High-Performance Match-Action Table Updates from
within Programmable Software Data Planes

Manuel Simon, Henning Stubbe, Dominik Scholz,

Sebastian Gallenmiiller, Georg Carle
Chair of Network Architectures and Services, Technical University of Munich, Germany
{simonm|stubbe|scholz|gallenmu|carle}@net.in.tum.de

Abstract

For long, P4’s mantra was that table entries could only be
updated by the control plane. With the ongoing Portable NIC
Architecture (PNA) standardization efforts, this is changing.
In fact, PNA presumably includes explicit methods for table
updates from within the data planes. Now, it is onto manufac-
turers and developers to integrate and use this mechanism in
future P4 data planes. This would enable novel and improved
applications, e.g., requiring means for maintaining state.

We present our implementation of flexible match-action
tables for the DPDK-based t4p4s target. We discuss different
approaches for table updates from within the data plane and
challenges that arise when operating at line rate. Further, we
analyze the data consistency of our enhanced table structures
in a multi-core scenario and model the memory overhead
for state management purposes.

CCS Concepts

« Networks — Network measurement.

Keywords
P4, SDN, Software Data Planes, State Management

ACM Reference Format:

Manuel Simon, Henning Stubbe, Dominik Scholz, Sebastian Gallen-
miiller, Georg Carle. 2021. High-Performance Match-Action Table
Updates from within Programmable Software Data Planes. In Sym-
posium on Architectures for Networking and Communications Systems
(ANCS °21), December 13-16, 2021, Layfette, IN, USA. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3493425.3502759

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ANCS °21, December 13-16, 2021, Layfette, IN, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-9168-9/21/12...$15.00
https://doi.org/10.1145/3493425.3502759

1 Introduction

When P4 was introduced in 2014 [3], the language was tar-
geted towards a specific class of devices: switches. Since
then, P4’s popularity created a diverse ecosystem. Today, P4
runs on devices such as SmartNICs [1, 21]. At the same time,
“spin-off” standards were introduced, e.g., P4ARuntime that
allows managing P4 devices or P4 In-Band Network Teleme-
try to monitor P4 devices. Another addition to the family
of P4 standards is the Portable NIC Architecture (PNA) [20].
PNA proposes a common set of P4 features specifying packet
processing tasks on NICs.

P4 offers two fundamental mechanisms realizing stateful
packet processing, tables and registers. Tables support sophis-
ticated matching strategies but can only be read from the
data plane. Changes to table entries must be initiated from
the control plane, causing additional overhead. In contrast,
registers can be modified directly in the data plane, offering
low-level data access; however, they are P4 externs, i.e., not
part of the core language. Therefore, availability of registers
and their API and implementation details are target-specific.
The PNA includes mechanisms to modify tables from the
data plane, allowing fast updates and matching support.

In this paper, we present our implementation of table
entries that are writable from within the data plane using
the software target t4p4s [29]. We analyze the challenges
for line-rate table updates and measure the performance
impact for different match-action table data structures. In
particular, we discuss approaches with respect to consistency.
Finally, we demonstrate and model both the overhead for
state management using our cache-efficient storage design
and the performance benefit for in-data plane table updates.

The remainder of the paper is structured as follows: Sec. 2
discusses related work. Sec. 3 describes mechanisms em-
ployed by t4p4s to change match-action table entries. We dis-
cuss our measurement methodology in Sec. 4, before Sec. 5 in-
troduces our approach. Sec. 6 presents our proposed changes
to the table architecture and analyzes possible optimization
approaches. Sec. 7 discusses applicability to other targets,
before we conclude this paper in Sec. 8.

https://doi.org/10.1145/3493425.3502759
https://doi.org/10.1145/3493425.3502759

ANCS ’21, December 13-16, 2021, Layfette, IN, USA

2 Background & Related Work

P4 Control Plane Interfaces. With PNA still in prepa-
ration, table updates are provided via the control plane.
P4Runtime [28] is a standardized, but optional, control plane
interface. Platform-specific update mechanisms are still com-
monplace. Without a built-in approach for deploying table
updates, developers must rely on such an interface. Often,
this implies relying on the vendor- and platform-specific im-
plementations, differing greatly in supported functionality.
Benefits for Applications. The P4 landscape is broad as
shown by large-scale taxonomies [13, 15]. Therefore, many
applications [5, 26] may benefit from in-data plane table
updates. In particular, [5] and [26] propose replacing target-
specific register externs through table updates. As the latter
are based on P4’s core feature, match-action tables, replacing
them reduces indirections, resource usage and improves code
readability. We argue, that middleboxes, e.g., using counters
for heavy-hitter detection [12] and flow monitoring [31], will
benefit from data plane table updates. Table updates can ease
maintaining state in security-related applications, e.g., in
IDS [17], for port knocking [30], or SYN flood mitigation [24].
[24] note state management overhead caused by the lack of
direct table manipulation from the data plane.
Implementation Challenges. The PNA aims to stan-
dardize the features of general NICs [4]. The specification [20]
allows adding table entries on lookup miss, directly from the
data plane using externs. The PNA authors discuss impacts
on processing speed and restrictions of this mechanism on
different targets, e.g., only support for exact match keys. Our
implementation is not limited to lookup misses. Jain [23]
presents the flexible match-action tables of Pensando Smart-
NICs [21]. These tables allow multiple accesses at different
processing stages and table updates from the data plane via
write-back table fields [26]. Using target-specific annota-
tions, special action parameters can be defined and used to
assign values. The compiler translates them to an extern call
that updates the respective table field. FlowBlaze [22] (P4
implementation: [19]) is a framework for state updates in
programmable data planes relying on registers, instead of
writable table entries. Register state is mapped through a
flow context table, thus introducing an indirection. This ap-
proach uses well-established P4 features and is compatible to
many targets, but the functionality of registers is limited (i.e.,
total amount, width) and the data may be fragmented. [6]
and [11] describe challenges to avoid state inconsistencies
during updates in programmable hardware dataplanes.

3 Match-Action Tables in t4p4s

t4p4s [29] is a multi-target P4 compiler. It transpiles P4 to C.
To support different backend targets, the C code relies on the
Network Abstraction Layer, an interface that defines basic

M. Simon, H. Stubbe, D. Scholz, S. Gallenmdiller, G. Carle

Data Plane Control Plane

SR

------------------- "
+ digest
<—{ Deparser ,W‘

Figure 1: t4p4s’ data and control plane interaction for
table changes. Original: dashed red. Proposed: green.

functions like modifying packets or looking up table entries.
These functions are then implemented for the specific target
such as the Data Plane Development Kit (DPDK) [8].

t4p4s offers support for multi-core and multi-socket CPUs.
With the help of DPDK, it performs Receive Side Scaling
(RSS). There, flows are split into different queues by the NIC.
The queues are then processed independently and in parallel
by different threads/logical cores (lcores).

t4p4s follows the P4 concept offering read-only access to
tables in the data plane (cf. Fig. 1). To perform table updates,
the data plane sends a digest to the controller that may apply
or deny the update. Digest-based table updates introduce at
least one round trip time (RTT) overhead. Changing entries
directly in the data plane avoids this overhead (cf. red path
in Fig. 1). t4p4s’ control and data plane are independent
processes, running on the same device, communicating via
sockets. Therefore, the RTT is lower compared to a remote
controller. Digests are sent from the data plane process to
the controller, which replies to the data plane. A message
handler thread of the data plane processes the reply. However,
changing entries using digests in t4p4s involves a 1 s wait
time for synchronization, blocking the packet processing in
the corresponding thread. This approach renders the current
implementation impractical for frequent table updates.

The tables themselves are also synchronized for concur-
rent access. t4p4s uses lock-free double buffering consisting
of two replicas of the same table. Each thread/lcore maintains
a pointer to the currently active replica. Changes, e.g., inserts,
are first performed on the passive replica. Afterward, active
and passive replica are swapped. Then, a 200 us wait time
is applied to provide consistency for other threads reading
from the now passive replica in parallel. The wait time must
be larger than the time a packet remains in the pipeline in
the worst-case to ensure consistency. Finally, the changes are
promoted to the now passive replica. The wait time blocks
the processing of the current thread. Reading entries remains
unlocked since the active replica is never modified, thus gain-
ing performance.

To our knowledge, both wait times (1 s and 200 ps) where
chosen by the original t4p4s developers without further rea-
soning. Timing-based synchronization has the drawback that
the wait time has to be chosen carefully. Unnecessarily high
wait times increase latency. However, without proof for an
upper bound, timing-based synchronization does not guar-
antee consistency. t4p4s’ wait time for reacting to digests

High-Performance Match-Action Table Updates from within Programmable Software Data Planes

is rather high; however, there is still no guarantee that nei-
ther the controller nor the message-handler thread of t4p4s
got overloaded in the meanwhile. Therefore, the mechanism
does not ensure table consistency (cf. Sec. 5).

4 Evaluation Setup

Here we discuss the testbed topology used for evaluation.

Topology. The load generator is directly connected to
the device under test runnig t4p4s. We use t4p4s commit
9b91a136 based on DPDK 19.02, which is also the reference
for our evaluation. MoonGen [10] is used as load generator to
measure throughput and latency using hardware timestamp-
ing. Unless stated otherwise, the generated traffic consists
of 84 B UDP packets. Each host features two Intel Xeon CPU
E5-2620 v2 (2.1 GHz, 15 MiB L3 cache). The used cores are
isolated from the kernel scheduler.

Design. During evaluation, table entries are read and
changed. We use 4-byte match keys and entries. An incoming
packet specifies an entry to be changed, and its new value.
The previous value is read and sent back. This way, one table
entry is read and changed for each packet. Heuristic-based
prefetching caches sequential memory accesses increasing
performance [27]. To measure the worst-case performance,
tests need to maximize the cache misses. Therefore, we ran-
domize the table accesses.

5 Data Plane Table Updates

This section presents our implementation for data plane
table updates, evaluates performance, and discusses multi-
core synchronization. Similar to Baldi et al. [4], we annotate
modifiable table entries using @__ref in the parameter list
of an action. This allows value updates that are propagated
to the table. Subsequent reads must only return the updated
value. Consequently, this change enables more sophisticated
state-keeping operations, e.g., counters in tables.

5.1 Implementation & Evaluation

Here, we discuss different approaches for table updates. The
first approach is similar to the original implementation of
t4p4s. It uses t4p4s’ lock-free double buffering mechanism
(cf. Sec. 3, subsequently named change method), but bypass-
ing the communication between data plane and controller. It
requires another lookup of the entry and triggers the change
using the double-buffering mechanism. This involves over-
head and lowers performance. Therefore, we introduce a sec-
ond approach, changing the value directly using its pointer
(named pointer method). In this approach, the generated C
hash table representing the P4 match-action table passes a
pointer to the action instead of the parameter values them-
selves, thus enabling read and write access. We expect a
higher performance when bypassing the original mechanism.

ANCS ’21, December 13-16, 2021, Layfette, IN, USA

e 10° ——
g3 1o read write (pointer) ‘
g E
= z 10! E
=300 F— T T T T
0 50 90 99 99.9 99.99 99.999

Percentile [%] (log)
Figure 2: HDR latency histogram; 84 B packets

Method Pointer Change Digest (orig.) Digest (mod.)
Throughput 1.73Mpps 3.39kpps <1pps 4.1kpps
25/50/75/99- 25.0/26.5/ 267/322/ - 39.6/65.3/
Py, latency (us) 28.0/29.7 639/1108 - 85.3/107.0
Synchronized no yes yes no
Sleep-Time - 200 ps 1s+200ps -

Table 1: Data plane table update method comparison

Lastly, we investigate the digest-based way of changing en-
tries. For the evaluation we use a table size of 22°(x 10°).

Pointer method. Fig. 2 compares the single-core latency
of reading / writing table values via the pointer method. We
measured a similar throughput (3.58 Mpps (read), 3.57 Mpps
(write)), as well as latency distributions for lower percentiles.
Writing increases tail latency, which we attribute to the over-
head of memory writes. However, this deviation happens
rarely. In general, we measured little overhead for modifica-
tion compared to read-only accesses.

Change method and digests. Tab. 1 lists the single-core
latency quartiles of all approaches. Maximum throughput is
limited for the change and digest method. Since MoonGen
cannot reliably generate rates below 15 Mbit/s, we used a
packet size of 700 B, to compare all approaches. In this set-
ting, the pointer method has the lowest latency (26.5 ps) while
allowing a throughput of 1.73 Mpps. The change method
has the highest median latency of 322.0 ys. Additionally, la-
tency variance is increased, and the achievable throughput
is only 3.39 kpps. To measure the impact of the timing-based
synchronization, we disabled the sleep time resulting in a
throughput of 1.12 Mpps and a median latency of 27.9 ps.
From intuition, we believe the difference to 322 us (latency
with sleep) exceeding 200 ps is due to the unprecise usleep
call, sleeping for at least the given time [14].

For comparison, we also evaluated digests. But, since there
is the timing of 1's, which would allow less than 1 pps, this
approach hardly works at all in t4p4s. When disabling this
mechanism, as happened in our experiment, the median
latency is 65.3 us. However, we had to limit MoonGen to
23 Mbit/s (4.1 kpps). Otherwise, the switch stopped due to
an out of memory error. We think that that error is caused by
allocating memory for every message sent to the controller.

5.2 Discussion

The original digest method performs worse by a whole mag-
nitude than every other candidate owing to the prototype
nature of its implementation. We modified the digest method

ANCS ’21, December 13-16, 2021, Layfette, IN, USA

DPDK
Sk char[] . char([] key = ...
~data = NULL®
Table index = 6_
RN

uint8_t* entries(] 1

)/
table_entry

actionld =.

Figure 3: Orig. (black) and dyn. (red) storage design

to get an approximated performance by removing the timer-
based synchronization. Despite the improved performance
of the modified approach, the digest-based approaches share
a fundamental flaw: the one RTT update delay between data
and control plane. To mitigate this, we created two meth-
ods directly modifying the table entries removing the con-
trol plane from the equation. The change method is near to
the original implementation but still subjected to a timing-
based synchronization overhead—leading to unnecessary
high latency and low throughput figures. The pointer method
offers the best performance, entirely bypassing synchroniza-
tion mechanisms. However, it is not compatible with double-
buffering. Therefore, it requires an alternative low-overhead
synchronization method having only one replica.

6 Table Architecture

We identified the pointer method as the most performant
solution. Here, we modify the table architecture to ensure
data consistency. Thus, we replace t4p4s’ synchronization
mechanism with another one provided by DPDK. Addition-
ally, we implement a lock for entries to avoid inter-packet
data races. Last, we improve the storage design to be more
cache-efficient. The synchronization mechanism is indepen-
dent of the storage design. Therefore, we investigate both
separately and name the following plots according to the
tuple: (storage design/sync. mechanism).

Tables in t4p4s use DPDK’s hash table implementation [9]
that matches the keys to their corresponding entries. Entries
are maintained by t4p4s and contain, for instance, the as-
sociated action and their parameters. t4p4s, therefore, also
maintains the memory allocations for its table entries, as
depicted in Fig. 3 (black arrows).

6.1 Consistency

Maintaining consistency can be split into two subproblems
concerning the two different parts of the tables: after insert-
ing and removing, and after updates.

The first subproblem affects the DPDK hash table part.
When a new entry is inserted, the hash table adds the key to
its table as well as the link to the corresponding entry, which
is created by the t4p4s part. So far, the DPDK hash table
was run without support for multi-core execution since the
synchronization was done by t4p4s. We refer to this syn-
chronization mechanism as t4p4s. Since this design cannot

M. Simon, H. Stubbe, D. Scholz, S. Gallenmdiller, G. Carle

_ 10°

B 10 e |

& 8 IR e b N i -6 -
£ Thr. Cache - e S S P T | ki e
s 64 put misses \\,’T L4 ai
O SNy
E (stat/DPDK) S Ty
S 2 (orig/t4pds) . L]~
= dyn/t4pds ! |

= 0 (‘ /‘)‘ e O

10° 10! 10? 10? 10* 10° 10°
Table Entries [-]
Figure 4: Throughput and L3 cache misses for different
storage designs; cache models drawn vertically

I D — .
2 10 M
=3 A
< 8 — (dyn/DPDK) -- (dyn/t4p4s)
B b= (orig/tdpds)
S 4+ — 2° entries 28 entries
E 2 2'7 entries 220 entries
B 0+ \ \ \ T
1 2 3 4 5 6
lcores |[-]

Figure 5: Achievable throughput with different designs

provide consistency when using the pointer method, we re-
place this mechanism and use only one replica. In this replica,
a lock-free synchronization mechanism of DPDK hash tables
is enabled. We name this mechanism DPDK. The optimistic
method of DPDK checks whether the table was changed by
others during the insertion using an atomic counter incre-
mented with each change. If the counter was altered during
the lookup the procedure is retried until it succeeds. Hence,
this approach is beneficial for performance for a low number
of insertions.

Fig. 4 depicts the maximum achievable throughput in
single-core execution of the synchronization mechanism of
t4p4s (dyn/t4p4s) and DPDK (dyn/DPDK) using the later in-
troduced improved dynamic storage design (dyn). On single-
core, the DPDK mechanism performs only slightly worse
than the t4p4s one. Having one entry, the throughput is
10.40 Mpps with t4p4s synchronization, but only 10.16 Mpps
with DPDK. For 2!7 entries, the DPDK mechanism performs
better (5.04 Mpps) than t4p4s (4.86 Mpps). The DPDK mech-
anism scales better in multi-core scenarios (cf. Fig. 5).

Following the adaptation of the table architecture, the sec-
ond challenge is to prevent inter-packet data races. Parallel
packet processing with simultaneous changes to the same
entry can lead to data races causing, e.g., lost updates [16].
To solve that, we introduce optional locks for each entry. The
entry is locked when the execution of its action starts and is
released afterward. We use spin-locks that force threads into
busy waiting until being released. This busy waiting might
waste CPU cycles, however, waking up sleeping threads in-
troduces context switches and, thus, additional latency.

Fig. 6 depicts the achievable throughputs with (synced)
and without (unsynced) locking the entries. As expected, the

High-Performance Match-Action Table Updates from within Programmable Software Data Planes

E 04— .
o= 44 BRE S
= = DT b
= g* Unsync. - 20 — 28 217 . 920 Gync. ~ 20 - 28 . 213 . 920
T T T T

1 2 3 4 5 6
lcores [-]

Figure 6: Throughputs using (un-)synced table entries

performance decreased if entries were locked. Having only
one entry, the throughput is decreased by 5.9% on single-
threaded execution. Additionally, for one entry, this approach
does not scale for multi-core execution. The reason is that all
packets match the same entry, but only one core can access
the action at a time. Furthermore, the additional overhead of
locking negatively influences performance. For larger table
sizes, the mechanism scales, eventually hitting line rate.

6.2 Cache-efficient Storage Design

After ensuring data consistency, we further improve perfor-
mance by implementing a cache-efficient storage design.

Recall Fig. 3 which shows the original table design (orig).
There, the DPDK hash table maintains indices. These are used
to access an array that stores pointers to the value structs.
This design introduces two levels of indirection decreasing
performance. As a first step, we removed the second level
and directly stored the pointer to the entry in the hash table
(red). This improves performance, as shown in Fig. 5. Perfor-
mance is improved for two reasons: saved dereferencing cost
and lower memory footprint improving cache utilization.
Since the entries themselves are allocated dynamically upon
insertion, we call this design dynamic.

For the analysis, we define A= max (sizeof(params(a)))
a€actions

being the action parameter size, n being the number of table
entries. s is the maximum table size. The alignment function
is defined as [x], = align(x,y) = y X [x + y]. We extend the
memory consumption model proposed by Scholz et al. [25,
Eq. 4] for the original design as follows:

Morig(n,5,A) = sX [8+k]ig + nX[4B+Algy +8Bxs

DPDK hash table, keys ~ dyn. allocated entries, each 13y with
and data pointer aligned to 64 B pointers
The reason for the alignments lies in the memory allo-
cation of DPDK which itself tries to optimize the memory
layout and allocates whole cache-lines. The calculated mem-
ory consumption then leads to the cache fitting model by
setting n equal s, i.e., filling the table completely:

Norig(m, k, A) = m/([8 +k]is +[4B+Ales +8B) (1)

The improved design reduces the memory consumption
(mayn) by the size of the skipped array shown in Eq. 2; the
corresponding cache model in Eq. 3.

ANCS ’21, December 13-16, 2021, Layfette, IN, USA

DPDK <key, value> <key, value>
Hash char[] key = ... char[] key = ...
«data = NULL ~data = NULL

Table index =0 index =2

table_entry entries([] table_entry

actionld

params

Figure 7: Static storage design
Mayn(n,s,A) =s X [+ k] +n X [4B+ Algy (2)
Nayn(m, k, A) = m/([8 + kT1s + [4B + Alq) 3)

For a 15MiB L3 cache size and an action size A = 9B,
the number of entries fitting in the cache can be calculated
using Eq. 1 norig = 178734 for the original design, and ng,, =
196608 for the improved dynamic design using Eq. 3. The
results depicted in Fig. 4 show that, except for 2!7 entries,
the measured cache misses are lower for the dynamic design.

Removing the second indirection leads to a performance
gain. Yet, the actual table entries are still fragmented in mem-
ory since the memory for each entry is allocated dynamically
when inserted. This reduces the amount of unused allocated
memory for partially filled tables; however, having all entries
in one contiguous memory block may improve performance.
The continuous memory usage improves the spatial locality
of data, allows more efficient prefetching of data into caches,
and subsequently increases performance.

To ensure this spatial locality, we reintroduced the array
strategy (cf.Fig. 7). But, instead of a pointer, the table entry
structs are directly stored in the array. This strategy offers a
single level of indirection. Hence, we can align the entries
to 16 B instead of 64 B as before, saving memory for small
entries, which allows more entries to lay in the cache, as a
second advantage. We call this static storage. Eq. 4 shows the
modeled memory consumption; Eq. 5 the cache model:

Mstaric(s,A) =s X [8+k]16+ sX[4B+ Al (4)

static sized array containing the entries, each aligned to 16 B

Nstatic(m, k, A) = m/([8 + k116 + [4B + Al6) ©)

A drawback of the static storage is the potentially higher
memory consumption for scarcely filled tables. There, the
consumption depends only on the maximum table size, while
it linearly increases with the filling rate for the dynamic
one. The relevant factor for selecting the most efficient table
design is the filling rate of the table. The minimum filling rate,
so that the static storage outperforms the dynamic depends
on A due to the alignment to 16 B. The minimum rate for
A <12is25%,50% for 12B < A < 28B,75%for 28 B < A <
44 B, and 100 % for 44 B < A < 60 B. Similar calculation can
be done for A +4 > 64B.

For A = 9B, the number of table entries fitting according
to Eq. 5 equals ngqric = 491520, which is much more than
for the dynamic store. This can also be seen in the evaluation
(stat/DPDK vs. dyn/DPDK). The cache misses start to rise

ANCS ’21, December 13-16, 2021, Layfette, IN, USA

for a higher number of table entries than for the dynamic
one. Therefore, leading to better performance, especially in
the range between the cache fitting sizes. For 2!° entries, the
static storage achieves 6.28 Mpps, while the dynamic only
manages 3.95 Mpps, a 60.0 % gain. For smaller table sizes,
both storage designs perform similarly. The cache misses
start to rise left of the calculated sizes since the cache is used
by other parts of t4p4s, other processes, and the OS.

6.3 Discussion

Using the pointer method to modify table entries directly
raised the need for adapting the synchronization mechanism.
This could be done without a major performance penalty
since we were able to improve the storage by removing one
indirection. Though, if it is known that nothing will be added
to or deleted from the table, then there is no need to change
the mechanism introducing at least a slight performance loss.
The same stands if no entries should be changed at all.

Locking each entry separately to prevent inter-packet
races introduces a performance loss of about 10 %, due to
the locking itself and the extended entry size. Locking is
only required if the write access is global and, therefore,
flow-independent. RSS results in a static flow-to-thread map-
ping, i.e., a flow is always processed by the same thread.
Flow-dependent, as well as read-only access, renders locking
unnecessary, thus saving overhead.

The static storage design leads to fewer cache misses and
lower memory consumption for high filling rates. In case
table sizes are highly predictable, the static storage is a good
choice offering high performance. However, low filling rates
waste memory, decreasing performance. The dynamic design
offers higher flexibility maintaining high performance for
low filling rates. But, for small action sizes, memory is lost
due to the alignment to the cache line size. The cache utiliza-
tion is worse because of the fragmentation in the memory.

7 Application to Other Targets

Table information has a decisive role determining the pro-
cessing of a packet. Making table entries changeable, leads to
fundamental challenges. As entries may change at any time,
also during packet processing, we must ensure consistent
state information for a specific packet. There are two pos-
sibilities to handle this kind of consistency—we can ensure
this consistency in software (SW) or in hardware (HW) that
supports specific instructions to ensure consistency.

In this work, we focus on the software target (ST) t4p4s.
STs usually work on DRAM that lacks HW, but allows SW
synchronization mechanisms. Our implementation optimized
synchronization mechanisms to lower the impact on through-
put or latency. This optimization allows us to free CPU re-
sources to be used for packet processing.

M. Simon, H. Stubbe, D. Scholz, S. Gallenmdiller, G. Carle

STs follow the "run-to-completion paradigm" minimiz-
ing in-memory moves [7], hardware targets (HTs) usually
pipeline the packets. Thus, the concurrency models and the
required locking for the different state types (global and
flow state, as also discussed by [6, 11]) are different. HTs
outperform ST, as they can dedicate specialized functional
units to synchronization. This hardware offload minimizes
the impact on other system resources resulting in higher
throughput paired with low latency. [2] has shown rates up
to 200 Gbit/s while managing state updates with each packet.

Despite this disadvantage we still consider STs relevant
due to different use cases. STs support 1 TB or more of cheap
DRAM, whereas HTs offer memory in the lower GB range.

8 Conclusion

Currently, P4 offers only rudimentary state keeping using
registers. The PNA introduces mechanisms for table ma-
nipulation directly from the data plane, promising sophisti-
cated data structures and high update rates. In this work, we
present table updates for the DPDK-based P4 software tar-
get t4p4s. We replaced the table structure through DPDK’s
data structures for high performance and multi-core scalabil-
ity. Benchmarks show 10 Gbit/s throughput on a multi-core
server with each packet causing a table update.

Our implementation provides several optimizations fea-
turing configurable table entry synchronization and table
growth characteristics. Microbenchmarks demonstrate that
enabling dynamically changing table sizes or synchronized
table entry updates lowers the performance of the P4 pro-
gram. Therefore, our implementation allows activating both
features independently and conveniently through annota-
tions in the P4 program. The required features are inherently
linked to the implemented algorithm; thus, it is left to the P4
developer to enable the required table features. We provide
models to predict the tables’ memory consumption to choose
the best table design. Our discussions may help P4 target
developers choosing their concurrency and table design.

We argue that table updates from within the data plane
are a crucial extension for the future of the P4 landscape.
While the proposal of the PNA is a first step, more general ap-
proaches, allowing table updates not only on lookup misses,
should be discussed. Further, target-specific side-effects, e.g.,
synchronizing table entries, should be mentioned. To en-
courage other developers to adapt or enhance our proposed
mechanisms, we published the source code at GitHub [18].

Acknowledgments

This project was funded by the Deutsche Forschungsgemein-
schaft (DFG) (Modanet, grant no. 397973531) and the Bavar-
ian Ministry of Economic Affairs, Regional Development and
Energy as part of the project 6G Future Lab Bavaria.

High-Performance Match-Action Table Updates from within Programmable Software Data Planes

References

[1] Agilio CX SmartNICs. 2021. Netronome.

[2

[11

[12

[13

(14

(15

—

[t

=

=

=

—

]

—

—_

=

https://www.netronome.
com/products/agilio-cx/ Last accessed: 2021-10-03.

Mario Baldi, Diego Crupnicoff, and Silvano Gai. 2020. Programmable
Dataplane Architecture for Distributed Services at the Network Edge.
In 2020 Seventh International Conference on Software Defined Systems
(SDS). 107-114.

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. 2014. P4: Programming Protocol-
Independent Packet Processors. Computer Communication Review
44,3 (2014), 87-95.

Gordon Brebner, Mario Baldi, and John Cruz. April 2020. Plenary: P4
Use Cases for Programmable NICs. http://www.opennetworking.org/
wp-content/uploads/2020/04/Plenary-4-Slide-Deck.pdf in P4 Expert
Roundtable Series.

Antonio Capone and Carmelo Cascone. November 2015. open-
state.p4 - Supporting Stateful Forwarding in P4. https:
//static.sched.com/hosted_files/2ndp4workshop2015/80/Politecnico%
20di%20Milano%2C%20P4%20Workshop%20Nov%202015.pdf in 2nd
P4 Workshop by Stanford/ONRC.

Carmelo Cascone, Roberto Bifulco, Salvatore Pontarelli, and Anto-
nio Capone. 2018. Relaxing State-Access Constraints in Stateful Pro-
grammable Data Planes. SIGCOMM Comput. Commun. Rev. 48, 1 (April
2018), 3-9.

Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon Chun,
Kevin Fall, Gianluca Iannaccone, Allan Knies, Maziar Manesh, and
Sylvia Ratnasamy. 2009. RouteBricks: Exploiting Parallelism to Scale
Software Routers. In Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles (Big Sky, Montana, USA) (SOSP ’09).
Association for Computing Machinery, New York, NY, USA, 15-28.
DPDK. 2021. Data Plane Development Kit. https://www.dpdk.org/
Last accessed: 2021-10-03.

DPDK. 2021. DPDK documentation—Hash Library. https://doc.dpdk.
org/guides/prog_guide/hash_lib.html Last accessed: 2021-10-14.

Paul Emmerich, Sebastian Gallenmiiller, Daniel Raumer, Florian Wohl-
fart, and Georg Carle. 2015. MoonGen: A Scriptable High-Speed Packet
Generator. In Proceedings of the 2015 Internet Measurement Conference
(Tokyo, Japan) (IMC ’15). Association for Computing Machinery, New
York, NY, USA, 275-287.

J. H. Han, P. Mundkur, C. Rotsos, G. Antichi, N. Dave, A. W. Moore,
and P. G. Neumann. 2015. Blueswitch: enabling provably consistent
configuration of network switches. In 2015 ACM/IEEE Symposium on
Architectures for Networking and Communications Systems (ANCS).
17-27.

Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rexford. 2018.
Network-Wide Heavy Hitter Detection with Commodity Switches. In
Proceedings of the Symposium on SDN Research, SOSR 2018, Los Angeles,
CA, USA, March 28-29, 2018. ACM, 8:1-8:7.

Frederik Hauser, Marco Hiberle, Daniel Merling, Steffen Lindner,
Vladimir Gurevich, Florian Zeiger, Reinhard Frank, and Michael Menth.
2021. A Survey on Data Plane Programming with P4: Fundamen-
tals, Advances, and Applied Research. CoRR abs/2101.10632 (2021).
arXiv:2101.10632 https://arxiv.org/abs/2101.10632

Michael Kerrisk. [n.d.]. usleep(3) — Linux manual page. https://man7.
org/linux/man-pages/man3/usleep.3.html Last accessed: 2021-11-25.
Elie F. Kfoury, Jorge Crichigno, and Elias Bou-Harb. 2021. An Ex-
haustive Survey on P4 Programmable Data Plane Switches: Taxon-
omy, Applications, Challenges, and Future Trends. CoRR (2021).

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

ANCS ’21, December 13-16, 2021, Layfette, IN, USA

arXiv:2102.00643 https://arxiv.org/abs/2102.00643
David Kroenke and David Auer. 2016. Database Processing: Fundamen-

tals, Design, and Implementation. Pearson Education, Limited.
Benjamin Lewis, Matthew Broadbent, and Nicholas Race. 2019. P4ID:
P4 Enhanced Intrusion Detection. In 2019 IEEE Conference on Network
Function Virtualization and Software Defined Networks (NFV-SDN). 1-4.
Manuel Simon. 2021. manuel-simon/t4p4s - GitHub Repository. https:
//github.com/manuel-simon/t4p4s/tree/paper Last accessed: 2021-12-
02.

Daniele Moro, Davide Sanvito, and Antonio Capone. 2020. Flow-
Blaze.p4: a library for quick prototyping of stateful SDN applications
in P4. In 2020 IEEE Conference on Network Function Virtualization and
Software Defined Networks (NFV-SDN). 95-99.

P4 Language Consortium. 2021. P4 Portable NIC Architecture (PNA).
https://p4.org/p4-spec/docs/PNA.html Last accessed: 2021-10-03.
Pensando. 2021. Pensando DSC-25 Distributed Services Cardi—Product
Brief. https://pensando.io/wp-content/uploads/2020/03/Pensando-
DSC-25-Product-Brief.pdf Last accessed: 2021-10-11.

Salvatore Pontarelli, Roberto Bifulco, Marco Bonola, Carmelo Cascone,
Marco Spaziani, Valerio Bruschi, Davide Sanvito, Giuseppe Siracusano,
Antonio Capone, Michio Honda, et al. 2019. Flowblaze: Stateful packet
processing in hardware. In 16th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 19). 531-548.

Prem Jain. 2021. The Value of P4 Programmability at the Network
Edge. https://opennetworking.org/wp-content/uploads/2021/05/2021-
P4-WS-Prem-Jain-Slides.pdf Last accessed: 2021-10-11.

Dominik Scholz, Sebastian Gallenmiiller, Henning Stubbe, and Georg
Carle. 2020. SYN Flood Defense in Programmable Data Planes. In
EuroP4@CoNEXT 2020: Proceedings of the 3rd P4 Workshop in Europe,
Barcelona, Spain, December 1, 2020. ACM, 13-20.

Dominik Scholz, Henning Stubbe, Sebastian Gallenmiiller, and Georg
Carle. 2020. Key Properties of Programmable Data Plane Targets. In
32nd International Teletraffic Congress, ITC 2020, Osaka, Japan, Septem-
ber 22-24, 2020, Yuming Jiang, Hideyuki Shimonishi, and Kenji Leibnitz
(Eds.). IEEE, 114-122.

Alexandru Seibulescu and Mario Baldi. 2020. Leveraging P4 Flexibility
to Expose Target-specific Features. In EuroP4@CoNEXT 2020: Proceed-
ings of the 3rd P4 Workshop in Europe, Barcelona, Spain, December 1,
2020. ACM, 36-42.

Yan Solihin. 2015. Fundamentals of parallel multicore architecture. CRC
Press.

The P4.org API Working Group. 2021. P4Runtime Specification.
https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html/ Last
accessed: 2021-10-21.

Péter Voros, Daniel Horpacsi, Robert Kitlei, Daniel Lesko, Maté Tejfel,
and Sandor Laki. 2018. T4P4S: A Target-independent Compiler for
Protocol-independent Packet Processors.

Eder Ollora Zaballa, David Franco, Zifan Zhou, and Michael S. Berger.
2020. P4Knocking: Offloading host-based firewall functionalities to
the network. In 2020 23rd Conference on Innovation in Clouds, Internet
and Networks and Workshops (ICIN). 7-12.

Yu Zhou, Chen Sun, Honggiang Harry Liu, Rui Miao, Shi Bai, Bo Li,
Zhilong Zheng, Lingjun Zhu, Zhen Shen, Yongqing Xi, Pengcheng
Zhang, Dennis Cai, Ming Zhang, and Mingwei Xu. 2020. Flow Event
Telemetry on Programmable Data Plane. In SIGCOMM °20: Proceedings
of the 2020 Annual conference of the ACM Special Interest Group on
Data Communication on the applications, technologies, architectures,
and protocols for computer communication, Virtual Event, USA, August
10-14, 2020. ACM, 76-89.

https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/
http://www.opennetworking.org/wp-content/uploads/2020/04/Plenary-4-Slide-Deck.pdf
http://www.opennetworking.org/wp-content/uploads/2020/04/Plenary-4-Slide-Deck.pdf
https://static.sched.com/hosted_files/2ndp4workshop2015/80/Politecnico%20di%20Milano%2C%20P4%20Workshop%20Nov%202015.pdf
https://static.sched.com/hosted_files/2ndp4workshop2015/80/Politecnico%20di%20Milano%2C%20P4%20Workshop%20Nov%202015.pdf
https://static.sched.com/hosted_files/2ndp4workshop2015/80/Politecnico%20di%20Milano%2C%20P4%20Workshop%20Nov%202015.pdf
https://www.dpdk.org/
https://doc.dpdk.org/guides/prog_guide/hash_lib.html
https://doc.dpdk.org/guides/prog_guide/hash_lib.html
https://arxiv.org/abs/2101.10632
https://arxiv.org/abs/2101.10632
https://man7.org/linux/man-pages/man3/usleep.3.html
https://man7.org/linux/man-pages/man3/usleep.3.html
https://arxiv.org/abs/2102.00643
https://arxiv.org/abs/2102.00643
https://github.com/manuel-simon/t4p4s/tree/paper
https://github.com/manuel-simon/t4p4s/tree/paper
https://p4.org/p4-spec/docs/PNA.html
https://pensando.io/wp-content/uploads/2020/03/Pensando-DSC-25-Product-Brief.pdf
https://pensando.io/wp-content/uploads/2020/03/Pensando-DSC-25-Product-Brief.pdf
https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Prem-Jain-Slides.pdf
https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Prem-Jain-Slides.pdf
https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html/

	Abstract
	1 Introduction
	2 Background & Related Work
	3 Match-Action Tables in t4p4s
	4 Evaluation Setup
	5 Data Plane Table Updates
	5.1 Implementation & Evaluation
	5.2 Discussion

	6 Table Architecture
	6.1 Consistency
	6.2 Cache-efficient Storage Design
	6.3 Discussion

	7 Application to Other Targets
	8 Conclusion
	Acknowledgments
	References

