
https://p4.org/specs/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
https://doi.org/10.1109/HPSR.2018.8850752
https://doi.org/10.1109/HPSR.2018.8850752

	Abstract
	1 Introduction
	2 Modeling Framework
	2.1 Concept
	2.2 Automated Model Derivation

	3 Use Case Evaluations
	4 Related Work
	5 Conclusion
	References

