
SYN Flood Defense in Programmable Data Planes
Dominik Scholz, Sebastian Gallenmüller, Henning Stubbe, and Georg Carle

Technical University of Munich
{scholz|gallenmu|stubbe|carle}@net.in.tum.de

ABSTRACT
The SYN flood attack is a common attack strategy as part of Dis-
tributed Denial-of-Service, which steadily becomes more frequent
and of higher volume. To defend against SYN floods, preventing
valuable service downtime, malicious traffic has to be separated
from legitimate TCP requests. For this challenge, sophisticated
filtering mechanisms operating at high bandwidths are needed.

Modern programmable data plane devices can handle traffic
in the 10Gbit/s range without overloading. We discuss how we
can harness their performance to defend entire networks against
SYN flood attacks. Therefore, we analyze different defense strate-
gies, SYN authentication and SYN cookie, and discuss implementa-
tion difficulties when ported to different target data planes: software,
network processors, and FPGAs. We provide prototype implemen-
tations and performance figures for all three platforms.

CCS CONCEPTS
• Networks → Transport protocols; Network performance
analysis; Middle boxes / network appliances.

KEYWORDS
SYN flood mitigation, programmable data planes, P4

ACM Reference Format:
Dominik Scholz, Sebastian Gallenmüller, Henning Stubbe, and Georg Carle.
2020. SYN Flood Defense in Programmable Data Planes. In 3rd P4 Workshop
in Europe (EuroP4’20), December 1, 2020, Barcelona, Spain. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3426744.3431323

1 INTRODUCTION
The frequency, volume, and diversity of Distributed Denial-of-
Service (DDoS) attacks continue to increase [17]. TCP SYN floods
are a popular attack vector used in larger DDoS attacks [19, 20].
According to Kaspersky Lab’s quarterly reports, from 2017 to 2020,
the share of SYN flood traffic during large-scale DDoS attacks rose
up to 92 %, becoming the “most popular type of attack” [11].

There are two potential mitigation methods against SYN flood at-
tacks: generic defense that tackles any form of DDoS attack and SYN-
specific defense fighting off TCP SYN flood in particular. Generic
defense mechanisms remove, filter, or redirect malicious traffic

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EuroP4’20, December 1, 2020, Barcelona, Spain
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8181-9/20/12. . . $15.00
https://doi.org/10.1145/3426744.3431323

through techniques such as blackholing of address ranges or per-
flow tracking of traffic statistics [27]. The SYN-specific approach
uses stateless client puzzles like SYN cookies or SYN authentica-
tion [2, 3]. These require the client to behave correctly beyond the
initial SYN segment. The strength of the SYN-specific defense ca-
pabilities relies on the available performance to enforce and check
correct TCP behavior before finishing a TCP handshake.

In this work, we investigate powerful off-the-shelf data planes
such as the software-based DPDK, or programmable hardware such
as Network Processing Units (NPU) or FPGAs that can be pro-
grammed using the P4 domain-specific language (DSL) to mitigate
SYN flood attacks. Specifically, we focus on SYN-specific solutions
that provide high service guarantees with low latency to legitimate
clients while under SYN flood attack. We discuss the benefits and
challenges of implementing these strategies using the P4 DSL com-
pared to traditional software packet processing frameworks with
kernel-bypass. We provide insights in regards to portability and
target-specific code adaptions and use measurements to highlight
connection success probability and latency.

The paper is outlined as follows. Section 2 summarizes the state
of the art for SYN flood defense and deployment scenarios. Section 3
discusses the design decisions and challenges encountered in our
prototype implementations using the P4 DSL. We compare our
prototypes in regard to performance and resource consumption
metrics in Section 4. Related work is presented in Section 5 before
we conclude in Section 6. We provide additional details on SYN
mitigation in a proxy setup (Appendix A), as well as a case study
on SYN cookies in Linux (Appendix B).

2 SYN FLOOD MITIGATION
SYN floodmitigation can be separated into generic and SYN-specific
approaches, deployed in different scenarios.

2.1 Generic Defense
The simplest mitigation approach is to blackhole all attack traffic,
including SYN flood, during an ongoing attack, for instance, by
filtering based on the source subnet. Unfortunately, this approach
is also rejecting any legitimate connection attempts from these
subnets. Another approach, using IP anycast to spread the load
over multiple networks, increasing network resilience and the at-
tack surface used to mitigate the attack, is an improvement [18].
However, an anycast network is challenging to implement [18] and
during large attacks, collateral damage, impairing other services
in the network, is possible [14]. Lastly, tracking per-flow statistics
and using thresholds can be used to distinguish legitimate from
suspected attack traffic [27].

The mentioned generic approaches are simple and effective, but
highly unspecific. Using a shotgun approach, these techniques
achieve their goal but can cause undesired effects, i.e., produce

https://doi.org/10.1145/3426744.3431323
https://doi.org/10.1145/3426744.3431323

EuroP4’20, December 1, 2020, Barcelona, Spain Dominik Scholz, Sebastian Gallenmüller, Henning Stubbe, and Georg Carle

false positives/negatives, therefore, reducing the service quality for
legitimate clients.

2.2 SYN-specific Defense
Techniques like SYN cookie [3] or SYN authentication [16, 21] im-
prove on the generic approaches. They have a narrow, highly spe-
cific focus; they employ sophisticated challenges for TCP clients to
specifically target malicious SYN flood traffic. The widely deployed
SYN cookie includes the challenge in the SYN/ACK, secured with
a cryptographic hash that is bound to the flow, and expects an
appropriate final segment of the TCP handshake from the client.
Only when this is completed, the connection is forwarded to the
application. SYN authentication whitelists the client or the whole
subnet once the challenge is completed and then accepts future con-
nections from this source. The challenge can either be to trigger a
reset, react to a reset, finish the handshake, or initiate a higher-layer
connection (e.g., HTTP request). Challenges can be combined with
a cryptographic hash or fingerprinting techniques.We present more
details regarding SYN cookies and SYN authentication in Appen-
dix A. For the remainder of the paper, we focus on three techniques:
regular SYN cookies, as well as SYN authentication performing a
full handshake with and without including a cryptographic hash as
cookie (referred to as Authcookie and Authfull, respectively). Only
these strategies offer adequate protection while also achieving high
service quality.

SYN authentication neither requires extensive memory nor CPU
resources. The exception is the calculation of cryptographic hashes.
Calculating cookie values is the limiting factor for efficiency, i.e.,
how much SYN flood can be processed. None of the SYN authentica-
tion strategies is transparent for the client application, as they reset
the initial connection. A downside of SYN cookies is the limited
support for TCP options.

SYN-specific strategies often compromise TCP signaling capa-
bilities [21], as a retransmission of a SYN/ACK segment is not pos-
sible. This impairment is more severe for SYN cookies than for
SYN authentication, as the latter works on the assumption that
the client retries failed connection attempts. Assuming all packets
are received correctly and within the timeframe of the calculated
cookie, no technique classifies legitimate traffic as malicious. How-
ever, only SYN cookies and Authcookie cannot be circumvented by
malicious traffic due to the cryptographic client puzzle.

2.3 Deployment Scenario
Generic mitigation approaches like blackholing of volumetric at-
tacks can be deployed anywhere in the network, preferably close
towards the edge or as part of a traffic scrubbing center. The afor-
mentioned SYN-specific strategies, targeting transport or applica-
tion layer, are usually implemented directly on the server or using
a separate node as proxy. When deployed on the endhost, mitigation
does not scale as it only protects this particular node, and takes
away the server’s resources required to serve its regular purpose.
Consequently, SYN flood mitigation is commonly deployed as SYN
proxy. This proxy can be used to protect multiple servers, or, as part
of a traffic scrubbing center or in the cloud, even multiple networks.
We discuss the requirements for implementing a flexible and open-
source SYN proxy using SYN cookies and SYN authentication.

SYN cookies, when used in a proxy setup (see Figure 6a in Ap-
pendix A), raise several issues. After finishing the initial handshake,
the proxy cannot forward segments of the client to the server, as the
server is still unaware of the connection. To uphold transparency,
the proxy has to start a second connection between itself and the
server. While the proxy can reuse the first handshake’s sequence
number in its SYN segment, the server will choose its own initial
sequence number at random, i.e., it does not match the proxy’s
sequence number of the connection with the client. The proxy has
to store the difference between these sequence numbers and modify
sequence and acknowledgment numbers of all future segments of
the connection.

Another issue is that the first data segment of the client is sent
directly after finishing the first handshake. This poses a problem
for the proxy, as its handshake with the server is likely not com-
pleted yet. If the proxy drops this data segment, the client retrans-
mits it after a timeout, for which 200ms is a common time period.
Considering that typical RTTs are only a hundredth of this, this
retransmission causes a significant delay penalty. A solution for
the proxy is to temporarily store the client’s initial data segment.
Once the second handshake is completed, the stored segment can
be translated and forwarded. Alternatively, the proxy can actively
notify the client once the second handshake is complete, by resend-
ing the SYN/ACK segment, triggering a retransmission of the data
segment. Further improvements include setting a window size of
zero (zero window) in the original SYN/ACK segment, indicating
that the server cannot process any more data. Until the SYN/ACK
is resent with a non-zero window size, the client will not send the
initial data segment, reducing bandwidth wasted for a segment that
will be dropped.

SYN authentication is efficient due to its simplicity (see Fig-
ure 6b in Appendix A). The first connection attempt is interrupted.
By whitelisting all further attempts for this client, the proxy does
not have to keep a separate connection with the server or perform
sequence number translation. No connection state has to be stored
by the proxy, wherefore, a simple bitmap representing the whitelist
is sufficient. However, as ACK segments of established connections
cannot be distinguished from the third segment of the handshake,
the proxy has to check every segment against the whitelist. If the
origin is not whitelisted, the segment is assumed to be the third
segment of the handshake and, when using Authcookie, the cookie
hash is verified.

Comparison: SYN cookies and SYN authentication differ in re-
gards to transparency and option support. SYN cookie has tomodify
every segment, while SYN authentication only modifies segments
during the handshake. For the latter, state size depends on the
whitelisting granularity, e.g., per flow or per subnet. However, state
is reduced to a few bit per entry compared to keeping the sequence
number difference per flow for SYN cookies. Both strategies need
to perform a lookup for every segment (aside from SYN segments
for SYN cookie) to determine the action. However, with P4 devices
using match-action pipelines, this can be done efficiently.

Both approaches, SYN cookies and SYN authentication, violate
the end-to-end principle of TCP, especially when deployed as proxy.
However, only during attacks, where a TCP SYN flood would likely
cause a service downtime, we deem the application of these ap-
proaches justified. Instead of no service, the goal is to provide a

SYN Flood Defense in Programmable Data Planes EuroP4’20, December 1, 2020, Barcelona, Spain

DPDK

U
se
rs
p
ac
e

K
er
n
el

H
W

t4p4s

NIC

ProxyP4

Controller

(a) P4 Software
U
se
rs
p
ac
e

K
er
n
el

H
W

NIC
P4

Controller

(b) P4 Hardware

Figure 1: Architecture of SYN flood mitigation in pro-
grammable data planes

best-effort approach of service quality for legitimate flows, i.e.,
higher delay or minor connection disruptions are acceptable. We
want to compare the different strategies; therefore, we focus our
investigation on the tradeoff between efficiency (performance) and
correct classification (false positives/negatives).

3 SYN PROXY IN P4
P4 [4] is a standardized DSL for programming software and hard-
ware data planes. It enables rapid development cycles and creates
portable implementations of network applications in software and
hardware data planes. P4’s match-action-based paradigm makes it
an excellent language to realize packet filtering and DoS mitigation
applications.

Opposed to raw packet handling, packets can only be modified
through constructs allowed by the language. Furthermore, P4 has
a clear separation between data and control plane (see Figure 1):
while the data plane can match the entries of P4 tables to incoming
packets and perform respective actions, only the control plane can
insert new entries into a P4 table. The data plane communicates
with the control plane, which in our case runs on the same node
that also runs the P4 data plane, using digest messages.

3.1 Realized Programs and Targets
We implemented P4 programs for SYN cookie and SYN authenti-
cation strategies and tested their functionality using the Mininet-
based bmv2 P4 switch target. For all platforms, the core P4 program,
available as open source [22], remains the same. However, due to
using different P4 architecture models and offering different extern
interfaces, all platforms require small modifications to the P4 pro-
gram. To reduce overhead, we only ported the implementations
requiring simpler state maintenance, Authfull and Authcookie, to
multiple P4 targets: t4p4s [26], a DPDK-based P4 software target
running on commercial off-the-shelf (COTS) hardware (see Fig-
ure 1a); the NFP-4000 Agilio SmartNIC [10] NPU (see Figure 1b);
and the NetFPGA SUME [9].

3.2 Program Core
The P4 implementations for the mentioned strategies follow the
same structure independent of the used strategy. At first, packets are
parsed up to and including the TCP header. The following match-
action pipeline at its core works as an L2 forwarder. Depending on

the determined outgoing port, MAC addresses are updated using
a table lookup. As P4 cannot generate new packets, the received
packet is modified according to the strategy used, TCP flags set in
the received packet, and the state kept by the proxy. State—whitelist
or sequence number difference—is maintained as match-action
table, requiring one lookup for every segment. No changes to the IP
layer are performed besides exchanging IP addresses, requiring only
an update of the TCP checksum before the packet is transmitted.

3.3 Target-specific Changes
Aside from the core logic that is portable between different P4
targets, two aspects require target-specific changes. First, individ-
ual targets use different P4 architecture models, i.e., the order or
number of pipeline stages and the extern interfaces differ. For the
former, this only requires changes to the structure of the program
depending on the concrete model (e.g., v1model for t4p4s and Sim-
pleSumeSwitch for NetFPGA). The extern interfaces are challenging
for SYN mitigation as it requires a cryptographic hash function
as extern. For a software target like t4p4s, or a target that can
be extended using software like the NPU, even complex externs
can be tightly integrated by the developer. For other, in particular,
hardware targets, other approaches like adding the functionality
as separate pipeline block, extending the architecture model, is
possible [23]. If externs cannot be changed or added (e.g., ASIC),
functionality can be offloaded to other hardware accelerators or a
separate node. Even if the main computational task of creating a
SYN cookie, the hash calculation, is not part of the P4 language, P4
is beneficial as the processing logic can be easily implemented in a
portable and understandable fashion.

3.4 Cookie Calculation
To calculate a standard-conform cookie, the P4 target needs to offer
functionality for generating a timestamp (replay protection) and
hash calculation. Integration of cryptographic hash functions in
P4 data planes is currently possible for software, NPU, and FPGA
targets [23]. The integration and use of, for instance, SipHash as
extern on the software target is straight forward as it can be added as
library to the hardware-dependent t4p4s code. We choose SipHash
as it is designed for short inputs like packet data [1], while achieving
good performance when integrated into P4 targets [23]. Although
the NPU target includes a crypto accelerator for SHA1 and SHA2,
it was unavailable on our card, wherefore we opted to integrate a
SipHash function as extern. The NPU allows to add extern functions
written in a variant of C used to program its processing cores. We
are not aware of a P4 ASIC that supports cryptographic functions.

Replay protection can also be achieved by using a table contain-
ing a counter, which is updated by the control plane.

3.5 Whitelisting
The easiest approach to perform whitelisting in a P4 program is to
use a match-action table. The data plane informs the control plane
through a digest message whenever a flow or IP address should be
whitelisted and the control plane inserts an according table entry.
The disadvantage is that this communication results in delay until
the rule takes effect in the data plane.

EuroP4’20, December 1, 2020, Barcelona, Spain Dominik Scholz, Sebastian Gallenmüller, Henning Stubbe, and Georg Carle

An alternative approach that does not include a control plane
is to use a Bloom filter data structure built with registers. This
precludes additional communication delays, however, depending
on the target and implementation of the register extern, registers
might require more resources or have slower read/write access
times compared to match-action table entries. Furthermore, addi-
tional complexity is required to maintain the state in the Bloom
filter, in particular, evicting outdated entries. As both methods have
tradeoffs, which method to use depends on the concrete target de-
vice and deployment requirements, e.g., if the delay to insert table
entries is acceptable.

3.6 Buffering Packets
Stalling the initial TCP data segment when using the SYN cookie
strategy is not possible with P4, as P4 has no construct to write
entire packets to memory. Stalling is only possible, if the target
provides an extern for this task. To perform this operation at line-
rate in a programmable ASIC, FPGA, or NPU, however, is unlikely
due to the memory capacity and memory bandwidth required.

An alternative is to use a secondary COTS device as storage
server (slow-path), programmed using, for instance, a framework
like DPDK. If a packet needs to be stalled, the proxy forwards this
segment to the storage server. Once the handshake is finished, the
proxy informs the storage server, e.g., via the controller, to transmit
the stalled packet. The downsides are the increased complexity for
the hardware setup, as well as necessary controller logic.

As the underlying problem can be circumvented by using a TCP
zero window or active notification by resending the SYN/ACK (cf.
Section 2.3), we did not implement this slow-path solution.

4 EVALUATION
Using a standardized DSL like P4 makes program development
simpler and portable to ASIC, FPGA, and NPU devices, but comes
at the cost of flexibility as the set of functions offered is limited. The
following uses empirical measurements to compare performance
indicators of the discussed implementations. We also evaluate a
SYN proxy developed by us with the software packet processing
framework libmoon [8] based on DPDK [22]. As our implementa-
tion uses the same underlying framework as t4p4s, we can compare
the P4 solution to a complex implementation using raw packet
handling and kernel-bypass techniques.

4.1 Key Performance Indicators
The primary performance indicator for a SYN proxy is the total SYN
flood processed. From a user perspective, e.g., the number of HTTP
requests served without packet loss and the overall latency are a
concern. While, in general, the latency of a device or application
when operating in an overload scenario is not of interest, in the
case of a SYN proxy, it is highly likely that the proxy will reach an
overload state during a high volume attack. We, therefore, analyze
latency values in low (no SYN flood), middle (50 % of total processed
SYN flood), and overload scenarios.

4.2 Measurement Setup
As shown in Figure 2, the load generating host sends malicious
SYN flood and legitimate HTTP traffic via two separate links to

Switch SYN Proxy

WebserverLoadGen

SYN
Flood

Real
HTTP

Figure 2: Measurement Setup

the Device-under-Test (DuT). Using a 10GbE switch, the traffic is
mixed so that malicious and legitimate traffic arrive at the DuT at
the same port, i.e., are indistinguishable based on the ingress port.
We use MoonGen [6] as load generator for the SYN flood traffic.
A constant load of HTTP queries is generated using wrk2 [25].
All measurements are run for 30 s, allowing for accurate latency
results up to the 99.99 %-ile. The DuT forwards traffic classified as
legitimate to a separate host hosting the webserver.

For measurements using software targets, the DuT is a COTS
server, equipped with an Intel X722 NIC and an Intel Xeon Gold
6130 CPU clocked at 2.1GHz. In other scenarios, the DuT is a server
equipped with either a 10GbE P4-programmable NPU or FPGA. For
all measurements with the COTS system, we disabled turbo boost,
set the CPU frequency to the maximum of 2.1GHz, and pinned all
traffic to one CPU core. The webserver (nginx, v1.10.3) is limited to
a single worker and CPU core and serves a 1 kB static website.

4.3 Webserver Overload
Preliminary tests show that the webserver is capable of processing
up to 30 000 HTTP requests per second for 10 to 10 000 parallel con-
nections. However, latency increases when using more than 1 000
parallel connections or more than 4 000 requests per second. We
measured a reduced connection probability for more than 700 par-
allel connections, even when issuing only 100 HTTP requests per
second. As we do not want to measure overload artifacts of the web-
server, we restrict our measurements to 100 parallel connections,
issuing a total of 100 or 1 000 HTTP requests per second.

4.4 Processed SYN Flood
Figure 3 shows the maximum SYN flood each implementation is
able to process. For all implementations, the use of a cryptographic
hash function is the limiting factor and reduces the maximum pro-
cessed SYN flood by up to 50 %, which is comparable to other stud-
ies [23]. Due to the possibility to manually optimize and parallelize
packet processing, the libmoon/DPDK implementation achieves up
to 50 % better performance than the t4p4s implementation using P4.
In contrast, the libmoon/DPDK implementation requires approx.
1 000 lines of code and careful development and optimization. Only
the hardware P4 targets are capable of processing up to 14Mpps of
SYN flood traffic when using the simpler Authfull strategy.

All implemented strategies scale linearly with the number of
cores or devices used (not shown), such that even when cookies
are calculated, throughput close to line-rate can be reached.

4.5 Quality of HTTP Requests
For all implemented solutions the connection probability for 100
HTTP requests per second is at 100% until the point of overload
(Figure 4). After this point, the probability slowly drops. As the
webserver is not overloaded, all requests reaching the server are

SYN Flood Defense in Programmable Data Planes EuroP4’20, December 1, 2020, Barcelona, Spain

DPDK t4p4s NPU NetFPGA
0

5

10

15

M
a
x
im

u
m

S
Y
N
/
A
C
K

ra
te

[M
p
p
s]

Authfull Authcookie

Figure 3: Maximum processed SYN flood traffic

0

20

40

60

80

100

100 Requests/s

C
on

n
ec

ti
on

p
ro

b
ab

il
it

y
[%

]

DPDK Authfull t4p4s Authfull NPU Authfull

0 2 4 6 8 10 12 14
0

20

40

60

80

1000 Requests/s

SYN flood [Mpps]

Figure 4: Connection probability for 100 and 1 000 HTTP re-
quests per second

served. However, with increasing SYN flood, causing processing
overload for the proxy, the chance that the proxy is able to process
and forward legitimate traffic drops. As the NPU is able to process
the SYN flood at almost line-rate, no HTTP packet is lost.

More requests per second reduce the connection probability dur-
ing overload. This is due to the same number of parallel connections
being used. The number of connections experiencing a timeout re-
mains the same, however, in the case of having more requests per
second for a given connection, one timeout has a larger impact.
Increasing the number of parallel connections reverts this effect.

To reduce clutter, we do not show Authcookie. For these strate-
gies, the slope is the same as for their respective Authfull counter-
parts, however, shifted to the left. This shift is correlated to the
reduced maximum SYN flood that can be processed. For the NPU
platform the probability starts dropping when reaching approxi-
mately 10Mpps.

Connection latencies for the best case (no SYN flood), average
case (50 % SYN flood, relative to maximum processed flood) and
worst case (overload, maximum processed flood) are shown in
Figure 5. For most scenarios, the median latency is between 1 and
1.4ms, while for the no flood and 50% cases a long-tail up to 4ms
is visible. Both implementations for the CPU target show sporadic
outliers and a long-tail behavior with up to a second already for
the 90th percentile during overload. The long-tail is expected due
to batch processing and operating system interrupts typical for
software packet processing frameworks like DPDK [7]. Due to the
lower probability when issuing 1 000 HTTP requests per second
for 100 parallel connections, the median latency during overload is
above one second.

The exception is the NPU, showing latencies between 1 and
4ms without outliers even under overload. Further, the latency
for no flood is worse compared to when increasing the SYN flood

10−1

100
101
102
103
104
105

DPDK Authfull

10−1

100
101
102
103
104

t4p4s Authfull

L
a
te
n
cy

[m
s]

(l
o
g)

0 50 90 99 99.9 99.99 99.999
10−1

100
101
102
103
104

NPU Authfull

Percentile [%] (log)

100, No Flood 100, 50% Flood 100, Overload

1000, No Flood 1000, 50% Flood 1000, Overload

Figure 5: High dynamic range latency for 100 and 1 000
HTTP requests per second

load. We attribute this to specifics of the architecture, improving
processing when increasing the backpressure on internal buffers
or when reducing idle cycles caused by energy-saving features.

For the Authfull implementation on the NetFPGA SUME, the
latency for up to 1 000 HTTP requests per second was stable be-
tween 1 to 4ms without outliers up to a SYN flood of 1.5Mpps (not
shown). However, for reasons unknown to us, the program stopped
working for higher loads of mixed traffic. Related work shows that
the NetFPGA SUME, in general, is able to run P4 programs of higher
complexity with latency below 10 µs and no long-tail. This is even
possible when modifying the P4 architecture of the NetFPGA to
integrate a SipHash or SHA3 core, which can be used to hash even
complete packet data. [23]

4.6 Whitelisting — Scaling Match-Action Tables
Our previous work [24] shows that the number of entries in match-
action tables on P4 targets scale in regards to performance and
resource usage. For instance, more than one million 32 B exact
match entries for the t4p4s DPDK can be inserted. On a software
target, the bottleneck becomes the CPU cache, quickly reducing the
performance when exceeding L3 cache capacity. However, adding
even more entries is still possible. On a hardware target, exhausting
the available resources is a hard limit. While one entry depends on
its match size (i.e., the key), action data, and action performed, suf-
ficient resources for up to several hundreds of thousands of entries
are available on, for instance, the commercial Intel Tofino ASIC
(neglecting resources required by the rest of the P4 program). [24]

If the resources for whitelisting are restricted by the P4 target,
whitelisting can also be aggregated. Instead of whitelisting individ-
ual flows identified by the 5-tuple, whitelisting can be performed
based only on the source IP or even the complete source subnet. This
results in a tradeoff between whitelisting granularity and resource
consumption.

EuroP4’20, December 1, 2020, Barcelona, Spain Dominik Scholz, Sebastian Gallenmüller, Henning Stubbe, and Georg Carle

4.7 FPGA Resource Consumption
For the NetFPGA SUME, the synthesized P4 proxy program only
uses up to one third of the total resources. This leaves enough
resources to further enhance the program to defend against other
attacks or to add a SipHash implementation into the P4 pipeline [23],
allowing to even perform Authcookie.

4.8 Programming Experience
Implementing SYN mitigation mechanisms in programmable data
planes is drastically simplified using the P4 language compared to
raw packet handling using, for instance, libmoon/DPDK. Its well-
defined programming language, architecture model and extern
interfaces aid the implementation of the overall logic independent
of the target platform, without the need to take care of memory
and buffer management. Furthermore, P4 supports hardware tar-
gets, where implementing such complex processing was previously
infeasible or required domain-specific knowledge. However, de-
pending on the concrete target, it is subjective and domain-specific
influences of the target device can cause challenges. For instance,
when using t4p4s, knowledge about the code architecture, DPDK
and C is required, while debugging the NetFPGA SUME requires
VHDL expertise. All targets provide different programming fron-
tends, ranging from Linux command-line scripts for t4p4s and
the P4→NetFPGA toolchain, to programmer studios for the NPU.
Thereby, an expected difference in the user experience can be noted
between research projects and commercial products.

5 RELATEDWORK
Besides Linux, other major operating systems like Windows and
FreeBSD utilize TCP SYN cookies as preferred mitigation method,
enabled by default during periods with high traffic volumes [13].
Cf. Appendix B for a performance case study of Linux SYN cookies.

SYN cookies, as part of a SYN proxy, have been implemented by
multiple projects. A SYNPROXY module for the netfilter framework
is available in Linux [12]. Managing the SYN flood, SYNPROXY
forwards only legitimate traffic to the Linux kernel. To do so, the
initial SYN segment is intercepted by netfilter, calculating a SYN
cookie. Once the client finishes connection establishment with a
verified cookie, the proxy sends a SYN segment to the original server
destination, using the initially negotiated options. After finishing
the second handshake, the proxy is only involved in sequence
number and timestamp translation [12]. This approach enables
mitigation of a 2Mpps SYN flood using only 7 % CPU utilization
on an eight core test system [12]. The disadvantage is that it is
integrated with a Linux end-host, i.e., it cannot be deployed as proxy
or ported to different target platforms. Our P4 implementations
improve on this as they can be deployed on any P4 target in a proxy
or end-host setup.

Zhang et al. propose Poseidon [27], a DDoS defense framework
that maps customizable mitigation strategies to programmable data
planes in the network. The use-case is as part of a scrubbing center,
cleaning the traffic from not only SYN flood traffic, but general DoS
traffic of customer networks. Poseidon uses generic defenses like
packet counting and probabilities to mitigate most attack vectors,
including SYN floods. For HTTP floods, Poseidon does not create
client puzzles in P4, but creates them in a separate DPDK proxy.

This comes at the cost of higher end-to-end latency (approx. 70ms),
similar to existing commercial solutions. We improve on Posei-
don’s SYN flood mitigation by performing puzzles in the data plane
without the need for probabilities. In fact, our solution could be
integrated as part of Poseidon’s network orchestration framework.

Large-scale commercial solutions exist, however, due to the
closed-source nature, implementation details are rare. For instance,
the Arbor Threat Mitigation System [15] provides middleboxes of
different scale for traffic scrubbing, including unspecified SYN flood
mitigation. Cloudflare offloads the TCP handshake to the cloud
using an IP anycast network [5, 18]. Only once the handshake
completes it is forwarded to the target server.

6 CONCLUSION
SYN floods are still the predominant traffic for high-volume (D)DoS
attacks on the Internet. The client puzzle—including a crypto-
graphic hash value—as part of SYN cookies or SYN authentication
is the single effective SYN-specific defense strategy that is not based
on blackholing or heuristics. It guarantees that no malicious connec-
tion attempts are successful, while not falsely rejecting legitimate
requests. Due to the computational complexity of cryptographic
hash functions, this is the bottleneck for these implementations.
The SYN cookies and SYN authentication strategies both offer simi-
lar protection capabilities, with the former being fully transparent
for TCP clients and the latter being simpler to implement.

Our programmable data plane prototypes have shown that SYN
authentication, when used in a proxy setup, can mitigate SYN floods
at 10GbE line-rate. The P4 solutions are easy to implement and
can be ported to different target platforms, in particular, hardware
devices, which achieve end-to-end connection latencies below 5ms
with low jitter. The P4 software target achieves latencies comparable
to implementations using the libmoon software packet processing
framework.

We conclude that effective and efficient SYN flood mitigation on
modern data planes is possible.With bothmitigation strategies, SYN
cookies and SYN authentication, performing equally well, we rec-
ommend SYN authentication, being the simpler one to implement.
The crucial limiting factor for hardware data plane solutions is the
availability of a suitable cryptographic hash function. However,
cryptographic hash operations can be implemented in hardware
efficiently—demonstrated by large-scale experimental prototypes
such as Bitcoin—which would allow for powerful data plane driven
SYN flood mitigation.

AVAILABILITY
The source code of our SYN proxy implementations for libmoon
and the bmv2 P4 target is available at [22].

ACKNOWLEDGMENTS
This work was supported by the German Research Foundation
(project ModANet under grant no. CA595/11-1) and the German-
French Academy for the Industry of the Future. The authors want
to thank Bassam Jaber for his valuable contributions to the P4
implementations in bmv2, Minoo Rouhi for her survey on SYN
proxy mitigation methods, and the anonymous reviewers for their
valuable feedback.

SYN Flood Defense in Programmable Data Planes EuroP4’20, December 1, 2020, Barcelona, Spain

REFERENCES
[1] Jean-Philippe Aumasson and Daniel J Bernstein. 2012. SipHash: a fast short-input

PRF. In International Conference on Cryptology in India. Springer.
[2] Tuomas Aura, Pekka Nikander, and Jussipekka Leiwo. 2000. DOS-resistant

authentication with client puzzles. In International workshop on security protocols.
Springer.

[3] D. J. Bernstein. 1996. SYN cookies. [Online]. Last visited 2020-09-07. Available:
http://cr.yp.to/syncookies.html.

[4] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al.
2014. P4: Programming protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review (2014).

[5] Cloudflare. 2011. SYN Flood Attack. [Online]. Last visited 2020-10-13. Available:
https://www.cloudflare.com/en-gb/learning/ddos/syn-flood-ddos-attack/.

[6] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, and
Georg Carle. 2015. MoonGen: A Scriptable High-Speed Packet Generator. In
Proceedings of the 2015 ACM Conference on Internet Measurement Conference.
ACM.

[7] Sebastian Gallenmüller, Paul Emmerich, Florian Wohlfart, Daniel Raumer, and
Georg Carle. 2015. Comparison of Frameworks for High-Performance Packet IO.
In ACM/IEEE Symposium on Architectures for Networking and Communications
Systems (ANCS 2015). Oakland, CA, USA.

[8] Sebastian Gallenmüller, Dominik Scholz, Florian Wohlfart, Quirin Scheitle, Paul
Emmerich, and Georg Carle. 2018. High-Performance Packet Processing and
Measurements (Invited Paper). In 10th International Conference on Communication
Systems & Networks (COMSNETS 2018). Bangalore, India.

[9] Stephen Ibanez, Gordon Brebner, Nick McKeown, and Noa Zilberman. 2019. The
P4->NetFPGA Workflow for Line-Rate Packet Processing. In Proceedings of the
2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.

[10] Netronome Systems Inc. 2016. NFP-4000 Theory of Operation. Technical Re-
port. https://www.netronome.com/static/app/img/products/silicon-solutions/
WP_NFP4000_TOO.pdf Last accessed: 2020-09-07.

[11] Oleg Kupreev, Ekaterina Badovskaya, and Alexander Gutnikov. 2020. DDoS
attacks in Q1 2020. [Online]. Last visited 2020-8-26. Available: https://securelist.
com/ddos-attacks-in-q1-2020/96837/.

[12] Patrick McHardy. 2013. netfilter: implement netfilter SYN proxy. [Online]. Last
visited 2020-09-07. Available: https://lwn.net/Articles/563151/.

[13] Microsoft TechNet. [n.d.]. Syn attack protection on Windows Vista, Win-
dows 2008, Windows 7, Windows 2008 R2, Windows 8/8.1, Windows
2012 and Windows 2012 R2. [Online]. Last visited 2020-09-07. Avail-
able: https://blogs.technet.microsoft.com/nettracer/2010/06/01/syn-attack-
protection-on-windows-vista-windows-2008-windows-7-windows-2008-r2-
windows-88-1-windows-2012-and-windows-2012-r2/.

[14] Giovane CM Moura, Ricardo de O Schmidt, John Heidemann, Wouter B de
Vries, Moritz Muller, Lan Wei, and Cristian Hesselman. 2016. Anycast vs. DDoS:
Evaluating the November 2015 root DNS event. In Proceedings of the 2016 Internet
Measurement Conference. 255–270.

[15] Netscout Systems, Inc. 2018. Arbor Threat Mitigation System (TMS). Data Sheet
[Online]. Last visited 2020-10-13. Available: https://www.netscout.com/product/
arbor-threat-mitigation-system.

[16] Raluca Oncioiu and Emil Simion. 2018. Approach to Prevent SYN Flood DoS
Attacks in Cloud. In 2018 International Conference on Communications (COMM).
IEEE.

[17] Charlie Osborne. 2020. 16 DDoS attacks take place every 60 seconds, rates reach
622 Gbps. [Online]. Last visited 2020-8-26. Available: https://www.zdnet.com/
article/16-ddos-attacks-take-place-every-60-seconds-rates-reach-622-gbps/.

[18] Prince, Matthew. 2011. A Brief Primer on Anycast. The Cloudflare Blog [Online].
Last visited 2020-10-13. Available: https://blog.cloudflare.com/a-brief-anycast-
primer/.

[19] radware Inc. 2013. DoS Cyber Attack Campaign Against Israeli Targets. [Online].
Last visited 2020-09-07. Available: https://security.radware.com/ddos-threats-
attacks/threat-advisories-attack-reports/dos-cyber-campaign-against-israeli-
targets/.

[20] radware Inc. 2013. Operation Ababil. [Online]. Last visited 2020-09-07. Available:
https://security.radware.com/WorkArea/DownloadAsset.aspx?id=848.

[21] Livio Ricciulli, Patrick Lincoln, and Pankaj Kakkar. 1999. TCP SYN flooding
defense. CNDS.

[22] Dominik Scholz and Bassam Jaber. 2020. SYN Proxy Implementations. [Online].
Last visited 2020-09-07. Available: https://github.com/syn-proxy.

[23] Dominik Scholz, Andreas Oeldemann, Fabien Geyer, Sebastian Gallenmüller,
Henning Stubbe, Thomas Wild, Andreas Herkersdorf, and Georg Carle. 2019.
Cryptographic Hashing in P4 Data Planes. In 2nd P4Workshop in Europe (EUROP4).
Cambridge, UK.

[24] Dominik Scholz, Henning Stubbe, Sebastian Gallenmüller, and Georg Carle. 2020.
Key Properties of Programmable Data Plane Targets. In Teletraffic Congress (ITC
32), 2020 32nd International. Osaka, Japan.

[25] Gil Tene. 2012. wrk2 - a HTTP benchmarking tool based mostly on wrk. [Online].
Last visited 2020-09-07. Available: https://github.com/giltene/wrk2.

[26] Péter Vörös, Dániel Horpácsi, Róbert Kitlei, Dániel Leskó, Máté Tejfel, and Sándor
Laki. 2018. „T4P4S: A Target-independent Compiler for Protocolindependent
Packet Processors”. In IEEE HPSR.

[27] Menghao Zhang, Guanyu Li, Shicheng Wang, Chang Liu, Ang Chen, Hongxin
Hu, Guofei Gu, Qianqian Li, Mingwei Xu, and Jianping Wu. 2020. Poseidon:
Mitigating volumetric ddos attacks with programmable switches. In Proceedings
of NDSS.

A SYN PROXY MITIGATION PROCEDURES
In the following, we explain the actions performed by a SYN proxy
when deploying SYN cookie or SYN authentication strategies.

A.1 SYN Cookie
For SYN cookies [3], state, usually kept by the server, is encoded
and put into the initial server-side sequence number (𝑦 in Figure 6a).
A legitimate client will finish the handshake sending a TCP ACK
segment, setting the acknowledgment number to 𝑦 + 1. The server
only accepts the connection and creates the necessary state, if
the received number can be decoded and verified. Using standard
SYN cookies, the 32 bit initial sequence number is made up of three
different values: a timestamp value to prevent the collection and
re-injection of old cookies [3]; the Maximum Segment Size option
as it is essential for TCP performance; and a cryptographic hash
of the connection 4-tuple (source and destination IP addresses and
ports) and the timestamp value. This way, it is infeasible for an
attacker to create a valid SYN cookie by itself.

Only after the verification of the cookie, the full state object
for an established TCP connection is created by the proxy. As the
server is unaware of the connection, the proxy has to perform a
second handshake with the server. The server chooses a different
initial sequence number (𝑧), wherefore the proxy has to store the
difference between the client- and server-side number (𝛿). For all
subsequent segments of the connection, the proxy has to modify
sequence and acknowledgment numbers accordingly.

A.2 SYN Authentication
SYN authentication aims to further reduce the resources required
to verify the client’s legitimacy. Figure 6b shows SYN authentication
using a full TCP handshake with cryptographic cookie (Authcookie).
Once the client finishes the handshake, i.e., the client is willing to
create its own TCP connection state, the server resets the connec-
tion and whitelists future connection attempts. These attempts are
then directly forwarded by the proxy, requiring no additional TCP
handshake with the server or modification of the packets.

Authfull is the same procedure as Authcookie, however, skipping
the hash calculation and verification. Consequently, Authfull is
easier to circumvent.

B CASE STUDY: SYN COOKIES IN LINUX
The Linux TCP/IP stack has SYN cookies enabled by default, but
only uses them when the backlog, the buffer for unfinished TCP
connections, of a socket is already full. As a case study, we analyze
two different Linux versions when subjected to a SYN flood, while
serving a static website: 5.9.0 and 4.19.0, using SHA1 and SipHash
as cookie hash function, respectively. Figure 7 shows the amount of
processed SYN flood and the probability of successfully serving 100

http://cr.yp.to/syncookies.html
https://www.cloudflare.com/en-gb/learning/ddos/syn-flood-ddos-attack/
https://www.netronome.com/static/app/img/products/silicon-solutions/WP_NFP4000_TOO.pdf
https://www.netronome.com/static/app/img/products/silicon-solutions/WP_NFP4000_TOO.pdf
https://securelist.com/ddos-attacks-in-q1-2020/96837/
https://securelist.com/ddos-attacks-in-q1-2020/96837/
https://lwn.net/Articles/563151/
https://blogs.technet.microsoft.com/nettracer/2010/06/01/syn-attack-protection-on-windows-vista-windows-2008-windows-7-windows-2008-r2-windows-88-1-windows-2012-and-windows-2012-r2/
https://blogs.technet.microsoft.com/nettracer/2010/06/01/syn-attack-protection-on-windows-vista-windows-2008-windows-7-windows-2008-r2-windows-88-1-windows-2012-and-windows-2012-r2/
https://blogs.technet.microsoft.com/nettracer/2010/06/01/syn-attack-protection-on-windows-vista-windows-2008-windows-7-windows-2008-r2-windows-88-1-windows-2012-and-windows-2012-r2/
https://www.netscout.com/product/arbor-threat-mitigation-system
https://www.netscout.com/product/arbor-threat-mitigation-system
https://www.zdnet.com/article/16-ddos-attacks-take-place-every-60-seconds-rates-reach-622-gbps/
https://www.zdnet.com/article/16-ddos-attacks-take-place-every-60-seconds-rates-reach-622-gbps/
https://blog.cloudflare.com/a-brief-anycast-primer/
https://blog.cloudflare.com/a-brief-anycast-primer/
https://security.radware.com/ddos-threats-attacks/threat-advisories-attack-reports/dos-cyber-campaign-against-israeli-targets/
https://security.radware.com/ddos-threats-attacks/threat-advisories-attack-reports/dos-cyber-campaign-against-israeli-targets/
https://security.radware.com/ddos-threats-attacks/threat-advisories-attack-reports/dos-cyber-campaign-against-israeli-targets/
https://security.radware.com/WorkArea/DownloadAsset.aspx?id=848
https://github.com/syn-proxy
https://github.com/giltene/wrk2

EuroP4’20, December 1, 2020, Barcelona, Spain Dominik Scholz, Sebastian Gallenmüller, Henning Stubbe, and Georg Carle

c:Client p:Proxy s:Server
SYN

seq = x, ack = -
y = calculateCookie(c, s)

SYN/ACK

seq = y, ack = x + 1

ACK

seq = x + 1, ack = y + 1

HTTP GET

seq = x + 1, ack = y + 1E

r = translateSeqNum(c, s)

r == false

verifyCookie(y, c, s)

SYN

seq = x, ack = -

SYN/ACK

seq = z, ack = x + 1

ACK

seq = x + 1, ack = z + 1

δ(c, s) = z - y + 1

HTTP GET

seq = a, ack = b
translateSeqNum(c, s)

HTTP GET

seq = a, ack = b + δ(c, s)

send

c bytes

HTTP 200 OK

seq = b + c - δ(c, s), ack = a + 1

translateSeqNum(c, s)
HTTP 200 OK

seq = b + c, ack = a + 1

(a) SYN Cookie

c:Client p:Proxy s:Server
SYN

seq = x, ack = -

r = isWhitelisted(c, s)

r == false

calculateCookie(c, s)SYN/ACK

seq = y, ack = x + 1

ACK

seq = x + 1, ack = y + 1

r = isWhitelisted(c, s)

r == false

verifyCookie(c, s)

setWhitelisted(c, s)
RST

seq = y + 1, ack = -

SYN

seq = x, ack = -
r = isWhitelisted(c, s)

r == true

SYN

seq = x, ack = -

SYN/ACK

seq = y, ack = x + 1
SYN/ACK

seq = y, ack = x + 1

ACK

seq = x + 1, ack = y + 1
r = isWhitelisted(c, s)

r == true

ACK

seq = x + 1, ack = y + 1
HTTP GET

seq = a, ack = y + 1 = b
r = isWhitelisted(c, s)

r == true

HTTP GET

seq = a, ack = b

send

c bytes

(b) SYN Authentication

Figure 6: Message Exchange for SYN flood mitigation strategies

0 0.2 0.4 0.6 0.8 1 1.2 1.4
100

102

104

106

SYN flood [Mpps]

S
Y

N
/A

C
K

ra
te

[p
p

s]
(l

og
)

Maximum Rate

Linux 4.9, no Cookies Linux 4.9, Cookies

Linux 4.19, no Cookies Linux 4.19, Cookies

(a) SYN flood processed

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

20
40
60
80

100

SYN flood [Mpps]

C
on

n
ec

ti
o
n

p
ro

b
a
b

il
it

y
[%

]

Linux 4.9, no Cookies

Linux 4.9, Cookies

Linux 4.19, no Cookies

Linux 4.19, Cookies

(b) HTTP requests served (100 requests per second offered)

Figure 7: Performance of Linux during SYN flood

HTTP requests per second for an increasing SYN flood on a single
CPU core. When disabling SYN cookies, Linux can only process up
to 250 SYN packets per second. However, no HTTP requests are
served. Profiling (see Figure 8) reveals that this behavior is not due
to CPU exhaustion. Instead, the TCP backlog is the limiting factor.

When enabling SYN cookies, both Linux versions behave simi-
larly, i.e., process up to 0.4Mpps of SYN flood, while all HTTP re-
quests are served. When further increasing the SYN flood, the prob-
ability of serving any legitimate requests successfully, approaches

0

20

40

60

80

100
Linux 4.9 (no SYN cookies)

0

20

40

60

80

Linux 4.9

C
P

U
cy

cl
es

[%
]

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

20

40

60

80

Linux 4.19

SYN flood [Mpps]

idle

other

skb/kmem

ixgbe/dev

ip/inet
tcp

cookie

hash

Figure 8: Profiling of Linux during SYN flood

zero. For Linux 4.19, it is notable that a small percentage (< 10%) of
requests is served, even for rates of up to 1Mpps SYN flood. The
profiling reveals that, in this setting, CPU utilization is the limiting
factor. A clear difference between the Linux versions is the number
of CPU cycles used for the hash calculation. Cookie calculation
using SHA1 requires up to 15 % of the cycle budget, while SipHash
(2.5 %) is more efficient.

	Abstract
	1 Introduction
	2 SYN Flood Mitigation
	2.1 Generic Defense
	2.2 SYN-specific Defense
	2.3 Deployment Scenario

	3 SYN Proxy in P4
	3.1 Realized Programs and Targets
	3.2 Program Core
	3.3 Target-specific Changes
	3.4 Cookie Calculation
	3.5 Whitelisting
	3.6 Buffering Packets

	4 Evaluation
	4.1 Key Performance Indicators
	4.2 Measurement Setup
	4.3 Webserver Overload
	4.4 Processed SYN Flood
	4.5 Quality of HTTP Requests
	4.6 Whitelisting — Scaling Match-Action Tables
	4.7 FPGA Resource Consumption
	4.8 Programming Experience

	5 Related Work
	6 Conclusion
	Acknowledgments
	References
	A SYN Proxy Mitigation Procedures
	A.1 SYN Cookie
	A.2 SYN Authentication

	B Case Study: SYN Cookies in Linux

