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Abstract—VPNs play an important role in today’s Internet
architecture. We investigate different architectures for software
implementations of VPN gateways and their effect on perfor-
mance. Our case study compares OpenVPN, Linux IPsec, and
WireGuard. We also implement a WireGuard-compatible VPN
benchmarking example application with three different software
architectures inspired by the evaluated open-source solutions.
Our implementation allows benchmarking of individual effects
and optimizations in isolation.

We find that WireGuard is the most promising software VPN
implementation from an architectural viewpoint. Our implemen-
tation of WireGuard’s pipeline architecture on top of DPDK
achieves 6.2 Mpps and 40 Gbit/s, the fastest of all evaluated VPN
implementations. We find that the main bottleneck for scaling
software VPNs are data structures and multi-core synchroniza-
tion – a problem that can be tackled with an architecture based
on pipelining and message passing.

Index Terms—VPN, Wireguard, OpenVPN, IPsec, Linux

I. INTRODUCTION

Today’s world became increasingly more connected over
the last decade. New paradigms like IoT and technologies like
the upcoming 5G standard for mobile cellular communication
will only increase the number of connected devices. The
introduction of cloud computing brought additional challenges.
Existing on-premises networks have to be extended and con-
nected to virtual cloud networks, e.g., via a VPN gateway.
Especially these site-to-site use-cases place huge requirements
in terms of throughput on VPN solutions. Open-source VPN
implementations are often not fast enough to handle multi-
gigabit links at line rate on commodity off-the-shelf (COTS)
hardware. Network administrators instead rely on dedicated
hardware VPN solutions, which are often expensive and not
auditable from a security standpoint.

This paper evaluates the three most popular open-source
software VPN solutions IPsec, OpenVPN, and WireGuard
available on Linux. Our benchmark suite determines if these
VPN implementations are fast enough to be deployed on
40 Gbit/s links with COTS hardware. Further, we identify
performance bottlenecks by profiling the code.

To gain further insights into the typical operation steps
of a VPN we develop our own VPN implementation that
allows us to investigate if achieving a higher performance is
possible. By using our own bare-bones versions, we reduce
external influences and are able to measure the performance
hazards more accurately. Our VPN implementation consists of
three implementations that mimic the three identified popular
architectures to compare them in an isolated setting.

Our key contributions in this paper are:

• Performance evaluation of software VPN gateways
• Analysis of the effect of software architecture
• Fast implementations of a custom VPN gateway for all

popular software architectures

II. BACKGROUND AND RELATED WORK

On the most basic level, VPNs virtually connect two or more
hosts that reside in different logical or physical networks, as if
they were on the same link or in the same subnet. To a native
application, there is no difference if it connects to a host over
a VPN or directly. What raises VPNs beyond basic tunnel
protocols are the cryptographic guarantees for confidentiality
and integrity among others.

VPNs can be deployed in two different scenarios: client-
server setup with multiple clients connecting to a server or
in a site-to-site setup connecting two locations with a secure
tunnel that handles many independent connections. The latter
is more interesting from a performance standpoint, because it
represents a potential choke point in the network and is subject
to more traffic than a client-server setup. Secure datacenter
interconnects require a high throughput and often rely on
specialized hardware VPN appliances. Their high cost and
black-box nature make them undesirable to some and creates
a niche for open-source software VPN solutions that run on
COTS hardware. This paper focuses on high-throughput site-
to-site setups, realized with common VPN software.

In their extensive report from 2011 Hoekstra et al. [8] eval-
uated the performance of OpenVPN in gigabit networks, with
a focus on bandwidth-specific bottlenecks. They focused on
throughput measurements in terms of Mbit/s instead of million
packets per second (Mpps) using a default MTU of 1500 bytes.
For secure configurations (AES-128-CBC with HMAC-SHA1)
they measured a maximum throughput of around 270 Mbit/s.

A more recent comparison (2017) by Lackovic et al. [10]
measures the impact of AES-NI support on encryption speeds.
In their benchmarks they find a significant speedup of 40% and
60% for IPsec AES, and a smaller increase for OpenVPN at
10% to 16%. Their findings about AES-NI show the same
trend as other results, but remain a little lower. Raumer et
al. [13] report a 100% to 320% increase for IPsec on Linux,
depending on packet size (0.48 Gbit/s to 0.94 Gbit/s for
64 bytes and 1.33 Gbit/s to 4.32 Gbit/s for 1462 bytes).
Additionally, Lackovic evaluates the scaling opportunities of
the VPNs and concludes that IPsec is more scalable than
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Sadok et al. [14] investigated the efficiency of receive-side
scaling (RSS) when the traffic only contains a small number
of concurrent flows. Their measurements on a backbone link
show a median of only 4 flows and 14 inside the 99th percentile
in time windows of 150µs. With RSS this leads to an uneven
resource utilization, as only a few cores are handling all traffic.

At the time of writing, there is very little academic research
published about WireGuard. In its initial publication [3], Do-
nenfeld includes a short performance comparison with IPsec
and OpenVPN. In this benchmark, WireGuard outperformed
both other implementations and is solely able to saturate the
1G link. Apart from this data point, there are no extensive
performance evaluations published, especially not on fast
networks. We use a 40 Gbit/s network for the evaluation here.

III. EVALUATION OF OPEN SOURCE VPNS

All benchmarks were run on a dual Intel Xeon E5-2630
v4 CPU (total of 40 cores including hyper threading) with
128 GiB of memory and two Intel XL 710 40 Gbit/s NICs.
Spectre and Meltdown mitigations were not present in the
used kernel on Ubuntu 16.04. All test load was generated
with custom MoonGen [4] scripts running on a separate server.
The load generator customizes the packets IP addresses and
sends them to the DuT. The DuT is configured to encrypt and
forward all incoming packets back on the second port.

A. Varied Parameters

a) Number of Flows: A flow is usually classified by a 5-
Tuple of L3 source and destination address, L4 protocol, and
L4 source and destination ports. By variating the number of
used IP source and destination addresses, we can control the
number of flows in the traffic and therefore the number of end
hosts we want to emulate.

b) Packet Rate: The packet rate describes how many
packets per second are processed, often given in Mpps. In
our benchmark setup we can set a given input rate to the
DuT and observe the output rate of the processed packets. By
increasing the input rate we get a complete picture of how the
device behaves under different load conditions.

c) Packet Size: Packet size is an important factor in
measurements, as clever variation of the sizes allows to gain
insights about the inner working of the device under test. This
is possible by splitting the costs of handling a packet into two
categories.

The static costs are independent of packets sizes and always
occur equally. Things like routing lookups and counters fall
into this category: Resolving the destination interface for an
IP packet does not depend on its payload. The variable costs
on the other hand are determined by its size (e.g., encryption)
and scale accordingly.

B. Baseline: Linux Network Stack & Router

All three tested VPNs rely on the kernel network stack for
low-level functionality. In benchmarks the costs of passing a
packet through the network stack is sometimes not separable
from the costs of the application. To classify the performance
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Fig. 1: Linux router forwarding rates with different number of
flows and 64 byte packets

of the VPNs more accurately, we need some form of baseline
performance to determine if a bottleneck is caused by the
application or roots in the Linux network stack. While others
already published performance measurements for Linux, we
need comparable values by testing the router and the VPNs
against exactly the same traffic patterns, on the same hosts,
and on the same network equipment. Routing is a fundamental
operation in a L3 VPN and often offloaded to the kernel.
For the following benchmark we configured one manual route
on the DuT, so that it forwards the packets back to the load
generator. The main routing table contained six routes.

Figure 1 shows the measured rates of the Linux router with
traffic of fixed sized packets and a varying number of flows.
The dotted line marks the ideal case; each incoming packet is
forwarded. The x-axis displays the applied load to the DuT,
while the left and right y-axis measure the traffic that was
received back on the load generator.

It can be seen that the kind of traffic has a measurable
impact on the routing level already: traffic consisting of just
one or a small number of flows is not as easily processed
as traffic with many flows. For a single flow of 64 bytes the
forwarding rate is at best 1 Mpps, while with 1024 flows it in-
creases steadily to around 21.3 Mpps. Although the forwarding
rates plateau at a certain level, they do not decrease after that.
This means this system is not susceptible to a trivial DoS
attack where an attacker sends millions of packets to lower
performance for everyone else disproportionally.

The test was repeated with varying packet sizes but we
found the size to have no impact on the throughput unless
hitting the line rate limit of 40 Gbit/s. This is expected for a
router, as it — unlike a VPN gateway — only looks at the
first few bytes in the Ethernet and IP header.

1) Packet Distribution: The first step when investigating
the slow forwarding performance with traffic consisting of
few flows is to look at the CPU utilization of the DuT.
Figure 2 shows heat maps of the CPU utilization per core for
two selected traffic patterns. NICs use a hash function over
the packet headers to distribute incoming packets to the Rx-
queues in a technique called receive-side scaling (RSS), this
effectively divides packets per flow. So we need at least 40
flows to fully use this CPU. The random aspect of hashing
means that we need more flows to actually hit all cores,
explaining why there is a slight performance gain when going
beyond 64 flows.
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Fig. 2: CPU utilization of the Linux router during peak load
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Fig. 3: Processing rates of IPsec with 64 byte packets

2) Source Code Analysis — Spin locks: We also record
which tasks the CPUs perform to see where the CPU time is
spent. We found multiple spin locks in the send path that have
to be taken. CPU profiling shows that between 10% and 20%
of the total CPU time (depending on the number of threads) is
spent in spin locks. Note that these locks are uncontended in
a proper configuration when only doing routing with at least
as many CPU cores as queues.

These baseline measurements tell us that the absolute best
case we can achieve is around 21 Mpps or 14 Gbit/s (with
framing, 11 Gbit/s data rate) with minimum-sized packets and
the full line rate of 40 Gbit/s with a packet size of 256 byte.

C. Linux kernel IPsec

IPsec is an IETF standard for network layer security in IP
networks. It is engineered to academic perfection, follows a
layered approach and performs key exchange by a completely
separate protocol. We only study the encryption part skipping
the key exchange by using static keys. We chose ESP tunnel
mode with the RFC4106 AES-GCM symmetric cipher, which
is a hardware-accelerated (AES-NI) AEAD cipher. IPsec en-
cryption is performed in the transform (xfrm) layer of the
Linux network stack. It runs as part of the software interrupt
handler in ksoftirqd threads. These threads run on the same
core where the original hardware interrupt arrived. This means
that packet encryption happens on the same core to which the
packet got delivered.

Figure 3 shows the measured forwarding rates for IPsec.
For single-flow traffic we see the same drawback as in the
baseline measurements. All packets are delivered to a single
core, thus overloading it. For more flows (and hence cores)
the rate increases up to a hard limit of 2 Mpps.

Profiling shows that the bottleneck is multi-core synchro-
nization of the security association (SA) data structure which
is protected by a spin lock. Since multiple CPUs can process
packets governed by the same SA in parallel, each CPU first
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Fig. 4: IPsec forwarding rate, 256 flows, 64 byte packets and
multiple SAs

has to acquire a spin lock. A site-to-site VPN connecting only
two subnets might have only a single SA that is a de-facto
global spin lock. Figure 4 shows how performance increases
as we add SAs. For the first three added SAs we see a linear
increase of the forwarding rate to 3 Gbit/s. After that point,
each SA adds marginally less up to the highest measured rate
of 5.27 Mpps and 2.7 Gbit/s. This sub-linear growth shows,
that there are other bottlenecks in the send path, which are not
optimized by this distribution scheme. IPsec achieves around
23% of the baseline performance because it fails to scale to
multiple cores.

D. OpenVPN

OpenVPN is a cross-platform, open-source VPN suite defin-
ing its own protocol and wire format. Its core components are
the same across all platforms, the networking layer differs
between platforms. On Linux, the socket API and virtual
TUN/TAP devices are used. This approach allows operation as
a pure user-space process without the need for kernel modules
or custom drivers. Due to the lack of a cross-platform interface
for threads, OpenVPN historically is single-threaded. Modern
AEAD ciphers are not available, so we select AES-CBC
without message authentication to achieve performance similar
to a modern cipher (but without its security guarantees).

The performance is very low with only 0.12 Mpps regardless
of the number of flows. (We benchmarked other configurations
as well, this was the fastest result). These findings are consis-
tent with the related work and the single-threaded architecture.
Profiling the whole system shows that the time is mostly spent
on context switching between user-space and kernel. Time
spent on encryption is negligible with hardware acceleration
(AES-NI) enabled. Disabling AES-NI significantly impacts
performance further, showing that hardware acceleration is
important for AES encryption.

The only way to scale OpenVPN is by running multiple
instances of it. Doing so indeed scales perfectly linearly up to
16 instances. The other 4 physical CPU cores are dedicated
to the kernel network stack. Further instances hit hyper-
threading CPUs on our test setup. This achieves a throughput
of 2.5 Mpps while fully using 20 CPU cores.

E. WireGuard

WireGuard is a new L3 VPN proposed by Jason Donenfeld
in 2017 [3]. It defines its own protocol and comes with a
reference implementation as a Linux kernel module. The work
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(b) 1514 byte packets

Fig. 5: Encryption rates of WireGuard at different packet sizes
and varying number of flows

presented here was performed in 2019 with this kernel module
before WireGuard was available in the mainline kernel. The
integration of WireGuard into the kernel was completed while
this article was under peer review for publication.

WireGuard’s protocol was developed from scratch, based
on best cryptographic practices and using the newest ciphers.
Contrary to committee-guided protocols like IPsec, WireGuard
is strongly opinionated on certain topics and includes radical
ideas. It does away with cryptographic agility by locking
in on a single AEAD cipher and authentication algorithm
with no feature negotiation: ChaCha20-poly1305. Backwards
compatibility is explicitly missing: handshake and key deriva-
tion include a hash of the protocol version number, so two
different implementations will derive distinct keys, making
them permanently non-compatible. These measures heavily
incentivize keeping the software up-to-date and prevent degra-
dation attacks found in SSL [11].

The kernel module implementation introduces virtual in-
terfaces to integrate WireGuard into the network stack. This
benefits adoption and usability, as all standard interface tools,
like iproute2, work as expected. Compared to the xfrm layer
in which IPsec operates, this design features a better user
experience. Packets going out of a WireGuard interface are
guaranteed to be encrypted, while received ones are guaranteed
to be authentic and form known peers. Overall, WireGuard
strives to be a as-simple-as-possible, very secure and hard-to-
get-wrong VPN that is usable by everyone.

Figure 5 shows the basic measurement with different packet
sizes. Multiple patterns can be observed. Again, we see that
the number of flows in the traffic matters for performance.
With just one flow the RSS configuration of underlying

Gateway
NIC

Tunnel
NIC

Rx (RSS)

kworker Threads

Encryption cipher

Encryption cipher

plain cipher

Encryption Workers

plain

plain
Tx Worker

Encryption cipher

Tx WorkerPtr Queue

Fig. 6: WireGuard threading model for encryption

Linux network stack limits the forwarding rate to 0.32 Mpps.
Adding more flows elevates this and increases the peak rate
to 0.65 Mpps, until it plateaus at 0.57 Mpps for 4 and 64
flows and high load. Most interesting is the case of 1024
flows. Contrary to the other VPNs where this traffic yields
the best results, WireGuard struggles with increasing load and
effectively stops processing any packets at a load of 1.4 Mpps.
We analyze this in Section III-E1.

Another observation is that the size of the processed packets
has no impact on performance. Subfigures 5a and 5b show
nearly the same patterns with peaks and plateaus at the
same points, despite comparing the smallest to the largest
packets. This indicates, that encryption is not a bottleneck
in WireGuard, otherwise we would see lower rates for larger
packets.

The observed performance pattern is tied to the threading
model of WireGuard, as shown in Figure 6. It consists of three
stages that perform the VPN operations.

kworker threads serve the gateway NIC and receive packets
from it. After determining through a routing lookup that a
packet is eligible for processing, they transmit it through a
virtual WireGuard device enqueuing them in a per-device
pointer queue as a work item. The creation of this work
item involves more than just memory allocation. The kworker
already checks if the source and destination IPs are allowed,
looks up the peer state with the encryption keys and increments
the nonce per packet. These additional steps performed in this
early stage explain why the performance rates of WireGuard
in the single flow case are lower than the 1 Mpps of the Linux
baseline benchmark. With only a single flow, these operation
must be performed by one kworker and are thus effectively
not parallelized.

In the default configuration of Linux there is one RSS queue
and kworker per CPU core. The work items are picked up from
the queue by the encryption workers, which are spawned on all
online cores at module activation. As the encryption key and
nonce are bundled with each packet, they just have to perform
the actual encryption, without touching any peer state and thus
operate lock-free. Processed packets are handed over to the Tx
worker. There is only a single Tx worker per peer. It collects
all encrypted packets and transmits them via the normal UDP
socket API. With three pipeline stages, this design has three
potential choke points, which we investigate further.

1) Locking and back-pressure: Figure 7 shows on which
operations the different workers spend the most cycles on
when traffic with 1024 flows is processed. This kind of traffic
is chosen because it can cause a total overload of WireGuard.
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Fig. 7: CPU utilization of WireGuard with 1024 flow traffic

Subfigures 7a and 7c show CPUs on which a kworker and
encryption worker is running. They are aggregated because
WireGuard spawns the encryption workers on every core,
without a way to prevent this. Subfigures 7b and 7d visualize
the Tx worker on separate cores.

The dominant factor is locking. On the kworker and en-
cryption worker, driver or encryption operations are run less
than 10% of the time. On the Tx worker a variety of tasks are
done, while not overloaded. Memory is allocated and freed, the
UDP checksums of the packets are calculated and the internal
WireGuard timers get updated. The dominance of locking
can be explained by analyzing the source code. Spin locks
have to be taken in pipeline stages. More importantly, they
are used to implement mutual exclusion in the pointer rings
interconnecting the stages.

The kworker code paths contain multiple locks. In the xmit
function an incoming packet is checked for validity and moved
into a queue (guarded by a spin lock) associated with the peer.
In a site-to-site setup with only one peer and thus one queue,
this lock is contended by all kworkers of the system and has
to be taken and released for every single packet.

The encryption and Tx worker are lock-free, apart from the
aforementioned pointer rings. Together these sources explain
the baseline locking load in Subfigures 7a and 7c where the
offered load is below 500 Mbit/s and 12000 Mbit/s. The large
increase with more load after these points comes from a design
flaw. Under overload a kworker will keep inserting the new
packets into the crypt and even tx queues, while dropping older
ones. This lack of back-pressure increases contention on the
locks of the pointer queues even more. Under extreme overload
the kworker monopolize all locks, as seen in the graphs, so
that over 80% of the time is spent busy-waiting for spin locks.

IV. MOONWIRE: DESIGN AND IMPLEMENTATION

We implement MoonWire, our VPN sandbox, based on
the learnings from the open-source architectures. We aim for
a modular, easy-to-change software that allows fast iteration
and experimentation. With MoonWire it is possible to rapidly
try out different approaches to specific sub-problems and to
observe the performance shifts.

For the VPN protocol and data framing the WireGuard
protocol is chosen due to its minimal design. We did not imple-
ment all features, we skipped the cookie response mechanism
for DoS protection and re-keying timers. This has no impact

on the measurements presented here but makes it unsuitable
for production use (and it requires a small patch to WireGuard
to make it compatible for benchmarking, this change has no
effect on performance).

Previous research [1], [6] and our own measurements in
Section III-B showed that the network and driver stack of
the OS can be a limiting factor due to its generality and
some architectural limitations. To work around this bottleneck
and to gain a high configurability, MoonWire is based on the
user-space packet processing framework DPDK. It comes with
high-performance NIC drivers and an abundance of specialized
data structures for packet processing tasks. Since DPDK ap-
plications are written in C/C++, they require a certain amount
of boilerplate code which can be greatly reduced by using
libmoon, a high-level Lua wrapper around DPDK [5]. The
Lua code is not interpreted, but just-in-time compiled by the
integrated LuaJIT compiler. It is a proven platform for packet
processing related scripts [4], [12] and allows direct access to
C ABI functions, i.e., the DPDK library. The libsodium library
is used for all cryptographic primitives.

Since the evaluated state-of-the art VPN solutions made
vastly different design choices, it makes sense to not con-
centrate on a single implementation. In the following variants
we replicate seen designs with our MoonWire VPN kit and
present a new one. Each variant is explained from the high-
level design to the specific implementation details.

A. Data Structures

Since the high-level goals of a VPN is the same across
the different variants, some algorithms and data structures are
shared nearly verbatim between them.

1) Peer Table: To check if an incoming packet is to be
processed, some form of lookup data structure is needed. De-
pending on the specification of the protocol, different options
are possible. WireGuard identifies relevant packets by check-
ing the destination IP address against the configured subnets
of allowed IPs. IPsec is more complex in this regard and also
allows filters on ports and source addresses. IP address lookup
tables are an extensively studied field [2], [7], [15] with many
established high-performance implementations. For MoonWire
we rely on the LPM library of DPDK, which uses the DIR-
24-8 algorithm.

2) Peer State: The peer state encapsulates all information
necessary to send and receive packets from a remote VPN peer.



Gateway
NIC

Tunnel
NIC

3. 
Encryption

Peer Table

Peer 1
Peer 2
Peer …
Peer n

1. Rx
plain

Packet Buffers

2. Lookup

Peer state

cipher
4. Tx

Fig. 8: Flowchart of MoonWire Variant 1

It must contain the cryptographic key material, the address of
the remote endpoint, and the nonce counter. In IPsec this func-
tionality is realized in security associations (SAs), WireGuard
implements this with its wg_peer structure. While the values
like the endpoint or keys are set once and then mostly read,
the nonce counter is updated for every packet. For this to be
thread-safe with multiple parallel workers, a lock can be added
to the structure. Compared to a global or table-wide lock, this
allows concurrent operation of workers, as long as they access
different peer states.

B. Variant 1 - Naive Single Instance

The first variant is based on the design of OpenVPN and
conceptually simple. The whole application consists of a single
thread that completes all tasks of VPN operation.

In Figure 8 the different steps in the continuous main loop
of Variant 1 are visualized. The thread starts by receiving
incoming packets from the gateway interface in form of a
batch. Each buffer is validated and the associated peer state is
looked up in the peer table. If there is an open connection, the
buffer is extended, encrypted and new IP headers are inserted.
In the last step, all valid packets are sent and the remaining
ones are freed.

Due to its single-threaded nature, there is no need for any
kind of synchronization on the peer table or state. This variant
does not suffer from averse traffic pattern like single-flow
traffic. With only one thread, there are no benefits in using RSS
and multiple queues. Therefore, uneven packet distribution
cannot occur. On the contrary, such traffic could even be
beneficial since repeated lookups of the same value utilizes
the CPU caches better than different addresses which generate
repeated cache misses and evictions.

On the downside, this variant shares its drawbacks with
OpenVPN. Namely the total lack of horizontal scaling. Other
cores can only be utilized by spawning multiple independent
instances and fragmenting the routed subnets into smaller
chunks.

C. Variant 2 - Independent Workers

Variant 2 takes the crude scaling attempts necessary for
Variant 1 or OpenVPN and internalizes them. In summary,
this version is most similar to IPsec in the Linux kernel.
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Fig. 9: Flowchart of MoonWire Variant 2
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As seen in Figure 9, multiple workers are processing the
packets in parallel, each with its own NIC queues. Each worker
still completes the whole loop from reception, encryption
to transmission. Incoming packets are distributed to multiple
queues on the hardware level by the NIC through RSS.
Since there are multiple threads accessing and modifying
shared data, these accesses have to be synchronized to prevent
corruption.

We use the classic pthread_mutex from the POSIX
threading library and compare it to the rte_spinlock
provided by DPDK, henceforth called mutex variant or spin
lock variant respectively. The POSIX mutex internally relies
on futex API of the kernel and is a general purpose lock.
Spin locks, on the other hand, do not relinquish control to the
scheduler but continuously keep trying. This trades latency for
energy efficiency and leads to a slightly higher performance,
when only a handful of threads are contending for a lock.

D. Variant 3 - Work Pipeline

In Variant 3 the best properties of the previous versions
are taken, while avoiding their drawbacks. The peer table
and state is still contained in and maintained by a single
thread (therefore lock-free), while the encryption stage is
parallelized across multiple workers. Instead of handing out
mutable peer state references to the workers, the state is
cloned and distributed in a message passing manner. This



shared-nothing approach is conceptually similar to the design
philosophies in Erlang [16] or the Message Passing Interface
(MPI) library.

Figure 10 visualizes the complete setup. After a batch of
packets has been received by the Rx worker, the lookup worker
fetches the applicable state to a packet buffer as it is done
in Variant 1. It then clones the entire state with all keys and
endpoint information into a separate empty buffer, and attaches
this buffer to the packet buffer. The parallel workers now
find all information needed for encryption contained in the
packet buffer and do not update any shared state. Since this
crypto-args buffer is separate allocated memory, it has to be
reclaimed after use. We use generic DPDK memory buffers
for performance reasons.

Packet distribution between the stages happens through
DPDK’s rte_rings; lock-free, FIFO, high-performance
queues with batched functions to reduce overhead. Distribution
over the workers happens in a round-robin fashion to ensure
equal load among them. We initially combined Rx and the
Lookup worker. But profiling showed that a significant amount
of time was spent on state cloning. We therefore factored
packet reception out in the final design to give this task as
much processing power as possible.

1) Back-pressure: In contrast to the single-stage setups in
Variant 1 and 2 where each step is completed before the
next is taken, Variant 3 decouples these from each other.
Therefore, it is now possible to, e.g., receive more packets than
can be encrypted. Noticing and propagating this information
backwards is necessary to govern the input stages, prevent
wasting of resources and reduce overload [9]. We implement
an exponential back-off similar to ancient Ethernet. The bene-
fits of using back-pressure are twofold. For one, it reduces
energy usage by not wasting cycles on operations which
results will be thrown away anyway. Secondly, it simplifies
our analysis by making it easy to spot the bottlenecks in the
pipeline. A stage running at 100% load, while its input stage
is not fully utilized, is likely to be the constraining factor.

V. MOONWIRE: EVALUATION

MoonWire allows us to systematically find the bottlenecks
of the architecture by running the same benchmarks on differ-
ent variations of the same code base.

A. Variant 1 - Naive Single Instance

Variant 1 is the most simple and straightforward of our
designs, without threads, RSS, or other advanced features. We
achieve 1.3 Mpps (10 times faster than OpenVPN). Increasing
the packet size decreases throughput, i.e., encryption is the
bottleneck. Profiling shows that 85% of the time is spent
on encryption with small packets and 96% with 1514 byte
packets, completely marginalizing any other costs.

B. Variant 2 - Independent Workers

Variant 2 solves the processing power bottleneck around
encryption of Variant 1 by distributing the packets to multiple
parallel workers in hardware (RSS). Consequently, this variant

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

1

2

3

4

5

Offered Load [Mpps]

F
o
rw

a
rd

ed
L

o
a
d

[M
p
p
s]

1 flow 4 flows 64 flows

256 flows 1024 flows

0

500

1,000

1,500

2,000

2,500

F
o
rw

a
rd

ed
L

o
a
d

[M
b
it

/
s]

Fig. 11: Effects of RSS with 64 byte packets on MoonWire
Variant 2 (mutex) with 4 workers
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Fig. 12: Scaling capabilities of MoonWire Variant 2, compar-
ing mutexes and spin locks

suffers from the same problems as the Linux router and IPsec,
which also rely on RSS. Figure 11 shows the familiar picture:
Few flows in the traffic result in uneven distribution and lower
processing rates.

But for traffic with sufficient flows (≥ 64), significant
speedups can be measured, as shown in Figure 12. In these
measurements, the number of threads is increased gradually
and the individual peak rate is recorded.

But also the drawbacks of global locks can be observed
again. Especially at smaller packet sizes and their inherent
higher Mpps, the bottleneck becomes evident. For both kinds
of locks, the peak rate is reached with 4 workers and decreases
after this point.

Spin locks have a higher peak rate, but are also more
susceptible to high contention. Looking at the CPU utilization
plots in Figure 13 on the next page, we can see why Variant
2 only performs well with larger packets and at lower Mpps
rates. We can see the general trend, that more threads lead
to more time spent on locking and less on encryption. For 64
byte packets and high Mpps rates, a steep increase can be seen
after 4 threads, mirroring our previous rate measurements. At
larger packet sizes this effect occurs more delayed, but is still
measurable. The spin lock implementation spends increasing
amounts of time directly in the lock and unlock functions. For
mutexes the locking category is split into two components:
The user space side with the pthread and libc wrappers, and
the kernel space part with the syscall overhead (cf. OpenVPN),
the futex implementation and scheduling. Overall this variant
demonstrates that this approach does not scale well beyond a
few CPU cores.
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(a) Mutexes, 64 byte packets
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(b) Mutexes, 1514 byte packets
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(c) Spin locks, 64 byte packets
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(d) Spin locks, 1514 byte packets

Fig. 13: CPU utilization of a worker thread in MoonWire Variant 2, mutexes vs. spin locks
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C. Variant 3 - Work Pipeline

Variant 3 is our pipeline implementation. The incoming
packets are processed in 3 stages and passed to different
workers. Shared state is minimized and expensive synchro-
nization constructs like locks are not used. Whenever function
arguments are needed in later stages, they are attached to the
packet buffer as messages.

In Figure 14 the scaling properties of this variant can be
seen. It shows the encryption throughput for 64 and 1514 byte
packets, depending on the number of encryption workers. The
Rx and lookup stage is always handled by a single worker, as
explained in Section IV, and not included in the worker count.
For one to seven workers and small packets we measure a near
linear scaling from 1.1 Mpps to 6.3 Mpps (3.2 Gbit/s). Adding
more workers does not increase (but also not decrease) the rate
further. This result is both our highest measured rate across
all VPN implementations and also very stable. Compared to
implementations with locks, Variant 3 does not crumble under
overload. For 1514 byte packets, there is no plateau and the
throughput increases up to 3.13 Mpps, where the 40 Gbit/s
output link is fully saturated.

Figure 15 shows another benefit of not relying on RSS for
packet distribution to workers: the number of flows in the
traffic does not matter. Compared to Variant 2 where traffic
with only a few flows lead to an under-utilization of some
workers, here the rates are always the same.

Next we determine which stage is the limiting bottleneck.
In the plots in Figure 16 we see the CPU utilization of each
stage and for 64 and 1514 byte packets.

First, we focus on the results for smaller packets, which are
in the first column (Subfigures 16a, 16c, 16e). It can be seen,
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Fig. 15: Throughput of MoonWire Variant 3 depending on the
number of flows
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(c) Copy Worker, 64 byte
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(e) Encryption Worker, 64 byte
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Fig. 16: CPU utilization in the pipeline stages of MoonWire
Variants 3 with 64 and 1514 byte packets

that for smaller number of encryption workers, these are the
bottleneck. The Rx worker is never running at full capacity,
and the copy stage is fully utilized at 7 workers.

For large 1514 byte packets the picture is overall similar, but
different in a few details. Neither the Rx worker, nor the copy
stage is ever running at full capacity. Not a surprising result,



since they only perform per-packet tasks and larger packets
generally come at a lower rate. The encryptions workers
however, are always at 100% utilization. Compared to 64 byte
packets, a even larger fraction of the time (85%) is spent in
encryption routines. The overhead from fetching packets from
the rings and sending them is nearly negligible, making them
quite efficient at their task. We expect that—given more NICs
and cores—this can be scaled up further.

In conclusion, Variant 3 is our best implementation. It
achieves the highest rates at all packet sizes, does not depend
on RSS and still evenly distributes packets. The data structures
used for, e.g., IP address lookups can be un-synchronized,
allowing for simpler or faster designs than multi-threaded
versions. We identified the message creation, more precisely,
the memory copying, to be a limiting factor. This is the
case, because our implementation clones the entire peer state,
including seldom changed fields.

One drawback is packet reordering. With a round-robin
distribution over workers, there are no guarantees regarding
the order the packets come out of the DuT.

VI. CONCLUSION

We measured how the three open-source software VPN
implementations IPsec, OpenVPN, and WireGuard perform in
site-to-site setups on COTS hardware running Linux. With the
results of our benchmarks we come to the conclusion, that
none of them are currently fast enough to handle the amounts
of packets in 10 or 40 Gbit/s networks. A considerable amount
overhead stems from the underlying Linux network stack, on
which all tested versions rely on.

With our MoonWire implementations we showed that by-
passing the kernel and using the fast DPDK drivers is the first
step towards higher performance. The single-threaded Variant
1 already improves performance by an order of magnitude.
The next hurdle is the high processing power requirement of
encrypting large amounts of data in real-time. This requires
efficient exploitation of the modern many-core CPU architec-
ture, which is a non-trivial problem. Using common strategies
like mutual exclusion with locks does not scale well beyond a
few cores, as seen in our benchmarks of IPsec and MoonWire
Variant 2. Choosing the right cryptographic ciphers can also
help. Modern AEAD ciphers like AES-GCM or ChaCha20-
poly1305 improve over traditional encrypt-then-mac ciphers.

Data synchronization proved to be the third major area
where performance is decided. We observed poor scaling of
lock-based-synchronization in both Linux IPsec and Wire-
Guard, where up to 90% of the time is spent in locking code.
Investigations of the source code revealed code paths where
one or multiple locks had to be taken for every handled packet.
In MoonWire Variant 3 we did away with locking and imple-
mented a work pipeline following a shared-nothing approach
and message passing as means of inter-thread communication.
Overall this approach yielded the best results with the highest
measured processing rate of 6.3 Mpps (3.2 Gbit/s) for 64 byte
packets. At 1514 byte packets we reached 3.13 Mpps and thus
the line rate for 40 Gbit/s links.

Our implementation is a testbed for different software
architectures, not a a VPN gateway meant for production use.
We recommend WireGuard for production setups based on
our investigation. Its architecture is similar to our proposed
pipeline architecture and on the right track for a scalable
modern VPN implementation and it already performs very
well in many scenarios despite not being heavily optimized
for performance yet.
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