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Abstract—Network experiments using real hardware are typ-
ically expensive and time-consuming. Multiple solutions exist to
reduce costs, in particular network emulation, or simulation
of performance metrics. However, each solution impacts the
quality of experimental results, in particular concerning realism
and precision. We propose HVNet, a novel approach to create
virtualized topologies on a single host utilizing real networking
hardware. Relying on real hardware, our approach offers realis-
tic network behavior and high-precision measurements. HVNet
enables measurements on flexible network topologies avoiding the
drawbacks of the alternative solutions. We observed repeatable
results with a small error margin and a low impact of the
measurement setup on experimental results. Additionally, we
compare latency and jitter distributions of HVNet and Mininet
setups, observing an improvement factor of up to three orders
of magnitude.

Index Terms—Virtual machines, single-root io-virtualization,
testbed, emulation.

I. INTRODUCTION

Network experiments using real hardware carry significant
costs and restrictions for changing or creating arbitrary topolo-
gies. These costs can be mitigated by alternative approaches,
including network emulation, e.g., Mininet [1] or simulation
such as OMNet++ [2]. However, these alternatives have certain
limitations in terms of result quality, abstracting from certain
hardware details. For certain experiment types such as latency
measurements of software stacks, approaches are desirable
that come with few hardware requirements, while providing
realistic latency results representative for non-virtualized en-
vironments.

In this paper, we propose a Hardware-Assisted Virtual Net-
working (HVNet) framework running on commercial off-the-
shelf hardware to analyze and verify topologies and network
services based on a single physical host including two network
interface cards (NICs). We propose a way to analyze hardware-
level network behavior with minimal overhead through vir-
tualization for low-latency measurements and performance
benchmarking. Experiments on different network topologies
demonstrate the potential benefits of HVNet. The goals of our
work are threefold: we (i) demonstrate the impact of HVNet
and its virtualization features on the actual measurements,
(ii) investigate the repeatability of HVNet results, and (iii)
compare HVNet and Mininet measurements with a focus on
latency measurements.

The rest of the paper is structured as follows: Section II
presents background information and related work. Details

of the proposed HVNet framework are shown in Section III.
HVNet and its limitations are analyzed and evaluated in Sec-
tion IV. Information on accessing measurement data is pre-
sented in Section V with a conclusion in Section VI.

II. BACKGROUND AND RELATED WORK

This section provides background information as well as
related work on network topology emulation, simulation, and
virtualization for stable and reliable latency analysis.

A. Network Simulation and Emulation

Network simulation and emulation software offer flexibil-
ity, scalability, and re-usability, thereby facilitating a wide
range of experiments. However, none of the currently popular
frameworks for simulation and emulation, e.g., OMNet++,
or Mininet [2]–[5], are designed for realism and precision
concerning packet processing times of the investigated network
elements.

OMNet++ is a discrete event simulation framework [2] that
allows, among other things, to simulate networks and derive
metrics from the simulation, such as a prediction of latency
or flow behavior. It does not support the execution of Linux
internal network functions directly in real-time on the different
nodes but allows the integration of external applications into
the simulation using discrete events to simulate time and
steps [6]. This approach allows the computation and execution
of simulations with complex calculations without optimizing
the system’s performance.

Mininet is a network emulator suitable for addressing
various performance issues. It uses Linux on-board features
and can use standard network applications that send real
traffic over emulated networks [1]. It uses container-based
emulation with process spaces and network namespaces to
improve network measurements [1], [7], [8]. Another attempt
to improve network emulation is Containernet [9], a Mininet
extension for experiments that include Mininet and Docker
containers.

B. Network Virtualization

To create results that are highly similar to bare-metal
networks, the impact of virtualization on measurement results
needs to be avoided or reduced as much as possible. Several
measures are available for isolating different virtual machines
(VMs) to create a more predictable and stable behavior,
such as pinning VMs to specific cores or partitioning the



shared CPU cache across different VMs. Several tuning guides
and publications are available that document and evaluate
such optimizations and provide a set of measures to isolate
the different VMs, to improve network and system latency
properties [10]–[13].

We aim to create realistic network experiments with mul-
tiple emulated nodes. Therefore, we need to share network
resources across VMs as the number of NICs and PCIe-slots is
typically lower than the number of possible VMs. Traditional
techniques such as a Linux bridge, or transition techniques
such as network address translation, require the hypervisor
to handle packet processing and the distribution of packets
to VMs, thereby affecting performance [14]. Other options
to interconnect VMs include emulated connections such as
virtual Ethernet pairs in Mininet [1], which requires the host
OS kernel to handle packet processing, affecting performance.

Huang et al. [15] suggest using features of widely-
deployed NICs and CPUs such as single-root IO-Virtualization
(SR-IOV) to scale the use of NICs to various VMs without
using the host OS or hypervisor to handle packet processing
tasks. As Dong et al. [16] describe, SR-IOV in combination
with an I/O Memory Management Unit (IOMMU) is able to
share an IO device between multiple VMs using hardware
features. Hardware and driver are used to split an IO-device
into multiple virtual functions (VFs) and a physical func-
tion (PF), directly available as individual PCIe devices. The
IOMMU manages the address space for direct memory access
between system and main memory. The Memory Management
Unit (MMU) is still used to map physical addresses to virtual
addresses. Not all parts are shared, such that, e.g., device-wide
settings, are handled inside the PF. Using SR-IOV, networking
in the VMs can be handled independently of the VM host
system [16].

Several works analyzed the performance of SR-IOV in com-
parison to native and sharing techniques without SR-IOV, such
as [15], [17], [18]. SR-IOV was investigated in the context
of Ethernet and InfiniBand [18]–[20]. Latency analyses by
Bauer et al. [21] and Lockwood et al. [18] show that SR-IOV
introduces latency overhead between native and conventional
virtual setups. Using SR-IOV in combination with low-latency
optimization techniques significantly improves the network
latency, as Gallenmüller et al. [22] have shown focusing on
worst-case analysis of the latencies towards the 5G ultra-
reliable and low-latency communication (URLLC) profile.
They measured a 1 µs increase for tail latencies in an SR-IOV-
driven setup.

Most analyses focus on a single VM rather than the impact
on others, as in [12], [12], [15], [17]. This work aims to use
a combination of network virtualization, multiple topologies,
and low-latency optimizations to measure flexible topologies.

III. HARDWARE-ASSISTED VIRTUAL NETWORKING

This section explains details of HVNet, our hardware-
assisted virtual networking framework for latency measure-
ments with high precision. It uses VMs and SR-IOV on a
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Fig. 1: Example HVNet setup including VLAN-IDs

single physical host and provides stable and reliable end-to-
end latency measurements, supported by hardware acceleration
and software optimization settings.

A. Hardware Requirements and Architecture

Two NICs are interconnected using a wired connection.
With SR-IOV, the physical link is logically separated into
multiple virtual links [16]. As HVNet supports networks on
Layer 2 and higher, we use virtual LAN (VLAN)-IDs to
determine the target of a packet, handled by the respective
VF. We use NICs, such as the Intel X700 series, that support
unicast full promiscuous mode for the VFs. Figure 1 shows an
example setup of HVNet using VMs 1–3 and two physically
wired NICs A and B. VM 1 and VM 3 are connected to each
other via VLAN-ID 401, with VM 1 attached to a VF on
NIC A and VM 3 to a VF on NIC B. With the respective
VFs being distributed to different NICs, the packets have to
use the physical link. This distribution further ensures that
the packets are not forwarded directly on the NICs without
serialization, thereby skipping processing steps that happen
on non-virtualized or emulated networks. The links between
the other VMs are distributed in a similar way.

HVNet uses an IOMMU and an SR-IOV-capable CPU to
enable direct passthrough from VFs to VM. We choose Kernel
Virtual Machine (KVM) as hypervisor and Debian Buster as
OS on both VMs and VM host. The overall system is managed
using the testbed controller pos [23], which allows repeatable
and reproducible measurements, to integrate the optimizations
outlined in the following section.

B. Latency Optimization Techniques

We want to measure the behavior of HVNet in a chal-
lenging environment. Therefore, we opted for a measurement
investigating tail-latency behavior. In such an environment,
tail-latency differences between a bare-metal setup and a
naively virtualized setup can reach up to several hundred
microseconds [24].

To create measurements that behave more similar to the
bare-metal setup, we extend the optimizations described in
previous work [22]. Our novel setup involves several VMs
and replaces DPDK-based with Kernel-based networking in
comparison to Gallenmüller et al. [22]. On the VMs and VM-
host, different optimization techniques are used. Using the
Linux network stack requires the Kernel to run on all VM-
cores.
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Fig. 2: Measurement setup

1) Virtual Machine Host: To reduce wake-up times for
idling cores, energy-saving mechanisms are disabled. Using
nosmt, simultaneous-multi-threading is disabled, preventing
unwanted CPU resource sharing between different VMs. Fur-
thermore, nohz full and isolcpus are used, avoiding reschedul-
ing and timer interrupts, thereby redirecting tasks and read-
copy-update (RCU) callbacks to Core 0 used for the VM-host
Linux Kernel and hypervisor processing. This feature avoids
interrupt processing of the host OS on the CPU cores dedicated
to VMs. Using these techniques, the expensive VM exits are
reduced as much as possible as described in [22].

2) Virtual Machine: To use the in-built forwarding mecha-
nism of the Linux Kernel, interrupts are necessary on the VMs
such that we use a Debian Buster with rt preempt full for real-
time communication. Additionally, power saving mechanisms
are disabled where possible to avoid latency caused by waking
up CPU cores.

IV. EVALUATION

To demonstrate the potential of HVNet, we performed
measurements using HVNet on several randomly generated
topologies. We evaluated HVNet in comparison to Mininet on
one example network.

A. Setup

To compare the measurements precisely and accurately, we
use a measurement setup relying on hardware timestamping.
The Device under Test (DuT) running HVNet is measured
using the load generator (LoadGen), and the timestamping
machine (Timestamper), both running the packet generator
MoonGen [25]. Figure 2 presents the measurement setup.

Each VM is attached to the ingress and the egress port
of the LoadGen via one VF, respectively. This configuration
is required to allow individual source and destination hosts
in the topology on a per-flow basis. Using MAC addresses,
the source node is identified. The setup is performed using a
configuration file, describing topology and flows.

The LoadGen is the sending/receiving node for traffic of all
flows. The sending order of packets between flows is random
to reduce the influence of packet order in the experiment. In
addition, the Timestamper is connected to the outgoing/in-
coming physical link of the LoadGen with passive optical
terminal access points (TAPs) and monitors the traffic while
timestamping each packet with a resolution of 12.5 ns [26].
The timestamped packets measure the latency by calculating
the difference between sending and receiving timestamp of
the same packet equipped with a unique identifier ID in

combination with the destination port and source IP address
of the packet.

The DuT is equipped with an AMD EPYC 7551P 32-Core
Processor with 128 GB RAM as well as 2× Intel X710 10GbE
SFP+ NICs, with a loop connected between both cards and the
other ports connected to the LoadGen (cf. Figure 2). 15 VMs
and 64 links can be used, as a result of the available memory
and NIC hardware resources [27]. The LoadGen is equipped
with an Intel Xeon Silver 4116 CPU, 192 GB RAM and a
dual-port Intel Corporation 82599ES 10-Gigabit SFP+ NIC.
The Timestamper features an Intel Xeon CPU D-1537, 32 GB
RAM and a dual-port Intel X552 10 GbE SFP+ NICs capable
of timestamping all received packets.

All topology measurements were performed with a packet
size of 363 B without Ethernet framing for 3 min. Each mea-
surement was repeated three times. UDP traffic was used to
avoid the impact of congestion and flow control on measure-
ment results. Using the default VF settings, the maximum
throughput is the NIC’s line rate divided by the number of
generated links on the NIC. The maximum number of links
corresponds to the maximum supported VFs on the X710
NIC. Artificially adding loss or latency to experiments is not
considered in this work.

The routing policy database management tool ip-rule is
used to enable multipath routing based on the UDP destination
port used to identify certain flows, matching them to the
correct routing table. To forward the packet correctly, we
define a routing table for each interface on the node using the
default gateway towards the interface of the connected VM.

B. HVNet in Isolation

We analyzed a total of 100 networks with three measure-
ments each. To evaluate the results derived using HVNet, a
randomly-selected example topology (nw) is used as shown in
Figure 3. Figure 4 shows the 5000 worst-case latency events
over time for all three repetitions.

All of these worst-case latency events are in a range be-
tween 0.22 ms and 0.41 ms. For performance reasons, we have
generated a random packet-order table with a limited number
of entries for each repetition. The worst-case events follow
a stable distribution over time, showing repeated patterns in
the interval needed to traverse the packet-order table once,
which happens every 2.94 s with the table size used in nw.
As shown, the behavior of the measurements does not differ
significantly, such that a single measurement run is used for
the detailed flow-level analysis.

In nw, all flows have per-flow fixed rates between 1 Mbit/s
and 294 Mbit/s. Furthermore, they all have flow lengths be-
tween two and five hops. To analyze the worst-case events
in detail, high dynamic range (HDR)-histograms are used,
highlighting tail latencies [28].

In Figure 5a, the 2-hop flows with a sending rate of
1 Mbit/s are shown. These flows behave similarly at worst-
case latencies. The flows traversing the same logical link, such
as f1 and f21, only differ slightly. The other flows are sent
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Fig. 3: Network topology of nw including flow routing
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Fig. 4: 5000 worst-case events over time for nw using HVNet

over different logical links, with f15 and f18 using similarly
loaded links.

The results for 3-hop flows are shown in Figure 5b. A
difference to note is that two of the flows are sent with an
identical rate, while the third flow has a significantly higher
rate. Flow f31 has a rate of 94 Mbit/s compared to 1 Mbit/s
each for the other two flows. The higher rate results in an
increase of the latency in the higher percentiles. Except for this
slightly higher worst-case latency, the behavior is in a similar
range as for the other flows. The shown results represent
consistent behavior based on topology and flow parameters.

In total, four different flow lengths are used in nw. We
selected one for each flow length based on a rate of 1 Mbit/s.
As Figure 5c shows, the tail latency is increasing for flows with
a higher flow length. The latencies for f23 and f4 diverge
from each other only in the higher percentile ranges. Flow
f23 traverses connections with few other flows, whereas f4
traverses connections used by most other flows in nw.

Based on this data and the evaluations for the selected
flows, we conclude that the measurements show the expected
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Fig. 5: HDR-histogram of flows based on hops of nw

behavior. Specifically, influences of flow lengths, flow rates,
link utilizations, and number of flows on a link have the
expected impact.

C. HVNet vs. Mininet

To evaluate the improvement of HVNet, we compare it to
an existing network emulation tool, Mininet [1]. To keep the
measurements comparable, the same measurement setup was
used with Mininet instead of HVNet running on the DuT. The
evaluation uses the same example network, nw.

We chose to compare our results with Mininet, a network
emulation framework, omitting OMNet++ and Containernet.
OMNet++ does not allow the use of the same scripts for setting
the network behavior on the nodes, and it is not possible to
integrate it directly into the presented measurement setup to
compare the results directly. For these reasons, we chose to
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compare it to Mininet as a network emulation tool rather than a
discrete event emulation like OMNet++. In addition, the scope
of the simulations is different since it is not directly possible to
perform precise measurements of actual network behavior with
the original software without modifying the software itself.
Moreover, we decided to focus on Mininet beacause of its
status as a commonly used tool. Comparison to Containernet
are left for future work.

Figure 6 shows the 5000 worst-case events for nw with
Mininet. For the Mininet measurements, most worst-case
latencies are between 190 ms and 600 ms, rare outliers reach
1800 ms, showing a heterogeneous worst-case behavior.

Furthermore, we used selected flows to show the different
delay behavior in comparison between Mininet and HVNet in
Figure 7. Up to the 50th percentile, the latency measured in the
Mininet scenario is lower than HVNet, which was expected
due to the lightweight virtualization used. Up to the 90th

percentile, the Mininet delays increase significantly compared
to the measurements for HVNet, showing that the Mininet
measurements are unstable regarding tail latencies. These
results show significant precision improvements of HVNet.

Table I compares the maximum delay and the jitter between
Mininet and HVNet. We analyzed the latency jitter for packets
of the same flow. The tail latency improves by up to 1063 x;
the tail jitter decreases by 1732 x. The improvement in terms of
jitter and delay is increasing with an increasing flow length. As
a result of the comparison, the quality of the results of HVNet
show major improvements in stability and absolute values.

Delay [µs] Jitter [µs]
Hops Mininet HVNet Improv. Mininet HVNet Improv.

2 125 536 203 618 x 124 154 164 757 x
3 241 471 282 856 x 232 714 207 1124 x
4 290 610 330 881 x 274 090 211 1299 x
5 388 123 365 1063 x 388 068 224 1732 x

TABLE I: Comparison of worst-case delay and jitter of
Mininet and HVNet
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Fig. 8: HDR-histogram over all jitter values of all 100 topolo-
gies

D. Further Topologies

In addition to the example topology of nw, we analyzed
other randomly generated networks. To further analyze the
topologies, we show in Figure 8 the HDR-histogram of jitter of
all topologies, showing jitter below 1 ms roughly up to the 99.9
percentile. We looked at the overall jitter in the measurements
to ensure that the presented improvements for nw can be
further shown in multiple random topologies analyzed in
HVNet. This result shows that HVNet is capable of flexible
measurements and experiments using a hardware-based virtual
network emulation. We investigated topologies with up to 15
hosts and a maximum of 14 hops per flow.

E. Limitations

HVNet and the used measurement setup have certain limi-
tations.

1) HVNet: Compared to Mininet, the per-node resource
requirements of HVNet are higher. Topology sizes are limited
based on the available hardware resources. The minimum
requirement is 1 core and 8 GB memory per VM and an addi-
tional core for the Linux Kernel and hypervisor. The number of
connections is limited to the maximum VFs supported by the
NICs. Measurements rarely show a high-latency spike for all
flows at exactly the same time. These spikes can be correlated
to a Translation Lookaside Buffer (TLB) shootdown happening
rarely causing VM exits on all cores simultaneously [29].

2) Measurement Setup: Since only one source of flows
is used, it is impossible to analyze flows that send packets
simultaneously on different hosts using the presented setup.

The measurement setup incurs additional overhead outside
of the DuT, since it has an additional connection to and from
the host for the start and end host requiring initial packet
processing not included in the topology.



V. MEASUREMENT DATA

We provide the latency data, configuration files, detailed
figures, and scripts to recreate the diagrams to allow for further
analysis. The data can be found at [30].

VI. CONCLUSION

Low-level network topology measurements with fewer hard-
ware nodes and flexibility are important to scale measurements
and test capabilities. In this paper, we have demonstrated
an architecture consisting of a single host featuring two
interconnected NICs. This setup allows analyzing different
topologies on a single device without the need for rewiring,
while leveraging hardware capabilities and sending packets
over a real physical link. Compared to Mininet [1], a network
emulator, our solution, HVNet, demonstrated stable, reliable
latencies closely resembling the behavior of a real network.

Several randomly generated topologies were analyzed and
evaluated. HVNet represents a robust solution for analyzing
the latency of network topologies in a flexible manner that
provides stable, reliable, and low latencies on VMs. Future
enhancements are possible with the additional capabilities
of modern 100 Gbit/s NICs, such as improved hardware
timestamps of the NIC, or with extending HVNet towards
supporting multiple physical hosts as underlying basis.
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