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Move to New Programmable Data Planes

P4 Landscape

Wide range of target platforms

• software, e.g. DPDK

• FPGA

• SmartNIC

• ASIC

• “special” platforms, e.g. Raspberry Pi (P4Pi)

Steady stream of new applications

• see P4 workshop(s)

• many papers at this conference

• included at most major conferences

• data center, industrial, mobile, security, . . .

: How will program X perform on target Y?
: Will scaling match-action tables create a bottleneck?
: Need to understand performance properties of devices and P4 programs

D. Scholz et al. — A Framework for Reproducible Data Plane Performance Modeling 2



Outline

Concept

Automated Modeling Framework

Modeling Approach

Case Study

Conclusion

D. Scholz et al. — A Framework for Reproducible Data Plane Performance Modeling 3



Concept

Image from https://bit.ly/3mDpaE9

Based on approach by Dang et al.1

• analyze P4 language components individually

: reduces side-effects

: detect regressions

: compare to theoretic performance of underlying algorithm

Scaling components like . . .

• (de)parsed fields

• tables

• table entries

• match width

• . . .

1[1] H. T. Dang, H. Wang, T. Jepsen, et al., “Whippersnapper: A P4 language benchmark suite”, in Proceedings of the Symposium on SDN Research, SOSR

2017
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The Road Towards Reproducible Performance Modeling

Reproducibility requires automation of . . .

• . . . experiment execution

• . . . evaluation and modeling

Challenges because of broad P4 landscape

• different P4 target platforms : target-specific Device-under-Test (DuT) & metrics

• different P4 architectures : target-specific P4 program

• different testbed environments : testbed-specific setup

: Specification including experiment parameters
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Automated Modeling Framework
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Automated Modeling Framework
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Metrics

• packet rate

• latency

• target-specific metrics

• . . .

P4 program

• # parsed headers

• # tables

• # table entries

• . . .

Traffic

• packet size

• packet rate

• # headers

• . . .
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Automated Modeling Framework
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Minimum physical setup

• two connected nodes

• load generator: MoonGen2, auto-generated

• DuT: target-specific

Testbed-specific setup

• setup and experiment execution

• plain orchestrating service (pos)3

2[2] P. Emmerich, S. Gallenmüller, D. Raumer, et al., “Moongen: A scriptable high-speed packet generator”, in Proceedings of the 2015 ACM Internet

Measurement Conference, IMC 2015
3[3] S. Gallenmüller, D. Scholz, H. Stubbe, et al., “The pos Framework: A Methodology and Toolchain for Reproducible Network Experiments”, in CoNEXT ’21:

The 17th International Conference on emerging Networking EXperiments and Technologies, 2021
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Automated Modeling Framework
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External metrics

• DuT as black-box

• artifacts based on and gathered by MoonGen

• auto-generated : evaluated automatically

Internal metrics

• DuT as white-box

• target-specific artifacts

• requires one-time implementation

• uses same evaluation pipeline
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Modeling Approach

We want a model for the DuT.

We have measurement data g(x) = y for measurement domain x ∈ G.

Approach: curve fitting using non-linear least squares for X ⊆ G

Solve every function τ from set of possible functions

• polynomials of degree zero to five

• e.g. τ(x) = p∗1x
2 + p∗2x+ p∗3

• exponential functions

• logarithmic functions

• inverse of the above

for free parameters ~p∗ → ~p to match g(x).

How to select best fitting?
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Modeling Approach

Model Quality Metric

Symmetric Mean Absolute Percentage Error (sMAPE):

ηsMAPE =
∑
x∈X

|τ(x)− g(x)|
|g(x)|+ |τ(x)|

Problem: high-degree polynomials will always be preferred

• high-degree parameters close to zero

• smaller error than lower-degree polynomial

• mathematically correct

• rarely represent device behavior
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τ1 14.77241 659.44034 1.418%
τ2 |p0| < 10−5 -0.00106 1.196%

Two strategies to counteract this behavior
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Modeling Approach

Model Quality Metric

Forbid small parameters

• minimum free parameter value γ

• reflects limited measurement accuracy

Variation of Akaike information criterion (AIC)4

• idea: penalize complex functions

• assign weight ψ to each function: ψ = | ~p∗|
• define margin κ

• pair-wise compare fittings F1 and F2

• if difference in error is smaller than κ choose simpler function

p =

{
sign(p) · γ, if |p| < γ

p, otherwise
τchosen =


τ1, |η1 − η2| ≤ κ, ψ1 < ψ2

τ2, |η1 − η2| ≤ κ, ψ1 ≥ ψ2

τ1, η1 < η2

τ2, otherwise

: trade-off between accuracy and simplicity of model

4[4] T. S. Chis, “Performance Modelling with Adaptive Hidden Markov Models and Discriminatory Processor Sharing Queues”, Ph.D. dissertation, Imperial

College London, UK, 2016
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Modeling Approach

Resulting Model

One fitting F = (τ, ~p, α, β, η) to model the entire measurement domain X := {x ∈ G
∣∣ α ≤ x < β}.

But: complex systems cannot be modeled by a single function

: multiple partial fittings

F(x) =



Fn
1 (x), s0 ≤ x < s1

Fn
2 (x), s1 ≤ x < s2

...

Fn
n (x), sn−1 ≤ x ≤ sn

• n individual fittings

• n+ 1 splitting points ~s

• Fn
i = (τi, ~pi, si−1, si, ηi)

• combined error/rank is weighted sum of individual errors/ranks

: combined fitting F to model entire measurement domain
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Modeling Approach

Determining Splitting Points

For up to three partial fittings

• calculate all possible combinations

• O(|G|n)
• parallelized

• calculation: < 0.5 s per individual fitting

More than three partial fittings

• heuristic: detect performance impacting effects

: measurement data alters direction of slope

: second derivative of measurement data

• approximated using local piecewise derivates

• select l indices of absolute extrema
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Case Study

Specification

• DPDK-based t4p4s5 software target

• scaling # exact match-action table entries

• metric: CPU cycles per packet

Resulting four-split model

• three performance levels modeled

• one “transition” period modeled

• error: 0.730 %

: can be explained with model for caches misses6

• matches theoretic performance of underlying algo-
rithm
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5[5] P. Vörös, D. Horpácsi, R. Kitlei, et al., “T4P4S: A Target-independent Compiler for Protocol-independent Packet Processors”, in IEEE 19th International

Conference on High Performance Switching and Routing, HPSR 2018
6[6] D. Scholz, H. Stubbe, S. Gallenmüller, et al., “Key Properties of Programmable Data Plane Targets”, in Teletraffic Congress (ITC 32), 2020 32nd International
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Conclusion

Modeling of individual P4 language components

• reproducibility through automation

• portability through testbed-/target-specific components

: generated specification

• mathematical model-first approach based on curve fitting

• capable of modeling complex systems

Additional contributions in our paper

• further details on modeling approach

• modeling of recirculation feature on SmartNIC

• discussion of the framework’s generalization and customization
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