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Abstract—The Precision Time Protocol (PTP) synchronizes
clocks in a network with high precision. The protocol finds use
in many areas, such as smart manufacturing, intra-vehicular
networks, and critical infrastructure. It becomes clear that
striving for security is an important goal. If an attacker succeeds
in disturbing the network synchronization, the impact can result
in a cascading set of failures. Unfortunately, neither the previous
two IEEE standards for PTP, nor the popular implementation
linuxptp, feature or implement sufficient security options.

This work focuses on implementing the security extensions
for PTP based on the latest PTP standard IEEE 1588-2019 to
minimize the threat of attacks and their possible impact. We
provide a detailed analysis on PTP synchronicity and security.
Based on that, we design and implement software-only tooling
to quantify the PTP performance using commercial off-the-shelf
hardware and open-source solutions on a linear topology with
four to nine hops.

The measurements compare the End-to-End (E2E) and Peer-
to-Peer (P2P) delay calculation modes and the usage of Trans-
parent Clocks (TC) in parts of the network. Both E2E and P2P
show visible degradation of clock synchronization with each hop
and standard deviations of 118.6 to 571 ns. The TCs perform
better, demonstrating a standard deviation between 90 to 140 ns
on four to nine hops. We evaluate different logSyncInterval
values corresponding to different PTP profiles and do not observe
a major impact on the clock behavior caused by the extensions.
The measurement precision of the system is within ±40 ns.

Our evaluation of the newly implemented security extensions
to linuxptp shows that the security extensions do not have a
significant impact on the clock synchronization and our approach
is a feasible addition to PTP. Besides, our contributions can
aid network managers in assessing their PTP synchronicity
systematically.

Index Terms—PTP, security, clocks, synchronicity, TSN

I. INTRODUCTION

The Precision Time Protocol (PTP) is standardized in the
IEEE 1588 standard [1], [2] and allows for the synchronization
of clocks in a network with high accuracies. With hardware
timestamping, where timestamps are generated by the Network
interface card (NIC) to bypass any non-deterministic delays
introduced by the networking stack [2], accuracies in the
nanosecond range are possible. PTP is employed in many
areas, including power grids [3], [4], finance applications [5],
and Time Sensitive Networking (TSN) [6].

The high accuracy requirements result in a high susceptibil-
ity to instabilities and deviations in the PTP network, requiring
protection mechanisms against attackers deliberately trying to
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harm the synchronization stability. Successful attacks have the
potential to cause catastrophic damages due to PTP being
employed in critical infrastructure [4]. On top of that, the topic
of security has not been a high priority in the past. The first
two PTP standard versions only contain security advice of
limited practicality, if any [7]–[9].

To implement security extensions, we use and analyze the
popular PTP implementation linuxptp, which reveals only
basic measures to secure the synchronization stability. As
a part of the contributions, we provide an analysis of the
security recommendations for PTP described in Annex P of
PTPv2.1 [2]. As a result, we determine what extensions should
be implemented and what new security guarantees they can
provide. The selected solutions ensure message integrity and
authenticity and also mitigate replay attacks of PTP messages.
A key aspect of deploying PTP into a network is the ability
of assessing the precision it can offer. For that, we design a
toolchain using open-source solutions and commercial off-the-
shelf (COTS) Hardware (HW) that extends the functionality
of the EnGINE framework [6]. We devise a set of experiments
that assess the baseline performance of PTP for Peer-to-
Peer (P2P), End-to-End (E2E), and the use of Transparent
Clocks (TC). The default behavior is then compared with
scenarios that introduce PTP security extensions to provide
insights about their applicability. Besides that, we evaluate
logSyncInterval values corresponding to various PTP
profiles. Network managers can easily reproduce the approach
to assess the clock precision in their network. We provide a
link to the repository hosting our modified linuxptp version
and data from individual experiments.

The paper follows a standard structure and the key contri-
butions of the paper can be summarized as follows:

KC1 Analysis of the suggested PTP security extensions and
their implementation to linuxptp

KC2 Design and development of a measurement toolchain to
evaluate PTP clock synchronization

KC3 Evaluation of the impact of security extensions on PTP
clock synchronization

II. BACKGROUND

This section provides fundamental knowledge about PTP
and Hash-based Message Authentication Codes (HMAC).



A. PTP
From the three versions of the IEEE 1588 standard, we

focus on PTPv2.1, which was released in 2019 and remains
compatible with PTPv2. PTPv2.1 is bundled with a new
security Annex P [2]. The security measures suggested by
Annex P are split to four Prongs (A, B, C, D), each offering
distinct proposals.

Prong A focuses on the protocol messages and how to
ensure their integrity through symmetric cryptography, as well
as authenticating PTP nodes and mitigating the threat of replay
attacks. The first proposal also mentions the need for key
management to ensure private key protection by providing the
necessary parameters. Prong B describes how the existing se-
curity options MACSec [10] and IPSec [11] may be employed
in a PTP network. Prong C focuses on the resilience of the
PTP network by adding redundant Grandmaster Clocks (GMs)
and optimizing the topology layout. Last, Prong D proposes
how a monitoring solution could be designed and which PTP
behavior metrics, such as the link delay and jumps in the
master offsets, can help with attack detection.

The PTP standard defines three types of clock devices -
Ordinary Clock (OC), Boundary Clock (BC), and TC. The
OC is the simplest PTP device. It has one port that can be in
either master or slave state. A BC has two or more ports, where
all but one are in the master state, and is used to link parts of
a PTP topology. The remaining port is in the slave state and
is used to synchronize the internal clock of the BC, which
is in turn propagated via the master ports. The BC also acts
as full-featured PTP node and its synchronized internal clock
can be used by applications that need it. A TC, unlike the BC,
does not synchronize itself to the time reference. Instead, it
forwards the PTP messages and adjusts a time correction field
in the PTP message according to the residence time in the
TC. Based on [12], using TCs improves the synchronization
accuracy over a purely BCs based network.

The GM has a key role in PTP. Any OC or BC may become
a GM. The GM is the timing baseline for the PTP network to
which other clocks are synchronized. To establish the topology,
a GM has to be chosen to dictate the timing baseline. To
establish the topology, the GM is configured automatically via
the Best Master Clock Algorithm (BMCA), which compares
various quality parameters that the clocks self-report.

The IEEE 802.1AS standard, which branches off of IEEE
1588, is specifically tailored to networks for time-sensitive
applications [13]. We use the linuxptp project for our
experiments, which supports various configuration options for
this variant and provides various PTP profiles, e.g., the gPTP
profile.

1) Message format: For the security extension of
linuxptp, we need to add new fields that enhance the PTP
protocol messages. First, we introduce the message format
used in PTP. A PTP packet is prefixed with the header, which
transports meta-information about the protocol message such
as messageLength, messageType header fields, and the
sequenceID. Besides, we use different PTP domains, which
allows the PTP traffic to be divided into distinct groups and

is signified by the domainNumber field in the header. The
body content depends on the type of protocol message to be
transmitted. Each message may be suffixed with Type-Length-
Value (TLV) appendices. A TLV always begins with the type
and length of the data it carries and and is used to transport
additional information in protocol messages.

The clock synchronization process relies on PTP nodes
exchanging timing information that is used to compute the
clock offset and the message path delay between the nodes.
Furthermore, one may choose between two distinct delay
calculation modes, E2E or P2P.

For both E2E and P2P, four timestamps are collected during
the synchronization process in Sync, Follow-up, Delay Req.
and Delay Resp. messages. For E2E, the slave calculates the
path delay and offset to accurately synchronize itself. In case
of the P2P mode, each device observes the delay between its
neighbors. The PTP ports on different nodes enter a peer-to-
peer relationship and periodically exchange Pdelay messages
to determine the delay between each other. For both modes,
a symmetric delay between master and slave is assumed,
otherwise the clock synchronization accuracy suffers [4].

2) linuxptp: We use the functionality of linuxptp.
It comes with multiple binaries, each meant for a different
purpose. First, the ptp4l program implements a PTP clock
and ensures communication among the individual clocks in
the networks. Second, the phc2sys tool enables the PTP
synchronization in applications by synchronizing multiple
clocks, such as a physical PTP clock to the system clock.
Lastly, pmc is used for the PTP management.

3) HMAC: To ensure message integrity and authenticity,
we rely on HMAC. It utilizes cryptographic hash functions in
a construction that also takes a secret cryptographic key into
consideration.1 Altering the message without possessing the
secret key is not possible without it being detectable, ensuring
message integrity. A receiver uses an established secret key
for message verification. This implies that a message with a
valid signature also authenticates the sender as a trusted party.

The main building block is a cryptographically secure hash
function, from which the HMAC scheme inherits its strength.
Secure hash functions offer collision, pre-image, and second
pre-image resistance [15]. Besides being able to re-use any
existing hash function, HMAC constructions also keep any
added overhead low as not to skew the computational cost of
the originally used function [16].

III. RELATED WORK

In this section, we introduce select related work focusing on
PTP synchronization accuracy measurements and PTP security
extensions.

A. Measuring PTP Synchronization Accuracy

[17] shows six methods for synchronization accuracy
measurements of PTP, ranging from hardware approaches to
analytical calculations. Each method is studied with a focus

1Some hash functions also support a keyed mode without demanding this
construction, such as Blake2 [14] presented later.



on feasibility of automated deployment. The authors find the
currently available methods insufficient for their goals. Based
on the previous insights, two improved variants are presented,
making use of data available in the individual PTP nodes.

To aid in the selection of PTP equipment, a systemic
testing approach is presented in [3]. Specifically, the authors
demonstrate how the synchronization accuracy, as well as the
influences of TCs and BCs can be measured for different
combinations of PTP HW, mainly COTS. The methodology
is targeted at PTP infrastructure maintainers to aid finding
suitable equipment fitting their needs.

B. PTP Security Extensions

Another significant part of our contribution is to build secu-
rity extensions for linuxptp. Therefore, we assess various
related work that focuses on PTP security.

1) Prong A Security Extensions: [18] follows the Prong
A extensions closely, but presents only few implementation
details for their work on top of linuxptp, e.g., no details
on the HMACs used. The results focus on a three-node
topology with two OCs connected by a TC. Clock frequency
adjustments are measured on the slave clock and compared
against measurements with and without a security extension.
They also evaluate the increase in residence time for Sync
messages and response time for P2P-type messages.

Similarly, [9] extends the PTPd implementation by another
Prong A security extension. Their evaluation is based on
three criteria: feasibility, functionality, and performance. For
feasibility, the description of Prong A in the PTPv2.1 standard
is assessed for its completeness. Functionality is concerned
with the functional aspects of the actual implementation.
Lastly, the performance is evaluated with regard to the increase
in message residence time, as shown in [18].

Another approach and solution to the Prong A extension is
presented in [8]. It is based on a high-level description of the
four Prongs in an early draft of Annex P, during which was not
clear separation of individual Prongs. The authors also feature
an in-depth analysis of PTP security, which is a good supple-
mentation for our security analysis. The performance of the
implementation for PTPd is evaluated based on the processing
overhead introduced by the cryptographic measures.

2) Other Security Extensions: The detection mechanisms
presented in [4], [19], [20] take a more passive approach to
security. The authors propose the addition of watchdog nodes
that observe the PTP traffic behavior and detect abnormalities.
Once detected, the system can fall back to a secure state where
an attacker has less influence until the incident is handled. [21]
focuses on the management of PTP keys, which is not covered
within the standard itself. We also want to point out the survey
paper [22], providing an overview of other PTP related work.

IV. ANALYSIS & DESIGN

In comparison to other related work, we analyze the se-
curity extensions of Prong A in more detail, and scale the
experiments over more complex topologies using the newly
designed toolchain. Based on the analysis of the extensions

for PTP, we design and implement the selected extensions
for linuxptp to assess the impact on the overall system
synchronicity.

A. PTP Synchronicity

To evaluate the impact of the security extensions on syn-
chronization accuracy, we need to design a suitable toolchain.
The toolchain allows an assessment of the PTP baseline
performance and its comparison to deployments with security
extensions. There is no single definition for the synchroniza-
tion precision requirement of a PTP system [2], as it highly
depends on the deployments and their corresponding PTP
profiles. In applications like smart power grids, a synchronicity
of at least 1 µs [4] is required.

The toolchain should allow for the evaluation of require-
ments for a given use-case. For that, we need to quantify the
concept of synchronicity, enabling us to satisfy the demands
and that the extensions we build are a viable addition to
linuxptp. Multiple approaches exist to determine the syn-
chronicity, such as using an oscilloscope [17], simulation [17],
or in software with real PTP networks.

We build our solution using COTS HW that supports
802.1AS and open-source solutions for measurements in soft-
ware. We integrate the measurement setup in the EnGINE
framework [6], which allows for evaluation at scale, repro-
ducible experiment execution, and a high level of automation.

B. PTP Security

Next, based on RFC 7384, we define security requirements
for PTP. Each of the requirements has a different level of
priority for PTP [23]. Table I presents the security require-
ments, grouped based on their relation to requirements and
attack protections [23]. Besides, it shows what attacks these
requirements mitigate from an experimental perspective to
understand what advantages it brings to the network managers.
Note that we omit MAY and most SHOULD requirements.

TABLE I: Security requirements classification [23]. ”-” means
that the requirement does not directly correlate with an attack

Req. # and Requirement Protects against

MUST
R1: Authentication & authorization Spoofing, Rogue master attack
R2: Integrity protection Manipulation
R3: Spoofing prevention Spoofing
R4: Replay protection Replay attack
R5: Key freshness Replay attack
R6: No performance degradation -

R7: Delay and interception protection Interception and removal,
Packet delay manipulation

R8: Secure Mode -

SHOULD
R9: Time protocol DoS protection Time protocol DoS attacks

As outlined, we focus on Prong A, which enhances the
PTP stack by employing symmetric cryptography to ensure
message integrity and authenticity along with replay attack
protection. Therefore, we discuss the design decisions to
be made before extending PTP with HMAC and additional
implementation aspects.



Prong A defines the so-called AUTHENTICATION TLV,
which may be attached to any message that is to be protected.
It contains the HMAC value of the given message content. The
Prong requires the usage of two security databases that store
and distribute the parameters for secure message handling.

The PTP network can work in two distinct modes of
message processing - immediate and delayed processing. First,
the immediate processing of PTP messages checks for a
valid AUTHENTICATION TLV upon message arrival. If the
check fails, the message is dropped. This requires all security
parameters to be known up-front.

Second, the delayed processing mode allows for delayed
verification of PTP messages. It is beneficial to scenarios
where not all cryptographic parameters are known at mes-
sage reception. In this work, we implement the immediate
processing, for which a fast HMAC with low computational
overhead is crucial. Such an approach also ensures satisfying
R6. The various PTP profiles, among other parameters, define
how often the synchronization procedure happens based on
the logSyncInterval option. For the gPTP profile, the
synchronization interval is set to 0.125 s [24]. The overhead
should not interfere with the performance of even lower
intervals.

The performance can be affected by larger message sizes
and processing delays. When comparing HMACs, we compare
the message sizes using packet captures of linuxptp. The
results show message sizes ranging from 44 to 64B, depending
on the profile and settings used, and can possibly be greater
with additional TLVs attached.

C. HMAC Selection

We select three HMACs algorithms for further evaluation,
as each of them shows a different base performance. Using the
baseline performance results, we can evaluate the sensitivity
of our measurement setup. As there are many more HMAC
algorithms that behave differently, we introduce dummy delays
which stall message processing by 100 µs. Besides, it provides
an understanding of the performance impact of the computa-
tional overhead on the individual nodes.

1) HMAC-SHA-512-256 is based on the SHA-512 algorithm,
yields hashes that are truncated from 512 to 256 bit,
and takes approximately 13.1 CPU cycles per a 1024B
message [25]. It is widely-used and implemented in the
libsodium [26] cryptographic library.

2) Blake2 is a hash that offers two variants, namely Blake2b
and Blake2s, optimized for 64 or below 64 bit architectures,
respectively [27]. We use the Blake2b variant. This hashing
method promises to offer significantly better performance
than the HMAC-SHA-512-256 [27].

3) Blake3 improves on its predecessor Blake2 by offering a
measurable increase in performance. For a message size of
128B, hashing with Blake3 uses approximately 3.1 CPU
cycles per byte (Blake2b: approximately 3.6) [28]. For
larger message sizes, the performance advantage of Blake3
increases significantly.

D. Security Databases & AUTHENTICATION TLV
Prong A requires the usage of the Security Policy Database

(SPD) and Security Association Database (SAD), which store
and distribute the parameters surrounding the secure message
content. The standard only dictates the general PTP client
interaction with the databases.

The SPD contains the information needed to evaluate if a
message is to be secured. It is queried by passing so-called
policy-limiting fields, i.e., parameters that allow narrowing
down the selection as much as possible. All fields are part
of the PTP message header and allow for fine-grained policy
control. The actual policy values stay static over the lifetime of
the PTP instance. Part of the results are the Security Parameter
Pointers (SPPs) that point into the SAD.

The SAD is responsible for storing information about Se-
curity Associations (SA), i.e., the set of parameters that are
needed to perform the securing of messages. Using the SPPs,
the SAD can be queried to return the corresponding SA. This
allows easy sharing of the SPP value, as the instances establish
the same association without having to send cryptographic se-
crets in-band. The SAD also keeps track of the sequenceID
field of the header in received PTP messages.

Contrary to the SPD, the contents of the SAD may change
during the runtime of a PTP instance. This is useful when
the PTP application needs to update the cryptographic keys,
which is needed for R5. Changing cryptographic parameters
during the runtime requires automated key management to
provide the initial secrets and refresh them. Just like the actual
implementation of SAD and SPD, the key management itself
is not in the scope of the PTPv2.1 standard. We rely on manual
key management for our needs, as the main goal is to assess
the performance impact of security extensions. In production
deployments, it is crucial to follow recommendations for
proper key management as mentioned in [21].

The SAs establish the parameters required for the security
processing. This includes a symmetric key for keyed hashing,
as well as the corresponding algorithm to be used in the
integrity-check calculation.

The AUTHENTICATION TLV is attached to any message
that requires protection based on the SPD information. It is
usually placed as the last TLV in a PTP message. Fig-
ure 1 shows the individual parts of the AUTHENTICATION
TLV, along with the field sizes in bytes. The size of the
disclosedKey and ICV fields depends on the hashing
algorithm used. The sequenceNo and RES fields currently
have a size of zero and are reserved fields [2].

Fig. 1: The structure of the AUTHENTICATION TLV [2].
Italicized text indicates an optional field.

The TLV begins with the type and length of the following
content. This is continued with the SPP that points inside
the SAD and associates the message with the correspond-
ing set of security parameters. The presence of the three



optional fields (shown in italicized writing) is indicated by
the secParamIndicator bit-field. The keyID is used to
uniquely identify a key. Only disclosedKey is an optional
field used in the delayed processing mode. The last part of the
AUTHENTICATION TLV is the Integrity Check Value (ICV),
which contains the hash of the message. The hash is calculated
over the PTP header, body, and any TLV fields before it and
ensures the integrity and authenticity of the message.

Additional details are provided in the enclosed repository2.

E. Summary of Security Gains

With the AUTHENTICATION TLV, we achieve integrity
and authenticity of messages using symmetric cryptography.
By keeping track of the sequenceID in protocol messages,
we mitigate replay message attacks. Therefore, based on Ta-
ble I, we fulfill R2, R3, and R4. Since R9 is achieved by
introducing a mechanism for authentication [23], we consider
it fulfilled on the time protocol layer.

Section VI shows that R6 is also fulfilled. Since the SPD
may be configured to demand authentication for every protocol
message, using R8 is possible, and the respective requirement
is satisfied.

V. EXPERIMENT SETUP

This section details the architecture of our toolchain and
measurement methodology.

A. Measurement Setup

To achieve reproducible and scalable measurements, we
utilize the EnGINE framework [6]. The experiments are
conducted in four steps, enabling testing of various network
topologies and PTP configurations. Of note, the installation
of nodes relies on the automated setup via the pos frame-
work [29].

Our toolchain is run on up to 13 physical nodes, wired
as shown in Figure 2. The nodes are built using COTS HW
and NICs that support additional TSN standards, such as
Intel i210, i350, x552, and Cisco Nexus GM. These NICs
support hardware timestamping, ensuring a good synchroniza-
tion baseline that is crucial for our experiments. Each NIC
has multiple Physical Hardware Clocks (PHCs) as available
interfaces, with the exception of the Cisco Nexus GM which
has only a single PHC. Hence, we need phc2sys to synchro-
nize the individual PHCs. The Cisco Nexus GM NIC can be
synchronized via GPS and offers a timestamping resolution of
4 ns [30], present at lisa. The node maggie serves as our
GM to provide the time reference.

B. Data Collection & Methodology

To quantify the PTP system synchronicity, we compare a
reference time value to one that results from the behavior of
the usual protocol flow in a realistic topology. To achieve this,
we start with a direct connection from maggie to the node we
do our measurements on, which is assumed to be abe from
now on (cf. Figure 2, the red square box shows the setup).

2https://cnsm-ptp-security.pages.gitlab.lrz.de/ptp-security/

The time of the PHC synchronized via the slave port on
abe is our reference value. Since there are no additional
hops in between, we assume that this is sufficiently precise.
To realize the second time value, another port on abe has
to be synchronized with maggie serving as the GM once
again to ensure having the same timing baseline. This second
port is synchronized via a different path that we can design
according to our needs. We increase the number of hops on
the long path between maggie to abe. We use a linear
topology, as it is often used in real-world PTP applications,
such as in industrial automation [17], [31], and allows for
better performance assessment over more hops.

Figure 2 shows an example of two and four hop setups,
where we extend the topology by adding additional nodes. To
run two linuxptp instances on the same node, we need to
split different paths to different domains. The short path is
colored red and runs in PTP domain 1. We also show the long
path, which runs in PTP domain 0 and is colored green or blue
for two or four hops, respectively. Besides, for the case of P2P
and E2E, we show which devices are selected as master and
slave interfaces. For the experiments evaluating the impact of
security extensions with TCs on the hops, we highlighted the
nodes with a red dot in a given example. Overall, any node on
the long path runs as a TC, except for the GM maggie and
abe, which is used for the PHCs value comparison. Such
an approach enables us to build a realistic PTP topology
on the long path and scale the number of nodes arbitrarily
until reaching the maximum number of hops available in the
testbed. We believe that evaluating the impact of fewer hops
can be extended to a model for a larger number of hops.

To ensure the comparison of the time values happens at
the same point in time, we rely on the phc_ctl tool that is
bundled with linuxptp. It offers a comparison operation to
check the system clock offset relative to a PHC in the form
of ioctl system calls. Hence, we synchronize one of the
PHCs to CLOCK_REALTIME with phc2sys and compare
CLOCK_REALTIME to the second PHC using phc_ctl.
In Figure 2, the PHC of the port on abe that is active in
domain 1 is used to synchronize CLOCK_REALTIME, which
is compared with the PHC on the long path in domain 0.

Since phc2sys uses the same ioctl as the phc_ctl
for the system clock synchronization and is built into
linuxptp [24], we deem the accuracy sufficient to evaluate
the impact of security extensions on the performance.

1) Methodology: The measurements focus on evaluating
the impact of the security extensions on clock synchronization
over a varying number of hops on the long path. We measure
four to nine hops, and for each number of hops we evaluate
the baseline (no security extension) and the hashing methods
for the ICV. Besides, we introduce dummy HMACs that sleep
for 100 µs with a random factor between ±30 µs during ICV
generation and verification. This helps to model the overhead
caused by security extensions that rely on more expensive
cryptographic operations. Table II shows the pool of hashing
methods we use, alongside the most important parameters.

For the description of the results, we focus on the absolute

https://cnsm-ptp-security.pages.gitlab.lrz.de/ptp-security/
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Fig. 2: Overview of the Springfield testbed and example topology with up to 4 hops and marking of TC and OC

clock offset from the correct time (i.e., the mean sync offset)
and the standard deviation σ of the offset values. The absolute
offset shows the quality of the synchronization mechanism and
σ describes the variation of the offset values. We can show
how stable the achievable synchronization is using σ. A larger
value of σ indicates a less stable clock synchronicity.

TABLE II: Hashing methods considered for our result mea-
surements. Key size (k) and output size (o) in bytes

Algorithm Parameters

HMAC-SHA-512-256 k=32 o=32
Blake2b k=32 o=32
Blake3 k=32 o=32
Dummy Sleeps 100 µs, random factor ±30%

Our configuration for linuxptp relies on the link layer
message transport and a logSyncInterval of −7, i.e.,
initiating clock synchronization every 2−7 s (≈8ms). We
empirically determined this value to be both the most stable
and most accurate interval on the testbed, starting with a value
of 2−12 until we found the final interval with a standard binary
search approach within the duration of a single experiment.
To match the synchronization period of PTP, we measure
the clock every 8 µs using the phc_ctl tool for a total
of 450 000 data points, i.e., measuring roughly one hour for
each experiment. Due to a bug, not all data points are used
for evaluation. The reason and solution to this challenge are
described in Section VI-B.

All nodes in the testbed run Ubuntu 20.04 LTS with Linux
kernel version 5.4 and use only the Intel i210 NIC. Cisco
Nexus GM is used for the setup evaluation.

VI. RESULTS

The results present the evaluation of our setup precision,
where we compare clock offsets on lisa and abe, and mo-
tivate why the offset is not the only relevant metric to look at
and why the standard deviation σ provides additional insights.
Next, we showcase two additional experiments comparing the
E2E and P2P modes, as well as using TCs on the hops. For the
last two experiment campaigns, we run them over four to nine

hops each and compare a baseline (no security extensions)
with three different HMACs, and a dummy value. Next, we
provide details on the residence time collected on a single
node for all of the setups (no-/security, dummy) using TCs.
Finally, we assess the impact of various logSyncInterval
values on the precision with BCs and TCs on 9 hops with and
without security extensions. The experiments answer whether
our security measures significantly impact the synchronization
accuracy negatively and if our measurement setup allows
measuring at a fine enough resolution to detect the newly
introduced overhead. To note, we use the two-step mode.

A. Setup Evaluation

To evaluate the precision of our setup, which relies on
software, the fundamental difficulty is the comparison of two
time values at the same instant. To understand the error this
approach introduces, we run an additional experiment where
we synchronize a PHC to CLOCK_REALTIME and then com-
pare it to the same PHC via phc_ctl. This highlights two
error sources—the synchronization of a PHC to another clock
and the approximate comparison operation. They represent the
main bottlenecks for the accuracy of our results. We run the
experiment on lisa and abe to assess the fluctuations.
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Fig. 3: Offset fluctuations for abe (blue) and lisa (orange)

Based on Figure 3, we see offset fluctuations of ±40 ns for
abe and ±30 ns for lisa. Since we compare the clock values
of the two domains on abe, the error we deduce is predictable
but could skew the results, making the comparison on a small
scale difficult. We decided to use the Intel i210 NIC as GM,
as it is a more affordable and commonly used NIC, ensuring



TABLE III: The mean for P2P and E2E in ns for with and
without security extensions over different number of hops

Security 4 Hops 5 Hops 6 Hops 7 Hops 8 Hops 9 Hops
x̄ x̄ x̄ x̄ x̄ x̄

P2P

No Security 2.2 7.7 -4.6 -10.5 -19.1 3.6
HMAC-SHA-512-256 8.0 2.6 3.8 -14.9 -26.5 -41.9
Blake2b 1.6 16.0 12.7 -10.7 -4.5 -53.3
Blake3b 23.8 8.1 13.5 -6.3 -16.4 -43.3
Dummy 14.5 10.3 10.7 -20.3 -21.5 -55.0

E2E

No Security -14.3 -15.3 -26.2 -29.3 -38.4 -58.5
HMAC-SHA-512-256 -8.9 -17.2 -17.1 -43.1 -57.2 -74.3
Blake2b -13.9 -17.6 3.3 -21.4 -47.6 -21.3
Blake3b -24.1 -15.3 -17.2 -23.8 -27.9 -23.6
Dummy -12.6 -19.8 -10.7 -27.2 -38.3 -23.4

use of homogeneous NICs in the experiments. This experiment
shows the possible advantages of a more precise GM, such as
the Cisco Nexus, in comparison to COTS HW solutions.

1) Comparison of P2P and E2E: Table III shows mean
values for P2P and E2E, with all values having a negative
bias. Unfortunately, the results do not provide sufficient infor-
mation to assess the impact of security extensions. Therefore,
Figure 4 shows the standard deviation σ. The σ values provide
important observations regarding the PTP synchronization. It
confirms our assumption that the standard deviation describes
the variation of the offset values, providing insights into the
clock synchronization stability. As expected, σ increases with
more hops and with higher delay. For P2P, Figure 4a shows
that the synchronization offset increases significantly with each
hop introduced on the long path. The standard deviation for
four hops lies between 118.6 ns and 137.4 ns, increasing to a
range between 546.9 ns and 571 ns for nine hops. We can see
that the synchronization offset deteriorates over increasingly
long linear paths, which matches our expectations and the
insights for long linear PTP topologies.

The standard deviations for each security option are similar
within a hop group. For four hops, all values stay within
18.8 ns of each other, increasing up to a range of 24.1 ns
for nine hops. A similar tendency is also visible for E2E
mode, shown in Figure 4b. There is no definitive correlation
between the computational overhead introduced by our secu-
rity measures and the standard deviation. This is evidenced by
the fact that for all hop groups (excluding six hops) shown
in Figure 4, there is always at least one measurement that has
a lower standard deviation than the case without any security
measures in place. The fluctuation in standard deviation is
visible for all other security options used. Based on these facts,
we can observe no increase in deviation of the synchronization
offset values within the same hop configuration that we can
measure. This might be due to the precision being below the
fluctuations. Nevertheless, since the impact on a per-hop basis
is visible, we believe our security extensions do not cause a
significant impact, i.e., less than the per-hop impact.

2) Performance with TCs: Similar to the previous experi-
ments, we choose E2E for the experiments with TCs, as there
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Fig. 4: The standard deviation in ns for P2P and E2E

is no significant performance difference between P2P and E2E.
In this case, maggie and abe run in E2E mode and the rest
of the hops on the long path are configured with TCs.

Figure 5a shows the standard deviation over 4-9 hops and all
paramaters used. In comparison to P2P and E2E, we see less
increase with each hop. For four hops the standard deviation
lies between 90.6 ns and 123.3 ns, and for 9 hops it ranges
between 119.9 ns and 132.8 ns. We can see that the behavior of
different operation modes also does not show a clear tendency
and all options behave similarly. For four hops, values are
within 32.7 ns of each other and within a range of 13 ns for
nine hops. We assume that this is due to minor differences
and the fluctuations are within the error bounds and precision
which our setup can identify.

Finally, the residence time within a TC on the individual
hops is also relevant. This value is added to the correction field
to ensure a correct time value being forwarded, unaffected by
the processing done by TCs. Figure 5b shows the residence
values for all setups. No security yields the lowest residence
times compared with security being in place, but the difference
is within a few µs. The minuscule overhead compared to the
no security case affirms the viability of our security extension.
The dummy result shows the expected impact, adding 150 µs
to the usual residence time. The additional overhead of 50 µs
is caused by the nanosleep function, resulting in a total
residence time of approximately 300 µs.
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3) Performance of logSyncInterval: To assess vari-
ous PTP profiles, we evaluate logSyncInterval values
from −7 to 0 for the BCs and TCs setups. As identified pre-
viously, E2E and P2P does not present a significant difference,
so we focus on E2E. Both setups are assessed over over 9 hops,
with and without security extensions.

Even though none of the profiles requires such a low
logSyncInterval value, we still decided to use −7 to
assess the performance in scenarios where the possible over-
head caused by the additional processing overhead could be
significant. As mentioned in the Section V, the value of
−7 is determined empirically. To note, there are additional
requirements for the profiles, such as using unicast instead of
multicast, which are outside of the scope of this paper.

Figure 6 shows the results for BCs and TCs setups.
As expected, for the BCs we see a more significant im-
pact on the synchronization accuracy with varying values
of logSyncInterval, ranging from 546.9 to more than
3200 ns for a value of 0. On the other hand, for the TCs, the
difference is within the system accuracy error with values of
120±40 ns. As outlined in previous results, we cannot observe
the additional overhead caused by the security extensions or
the dummy values.

Overall, the various PTP profiles relying on BCs have
to consider the possible decrease of system accuracy with
higher values of the logSyncInterval, but do not have
to compromise on security goals.
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Fig. 6: Standard deviation in ns for BC and TC with various
logSyncInteval values

B. Setup Challenges & Limitations

1) Setup challenges: We encountered two main challenges
with our measurement setup. During the measurements, we
encountered a visible error during the data sampling. It can
be observed whenever the synchronization with the GM is
lost, causing the clocks to deviate heavily and taking several
seconds to get in sync. This is most likely caused by a bug in
the Linux kernel, but additional investigation is needed.

Since we did not find a way to prevent this, we decided to
cut the affected intervals. We search for 1200 values that are
continuously beyond 1.5 times the Inter-quartile Range (IQR),
which reliably identifies the bug. We chose 1200, as it roughly
corresponds to a 10 s interval. Within this time, synchronicity
is again achieved within the network. Once found, we cut 1200
uninterrupted data points and remove 1000 data points from
either side of the interval to clean the data before and after the
destabilization. This approach allows for reliable detection of
the wrong data without removing normal behavior data.

2) Security extensions: The selected security extensions
do not fulfill all of the MUST and SHOULD requirements
from Table I. For instance, to satisfy R7, one may engage the
mechanisms of Prong C and Prong D or choose an external
solution like [4] or [20].

R1 is met partially, since we provide a mechanism for
authentication, but not authorization. The nodes can verify
other nodes’ authenticity, but can not ascertain whether they
act within their permitted bounds. R5 is not met due to the
manual key management we employ. This is not problematic,
as the implementation can be expanded to enable it, and proper
key refresh policies should be used in production deployments.

Nevertheless, all of these requirements are outside of the
scope as we focused on extensions that can be directly
integrated into the PTP protocol and do not require external
entries and policies to be fulfilled.

VII. CONCLUSION & FUTURE WORK

This work shows that adding security extensions to PTP in
the linuxptp project does not have a significant impact on
the clock synchronization. We have designed and evaluated a
PTP network using COTS HW and a software-only solution.



The designed methodology and toolchain enabled us to assess
the performance for different modes—P2P, E2E, and using
TCs on the hops with and without security extensions. Using
TCs on the hops yields better results than using P2P and E2E
on the hops. When evaluating the logSyncInterval val-
ues for different PTP profiles, we did not observe an additional
impact on clock deviation caused by the security extensions.
However, the logSyncInterval has an impact on the
system performance following the trends of the BCs and TCs
experiments. The error caused by the system is within ±40 ns,
which is within the variance of experimental results on a
given hop. In addition, to evaluate what time of computational
overhead on each hop is feasible, we designed experiments
with dummy values that introduce an additional delay. This
systematic approach can be applied in many networks and can
help with the administration of PTP networks. The extended
codebase, experiment data, and their processing is available
on GitHub, with additional implementation details.

In future work, we plan to improve the accuracy of the sys-
tem by possibly adding new COTS HW supporting the cross-
timestaming kernel feature and lower the operating system
overhead by CPU affinity and isolation. Next, linuxptp can
be extended with additional security extensions, e.g., public
key cryptography or additional symmetric key algorithms and
incorporate solutions for key management. Furthermore, we
could assess various profile requirements in more details. The
described measurement toolchain can be used to evaluate the
impact on the performance of such solutions and configura-
tions.
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