
Performance Perspective on Private Distributed
Ledger Technologies for Industrial Networks

Fabien Geyer∗†, Holger Kinkelin∗, Hendrik Leppelsack∗,
Stefan Liebald∗, Dominik Scholz∗, Georg Carle∗, Dominic Schupke†

∗Technical University of Munich
Emails: lastname@net.in.tum.de

†Airbus, Munich
Emails: firstname.lastname@airbus.com

Abstract—Blockchain-based Distributed Ledger Technology
(DLT) is a novel paradigm to create tamper-resistant execution
environments and data storage for distributed applications on
top of a peer-to-peer network. This technology has shown to be
of interest in many use-cases, especially in industrial processes
where multiple shareholders would like to process and share data
in a secure and accountable way.

In this work, we evaluate the performance of a DLT-based
system via modeling and a quantitative performance evaluation,
focusing on the impact of the underlying communication network.
Our numerical evaluation is based on the Hyperledger Fabric
DLT framework, its benchmarking tool Caliper, and a dedicated
test bed, where network properties such as latency or packet loss
can be artificially influenced.

Our experiments show that the validation of the transactions
in a DLT-based system is the main contributor in the transaction
latency. We also demonstrate that the properties of the commu-
nication network can influence the performance largely, even in
the case where only one of the participants in the DLT system
has poor network access.

2019 International Conference on Networked Systems (NetSys)

I. INTRODUCTION

In 2008, Nakamoto [1] proposed the decentralized payment
system Bitcoin, whose essential idea is to use a blockchain-
based distributed ledger to store verified financial transactions
between its users. Both, the logic that verifies financial
transactions as well as the logic that maintains the blockchain
are executed on nodes of a peer-to-peer (P2P) network. The
most important properties of this novel paradigm of providing
a service are immutability and indelibility of the data stored
in the blockchain and that the entire system can be operated
without any trusted elements.

Several years later, in 2015, Ethereum [2] was the first
Distributed Ledger Technology (DLT) that separated the logic of
an application from the algorithms that maintain the blockchain.
So instead of implementing just one application as Bitcoin
does, Ethereum is a framework that enables its users to specify
own application logic in so called smart contracts, and to store
and execute these smart contracts in the Ethereum P2P network.
A smart contract can be executed by users by publishing a
transaction into the Ethereum network. The data contained in
the transactions, as well as the output computed by the smart
contracts, are persisted in the blockchain.

Ethereum is a highly interesting technology for companies
that want to execute code or to store data in a highly trustworthy
and tamper-proof manner. However, Ethereum is inherently

limited concerning performance and confidentiality, which both
hinder its applicability in certain scenarios.

The performance of Ethereum with regard to transaction
throughput is limited because of the consensus algorithm and
the block size. Consensus algorithms are used in DLTs to
agree on the next block of transactions. As of October 2018,
Ethereum uses consensus by proof of work (PoW), which is a
race of peers trying to solve a cryptographic puzzle depending
on the transactions included in a new block. While solving the
puzzle requires brute force, other peers can verify the solution
efficiently.

The average time needed to create a block and also the
block size can be adjusted. As of October 2018, the average
time for creating a new block is about 15 s1 and the average
block size is around 17 000 transactions2. As the queue of
pending transactions has about 40 000 elements3, a transaction
should be completed after 30 s to 40 s, which is inappropriate
for certain applications, especially in industrial use-cases.

The maybe more serious problem is that Ethereum is a
public system, which means that everybody can participate in
the network and download a copy of the blockchain. For this
reason, it is problematic to store confidential information as
plain text in the ledger. Encryption of certain data elements
contained in a transaction is possible. This approach, however,
creates the dilemma that smart contracts are limited to process
plain text information only.

To overcome these and other restrictions, various projects
with the aim of creating a new class of DLT, often referred
to as corporate blockchains, were launched. Corporate DLTs
are typically private networks, which means that some type of
identity management system is employed that allows peers and
clients to authenticate themselves as being part of the same
private network. One prominent example of a corporate DLT
and also the subject of our study is Hyperledger Fabric [3, 4], a
project from the Hyperledger project of the Linux Foundation.

A. Contributions and Structure

In this work, we conduct experiments with the corporate DLT
framework Hyperledger Fabric. As a difference and addition
to related work, we focus on performance impacts in DLTs
caused by effects in the network such as increased latency

1https://etherscan.io/chart/blocktime
2https://etherscan.io/chart/blocksize
3https://etherscan.io/chart/pendingtx



and packet loss rates. These can e.g. occur if DLT clients or
peers are connected via wireless technologies like Wi-Fi or
4G/5G to the rest of the DLT network. We show that those
parameters heavily influence the transaction latency. We also
demonstrate that the communication network properties of
a single shareholder in the DLT system can influence the
performances of other shareholders in the system.

The rest of this paper is structured as follows. In Section II
we give an overview of the different elements which have
been used in our experiments, namely Hyperledger Fabric and
Hyperledger Caliper, a DLT benchmarking system.

In Section III, we review related work evaluating distributed
ledger performance. We discuss metrics suitable to measure
DLT performance in Section IV and propose a mathematical
model based on queuing theory for modeling the system. We
analyze factors that influence DLT performance and metrics to
asses performance in Section V. Our experiment system, which
extends Caliper with the ability of conducting experiments
with artificially influenced network properties, and our test bed
setup are explained in Section VI. The subsequent Section VII
presents our experiments and discusses findings. The paper is
concluded in Section VIII.

II. BACKGROUND

A. Hyperledger Fabric

Hyperledger Fabric [3] is a framework for operating a private
distributed ledger developed by the Hyperledger project of the
Linux Foundation [5]. Hyperledger Fabric allows to specify
business logic in chaincode that runs on a distributed network
of Hyperledger Fabric peers. In contrast to Ethereum’s smart
contracts, chaincode is only installed on a subset of all available
peers called endorsing peers, see Figure 1. For each chaincode
there is also an endorsement policy that specifies how many
and which endorsers have to verify and endorse a transaction.

1) Transaction Flow: Transactions execute chaincode to
create a new data asset or to modify an existing one in the
blockchain. Hyperledger Fabric organizes the transaction flow
in three phases. In the execute phase, a Hyperledger Fabric
client invokes a chaincode operation by sending a transaction
proposal (step 1 in Figure 1) to the endorsing peers. Each
of them simulates the transaction and – if the transaction is
appropriate – returns a signed endorsement to the client 2 .
Endorsements contain a so-called read/write set, i.e., values
read and written by the chaincode.

If the read/write sets contained in all endorsements are
equal, the ordering phase commences. Now, the client sends
the transaction together with the endorsements to the ordering
service 3 , an entity responsible to collect, order and release
new blocks containing transactions of all clients in the network.
Also see Section II-A2.

In the final validation phase, the block is delivered to all
peers in the network 4 – also to so-called committing peers
that do not have the chaincode installed. All peers append the
new block to their local blockchain copy. Subsequently, they
validate each transaction in the block. This includes checks if
signatures are correct, if the read/write sets are identical, and if

Client

Endorsing Peer

Endorsing Peer

Committing Peer

Orderer (Solo)

1

2

3

4

5
Execute Order Validate

Figure 1: Hyperledger Fabric message flow

the endorsement policy is fulfilled. Furthermore, peers check if
the read set of a transaction matches to their local world state
to prevent version conflicts caused by race conditions. The
world state is a local database that contains the accumulated
result of sequentially applying transactions contained in all
blocks ever created in the network. If all checks are passed,
the write set of the transaction is applied to the node’s world
state and the client is notified about the successful execution of
the transaction 5 . If a check fails, the transaction is marked
as being invalid and not applied to the world state.

2) Ordering Service: Hyperledger Fabric uses a ordering
service to create new blocks. However, Hyperledger Fabric
does not depend on a specific implementation. As of October
2018, three implementations exist or are under development4:
1) Solo, a centralized, not fault tolerant ordering service for
testing purposes; 2) a distributed, fault tolerant orderer based
on Apache Kafka; and 3) a distributed, Byzantine fault tolerant
orderer, which is still under development.

B. Caliper

Caliper [6] is a Hyperledger project with the aim of creating
an agreed-on benchmarking tool that helps to compare the
performance of different DLT implementations for a specific
application. During experiments, Caliper acts as a DLT client
and automatically performs pre-defined DLT operations, like
deploying chaincode to peers, invoking chaincode with a
transaction, or querying the blockchain’s state.

Caliper is also able to measure various performance-related
properties, such as throughput, transaction latency, resource
utilization, etc. However, Caliper’s view on the DLT-based
system is limited to clients when executed in a distributed
setup, i.e., peers and the ordering service cannot be observed.

Another limitation of Caliper is that it is not able to influence
the test bed the DLT is running on. For this reason, no external
performance influencing factors, see Section V-A, can be
adjusted automatically, which would allow to observe potential
performance implications.

III. RELATED WORK

Dinh et al. [7] proposed BLOCKBENCH, one of the
first frameworks for evaluating the performance of different
blockchain platforms, namely, Ethereum, Parity and Hyper-
ledger Fabric using various benchmarks. Their set of bench-
marks include both specific ones targeting the evaluation of

4https://hyperledger-fabric.readthedocs.io



a specific aspect of the blockchain (eg. processor utilization,
network), as well as benchmarks based around realistic pat-
terns from realistic workloads. They identified the consensus
protocols as the main bottleneck for Hyperledger Fabric and
Ethereum, and transaction signing for Parity. The authors
further investigated the performance of blockchains in [8],
by including additional results such as the comparison between
two different Hyperledger Fabric versions.

Pongnumkul et al. [9] investigated the performance of
Hyperledger Fabric and Ethereum by measuring transaction
deployment and completion time. Compared with [7], they
showed that the difference between Ethereum and Hyperledger
Fabric becomes even more significant with larger number of
transactions. Their measurements is based on a single machine
setup, meaning that effects of the communication network is
not taken into account.

Yasaweerasinghelage et al. [10] proposed to model the
latency of blockchain-based systems using architectural per-
formance modeling and simulation. Their main goal for
those models was to support architectural design and what-if
evaluations for design changes.

Shbair et al. [11] presented a framework to test blockchains
and blockchain applications based on the Grid’5000 large-scale
test bed. As a showcase for their framework, they evaluated a
specific banking use-case and measured transaction latency.

Thakkar et al. [12] analyzed the impact of various con-
figuration parameters of Hyperledger Fabric such as block
size, endorsement policy, channels, resource allocation, state
database choice on transaction throughput and latency. They
identified three main bottlenecks, namely cryptographic opera-
tions, validation of transactions, and database calls. Compared
with our work, they mainly focused on CPU utilization and
assumed that the network is not a bottleneck.

Selimi et al. [13] recently performed an evaluation of
Hyperledger Fabric in a wireless mesh network based around
Raspberry Pis, with the goal of measuring transaction latency
and CPU resource consumption. Based on their finding, they
proposed a placement scheme for software components that
optimizes the performance of the blockchain protocol.

Göbel et al. [14] studied the effect of communication
delay on the evolution of the Bitcoin blockchain based on a
Markov model and validated their results against two different
simulators. They showed in their analysis that nodes with high
communication delay may be at a disadvantage compared to
other nodes participating in the network.

Kawase and Kasahara [15] recently proposed a mathematical
model of the performance of blockchain based on queuing
theory using a single-server queue model with batch service
M/GB/1. They validated their findings using simulation as
well as a trace of the Bitcoin network from October 2013 to
September 2015.

IV. MODEL

We present in this section a mathematical model for
estimating the average transaction latency.

A. Transaction latency

In order to measure the transaction latency, we split this
latency in the three following steps:

• Endorse: After the DLT client creates a transaction
(corresponding to step 1 in Figure 1), the endorsing
peers execute the related chaincode and answer with
endorsements (step 2 in Figure 1).

• Order: Subsequently, the DLT client sends the transactions
together with the related endorsements to the ordering
service (step 3 in Figure 1).

• Validate: The orderer creates a new block containing the
transaction and delivers this block to all peers in the test
network (step 4 in Figure 1). Finally, all peers validate
and apply the transactions contained in this block and
signalize the completion of the transaction to the DLT
client (step 5 in Figure 1).

The total transaction latency corresponds to the sum of the
three steps.

In case neither the underlying network nor the CPUs
constitute a bottleneck in the system, the main contributor to
the transaction latency is the validation. This is illustrated later
in Section VII and was also noted in [7, 8, 12]. This behavior
is explained by the fact that the validation step constitutes a
single point where all transactions have to be processed.

In order to write the different transactions, the ordering
service batches multiple ones into blocks and outputs a hash-
chained sequence of blocks containing transactions. The goal
of this batching process is to improve the the throughput of
the broadcast protocol of Hyperledger Fabric.

This process is illustrated in Figure 2. Transactions arrive at
different time at the orderer and are queued. Once the queue
reaches a given threshold, the orderer at once processes K
transactions, where K corresponds to the block size.

K

Time

Transaction
Backlog

Figure 2: Illustration of batch service of the orderer

The service of our system can then be modeled as a single-
serve queue model with bulk service. Such modeling is also
found in other applications, such as traffic lights, service
facilities or railroads [16]. We propose in this work to model
our system as a M/MB/1 system. This system describes
a process where transactions arrive according to a Poisson
process and are processed according to exponential service
time, with service taking place in batches of size B. While we
restrict here the model to exponential service, we note that a
M/GB/1 model was used in [15] for analyzing the Bitcoin
network. We derive the performance model of the orderer based
on the results from Medhi [17], which studies the M/Ma,b/1
queue, where batch sizes may take values between a and b. In
our case, we have a = b = K. Let λ represent the submitted



transaction rate and µ the service rate. The average transaction
time corresponds to the average waiting time in the system:

E[T ] = λP0,0
d

d− 1

[
1

µ2(1− d−B)
+
B(B − 1)

2λ2

− (dB − 1)−B(d− 1)

λ2dB(d− 1)2

] (1)

with

P0,0 =
dB−1(d− 1)

(B + λ/µ)dB − (dB−1 + dB−2 + . . .+ 1)
(2)

λ

µ
=
d−B(dB − 1)

d− 1
(3)

We refer to [17] for the formal proof of Equation (1).
Figure 3 illustrates Equation (1) for different values of K

and different values of λ, i.e. the submitted transaction rate.
As expected, increasing the rate results in the faster processing
time since blocks can be generated faster.

0.00

0.25

0.50

0.75

10 100

Submitted transaction/s

A
v

g
. 

T
X

 l
a

te
n

cy
 (

s)

Batch size

5

10

20

Figure 3: Transaction latency according to M/MK/1 model

V. PERFORMANCE INDICATORS

A. Performance Influencing Factors

Next to the model described in Section IV, additional
parameters have be taken into account for evaluating the
performance influencing the DLT. To facilitate the analysis
of influencing factors, we divided the entire system in different
layers, as illustrated in Figure 4.

The underlay network is the bottom-most one and used to
transport packets between clients, peers and the ordering service
via TCP/IP. Factors expected to influence performance include
available bandwidth, latency, and packet loss, as illustrated
later in Section VII. The underlay network is the main focus
of the evaluation in Section VII.

The overlay network is a logical topology of clients and peers
participating in the DLT network. The design of the overlay is
expected to affect performance as it determines which peers
interact with each other. Depending on the peers’ locations,
effects on the network layer are expected to be more or less
pronounced. For instance, a local network connecting a DLT-
based system is expected to be more reliable and performant
compared to a wide area network.

The node level consists of physical or virtual machines that
run peer processes and chain code, and store the DLT state.

The properties of nodes, i.e., their available computing power,
memory, system load, I/O performance, etc. are expected to
have an influence on DLT performance.

On the ledger level, performance of the DLT-based system
can be influenced by different configurations. In the example
of Hyperledger Fabric, this includes the endorsement policy,
which dictates how many and which peers must endorse a
transaction. A further factor expected to influence performance
is the block size, as modeled in Section IV.

On the application layer, the business logic implemented
in chaincode is expected to influence the DLT-based system’s
performance. This is because different applications induce
different workloads as, for instance, computations of varying
complexity are involved or because varying amounts of data
need to be transferred.

Ledger
Node

Ledger
Node

Ledger
Node

DLT-based Application

Overlay Network
Underlay Network

Figure 4: Layers of DLT-based systems.

B. Performance Metrics

In the same way as having specified factors that can influence
performance by layers, additional metrics may be used to
measure performance. On the network layer, the number of
packets sent between clients, peers and ordering service, the
amount of data in bytes and finally the amount of transactions
can be measured.

On the node layer resources consumed by the different
entities, such as CPU time, memory (RAM/cache/persistent
memory), network and disk I/O, can be determined.

On the ledger layer of a Hyperledger Fabric network, we
must differentiate between different entities, namely clients
that issue transactions, endorsers that validate transactions,
committers that apply the transaction, and the orderer service
that creates blocks of transactions. For our purpose, it is most
valuable and comparably easy to observe the network from the
standpoint of a client. This is because a client is highly involved
in processing the transaction it has proposed as described
in Section II-A. For this reason, we observe the different
transaction phases and the outcome of the transaction from
the client. With this ability, it becomes possible to measure
read and write transaction latencies, transaction throughput and
backlog, as well as the transaction success rate.

VI. IMPLEMENTATION OF EXPERIMENTS

Albeit we have designed our experiment system to be as
generic as possible with regard to the used experimental
environment and the actual system under test, we limit ourselves
to discussing our actual setup and measurements.



A. Experiment Workflow

The overall workflow of conducting experiments consists of
three phases, namely deployment, measurement, and evaluation
phase. While the first two phases are executed in the test bed,
the evaluation of measurement results is executed on a single
machine.

a) Deployment Phase: The deployment phase prepares
the available test bed for subsequent experiments. At first,
each host is booted from a pre-prepared, customized Debian 9
image with a minimal footprint. Next, Caliper is installed to
a benchmark host, Hyperledger Fabric to several ledger hosts
and finally the Solo orderer to the orderer host.

b) Measurement Phase: The measurement phase is more
complex, as depicted in Figure 5. At first, we configure the
measurement environment. This includes settings concerning
the ledger, like the block size, or settings that concern the
network, like loss rates, latency, etc. Now the measurement
is started. We first synchronize the time of all used machines
towards a local NTP server. After these steps, the actual
experiment is started and Caliper executes workloads we have
pre-defined by executing transactions. During this process,
Caliper is logging transaction- and ledger-related information,
like transaction state and timestamps of the different events
associated to transactions. Lastly, Caliper logs are gathered
from the experiment hosts.

Orchestration Host Caliper Host Fabric Hosts

Reset environment

Reset environment

Configure environment

Configure environment

Start measurement

Start measurement

Execute workload
Transaction

Stop measurement

Stop measurement

Gather results

Gather results

Figure 5: Measurement Workflow.

c) Implementation of Test Automation: We automated
the deployment and measurement phases using two tools:
the physical test bed itself is prepared using a management
framework running on the orchestration server, which we
developed to orchestrate experiment test beds at our chair,
called plain orchestrating service (pos) [18]. The goal of pos
is to provide a reusable infrastructure that enables experiment
automation. It provides test bed users an abstraction layer for
regular experiment tasks like restarting test nodes with a clean
image or gathering experiment artifacts, including executed

scripts, configuration files and generated experiment outputs.
This fosters repeatable and reproducible experiments. pos can
be easily adapted to meet requirements of other test beds.

As soon as the physical test bed is prepared, all remaining
steps are automated using Ansible [19], which is an open source
orchestration tool widely used in DevOps. Besides deploying
software and configurations, Ansible allows to execute arbitrary
scripts or commands on remote hosts and it can transport data
to and from remote machines.

VII. NUMERICAL EVALUATION

In this section, we present the experiments that we have
conducted and discuss and interpret their outcomes.

A. Experimental Environment

To develop our test system and to perform experiments,
we used a small test bed consisting of 12 identical machines
(quad core Intel Xeon CPU E3-1265L V2 @ 2.50GHz, 16 GB
memory, 120 GB SSD) linked via multiple Ethernet switches
connected in a daisy chain and 1 Gbit/s links.

The available machines for experiments were assigned to
different roles as depicted in Figure 6: one machine runs the
Solo orderer, one machine runs Caliper, the remaining machines
are used as peers assigned to two different organizations.

Caliper Orderer Peer PeerPeer Peer PeerPeer Peer

Figure 6: Topology used for the performance evaluation

B. Workloads and chaincodes

As mentioned before, different applications can induce
different workloads in the DLT network. As we are not
interested in measuring the performance of a particular DLT-
based application, we dissect individual properties of complex
workloads to define two “elementary” workloads that our test
framework can execute reproducibly.

The DoNothing workload is the most simple chaincode that
still allows a transaction to take place, i.e., no data is read or
written and the transaction validation logic is emulated with a
simple return true statement.

The Simple workload is used to emulate a simple banking
application, where accounts are either opened, closed, or
transfer of money happens between accounts. Each action
in this workload induces a single change in the distributed
ledger. Unless specified otherwise, we use Simple chaincode
for the different measurements, since each transaction induces
a change in the ledger.

C. Influence of transaction rate

To obtain an understanding of the basic behavior of Hyper-
ledger Fabric, we first conducted an experiment with 10 peers
and without altering the performance of the network links. In



each round of this experiment, transactions were executed at
different rate for a duration of 10 s in total.

In order to evaluate the maximum workload that our
experimental environment is able to process, we first measure
how many transactions per seconds the system is able to process.
For that we gradually increase the submitted transaction load
until the system reaches a bottleneck. Figure 7 illustrates that
using the default configuration provided by Hyperledger Fabric,
the system is able to process a maximum of 275 transactions
per seconds. Further evaluations of the cause of this bottleneck
are conducted in Section VII-G.

System in

overload

0

100

200

0 100 200 300 400

Submitted transactions/s

P
ro

ce
ss

ed
tr

a
n

sa
ct

io
n

s/
s

Figure 7: Maximal transactions processed with the default
configuration of Hyperledger Fabric. The line represent an ideal
system able to process the submitted rate without bottleneck.

Based on those results, we evaluated the influence of
submitted transaction rate on transaction latency, where we
gradually increased the transaction rate starting from 10 up
to 250 transactions per second. Figure 8 illustrates timings of
the three phases of the Hyperledger Fabric transaction flow
at different transaction rates. The measurement values were
created by timing different communication events as explained
in Sections II-A1 and IV and illustrated in Figure 1.

0

100

200

300

10 25 50 100 150 200 250

Submitted transactions/s

A
v

g
. 

T
X

 l
a

te
n

cy
 (

m
s)

Transaction step

Validate

Order

Endorse

Figure 8: Transaction rate against latency of Hyperledger Fabric
communication events

Figure 8 illustrates that the main contributor to transaction
latency is the validation step. As the submitted transaction rate
increases, we notice that the transaction latency decreases,
demonstrating the bulk service of the validation step, as
explained in Section IV and illustrated in Figure 3.

D. Influence of chaincode

As explained in Section VII-B, we evaluate here the
differences between the two described chaincodes and compare
the measured performance against the model presented in

Section IV. Results are presented in Figure 9. As expected, the
Simple chaincode results in larger validation latencies compared
to the DoNothing, since it requires changes in the distributed
ledger. Compared to the measurements, we note that the model
predicts the validation latency with good accuracy.

0

100

200

300

400

10 25 50 100 150 200 250

Submitted transactions/s

A
v

g
. 

v
a

li
d

a
ti

o
n

la
te

n
cy

 (
m

s)

Chaincode

(Model)

DoNothing

Simple

Figure 9: Comparison of the validation latency of the two
evaluated chaincodes

E. Influence of network properties

In this section we evaluate the influence of network parame-
ters on the transaction latency. We first evaluate the influence of
network latency, by adding additional latency on the different
hosts. This network delay was emulated via netem, the network
emulation functionality of Linux.

Figure 10 shows the increase of transaction latency when
the network latency is growing from 0 ms to 200 ms by 20 ms
intervals. As expected, increases in network latency result in
increased transaction latency. As demonstrated in Figure 8,
the validation step is the main contributor to the transaction
latency, illustrating that the validation step requires multiple
network interactions and round trips.

0

500

1000

1500

0 50 100 150 200

Network latency (ms)

A
v

g
. 

T
X

 l
a

te
n

cy
 (

m
s)

Transaction step

Validate

Order

Endorse

Figure 10: Transaction time against network latency

Secondly, we evaluate the influence of network loss by
simulating packet losses on the different hosts in the network.
Those packet losses were emulated via the statistics module of
iptables, enabling us – as opposed to netem – to generate
losses only on the relevant network packets for transactions
and avoid potential shortcomings of Caliper. Figures 11 and 12
show the increase of transaction latency when the loss rate
is growing from 0 % to 5 % by 0.5 % intervals. Compared to
the Endorse and Validation steps detailed in Figure 12, we
notice in Figure 11 that the network loss has a large influence



on validation time, going up to 40 s in the worst-case of 5 %
packet loss. This is explained by larger messages required by
the validation step which lead to more delays due to more
occurrences of TCP retransmissions.

0

10000

20000

30000

40000

0 2 4

Network loss (%)

A
v

g
. 

T
X

 l
a

te
n

cy
 (

m
s)

Transaction step

Validate

Order

Endorse

Figure 11: Transaction time against network loss. Details for
the Endorse and Order steps are presented in Figure 12

0

100

200

0 2 4

Network loss (%)

A
v

g
. 

T
X

 l
a

te
n

cy
 (

m
s)

Transaction step

Order

Endorse

Figure 12: Details of the Endorse and Order steps of the
transaction time presented in Figure 11

The findings presented in Figures 10 to 12 illustrate the
importance of correctly dimensioning the network on which
the DLT is running in order to minimize the transaction latency.
This is especially relevant in industrial use-cases, where timing
and deadline requirements have to be met in order for various
processes to run correctly.

F. Influence of local network impairment

Based on the previous findings, we evaluate here the
use-case where organizations participating in the DLT have
heterogeneous connectivity to the orderer. This scenario is
illustrated in Figure 13 with two organizations, where at least
one peer of each organization is an endorsing peer.

This scenario is relevant in industrial use-cases where
multiple shareholders use the same DLT to manage various
collaborations. Since the shareholders may have different
network providers, it is important to understand if the poor
connectivity of one shareholder can influence the global
performance of the DLT.

In Figures 14 and 15 we illustrate the following three cases:

• No impairment: both organizations have access to the
network without emulated impairment.

Peer Peer

Peer Peer

Organization 1

Organization 2

Network
Orderer

Modified path

Normal path

Figure 13: Illustration of simulated scenario where the network
path of one organization is manipulated

• One organization with impairment: one of the two
organizations participating in the DLT is affected either by
increased delay (80 ms) or increased packet loss (2.5 %).

• Both organizations with impairment: both organizations
are affected by the same increased delay or packet loss.

Since the Endorse step of a transaction requires the par-
ticipation of all endorsement nodes in the DLT, we note in
Figure 14 that its duration is the same for the two use-cases
where additional delay is emulated. This illustrates that one
organization with high network latency may actually slow down
the performance of another organization with normal network
latency. A similar behavior is illustrated in Figure 15 in case
of network loss.

Total transaction latency Endorse step latency

10 25 50 100 150 200 250 10 25 50 100 150 200 250

0

200

400

600

800

Submitted transactions/s

A
v

g
. 

T
X

 l
a

te
n

cy
 (

m
s) Use−case

No delay

One org. w/ delay

Both org. w/ delay

Figure 14: Transaction time against 80 ms network latency in
the use-case presented in Figure 13

Total transaction latency Endorse step latency

10 25 50 100 150 200 250 10 25 50 100 150 200 250

0

100

200

300

400

Submitted transactions/s

A
v

g
. 

T
X

 l
a

te
n

cy
 (

m
s) Use−case

No loss

One org. w/ loss

Both org. w/ loss

Figure 15: Transaction time against 2.5 % network loss in the
use-case presented in Figure 13

We note that the effects of network latency and loss could
also be used by a fraudulent stakeholder for intentionally slow-
ing down particular transactions. This, in turn, can potentially
cause invalid and failed transactions. Such manipulation of



network properties can lead to potential security attacks and
denial of service of the DLT. A concrete attack has also been
recently illustrated by Apostolaki et al. [20] in case of the
Bitcoin network, where manipulation of the Internet routes of
some users lead to delayed transactions of up to 20 min.

G. Influence of block size

We evaluate in this section the main bottleneck in our
evaluated test bed, namely the ordering service. In order to
better understand the role of the orderer, we evaluated different
block size values and measured the rate at which transactions
could be processed. Results are presented in Figure 16.

While we notice a linear trend between block size and rate
of processed transaction for block sizes below 20, we notice
that a bottleneck is reached for block sizes larger than 25.

200

400

600

10 20 30 40

Block size

M
a

x
im

u
m

 p
ro

ce
ss

ed
tr

a
n

sa
ct

io
n

s/
s

Figure 16: Influence of block size on maximal rate of
transactions processed

VIII. CONCLUSION

In this paper we evaluated the performance of Hyperledger
Fabric, a blockchain-based distributed ledger. We identified
various bottlenecks which may impact its performance. We
focused mainly on two metrics for evaluating this system: rate
of processed transaction and transaction latency, two metrics
which are especially relevant in industrial use-cases where
critical latency requirements have to be met.

After an explanation of the DLT system and the methodology
used for evaluating it, we propose a simple queuing model
based on a bulk service. Via measurements made in our test
bed, we evaluated the DLT system in various use-cases. We
focused especially on the influence of communication network
properties on the performance, namely link latency and packet
loss. We also demonstrate how the network properties of one
participant can influence the global performance of the DLT
system, leading to potential attacks against some transactions.

In future work, we want to evaluate our system using a larger
test bed where we plan to utilize virtualization to upscale
the amount of hosts. In this environment, we also plan to
conduct experiments with other ordering services than Solo,
namely the Kafka-based orderer and – if available – the PBFT
orderer. We want to understand how these distributed orderer
implementations are influenced by network effects and in turn
influence the performance of the DLT. A further interest of
ours is to get more insights in potential security problems
caused by delaying transactions; a threat that we expect to be

even more pronounced when distributed orderer services are
employed.

REFERENCES
[1] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” 2008,

[Online] https://bitcoin.org/bitcoin.pdf, last accessed on October 15, 2019.
[2] E. Foundation, “A Next-Generation Smart Contract and An-

droulaki2018Decentralized Application Platform,” 2018, [Online] https:
//github.com/ethereum/wiki/wiki/White-Paper, last accessed on October
15, 2019.

[3] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich,
S. Muralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith,
A. Sorniotti, C. Stathakopoulou, M. Vukolić, S. W. Cocco, and J. Yellick,
“Hyperledger Fabric: A Distributed Operating System for Permissioned
Blockchains,” in Proc. of the 13th EuroSys Conf., Apr. 2018.

[4] M. Vukolić, “The Quest for Scalable Blockchain Fabric: Proof-of-Work
vs. BFT Replication,” in Proc. of the International Workshop on Open
Problems in Network Security. Springer, 2015, pp. 112–125.

[5] The Linux Foundation, “Hyperledger Fabric,” 2018, [Online] https://
hyperledger.org/projects/fabric/, last access October 15, 2019.

[6] ——, “Measuring Blockchain Performance with Hyperledger
Caliper,” 2018, [Online] https://www.hyperledger.org/blog/2018/03/19/
measuring-blockchain-performance-with-hyperledger-caliper, last access
October 15, 2019.

[7] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L. Tan,
“BLOCKBENCH: A Framework for Analyzing Private Blockchains,” in
Proc. of SIGMOD, 2017, pp. 1085–1100.

[8] T. T. A. Dinh, R. Liu, M. Zhang, G. Chen, B. C. Ooi, and J. Wang,
“Untangling blockchain: A data processing view of blockchain systems,”
IEEE Trans. Knowl. Data Eng., vol. 30, no. 7, pp. 1366–1385, 2018.

[9] S. Pongnumkul, C. Siripanpornchana, and S. Thajchayapong, “Perfor-
mance Analysis of Private Blockchain Platforms in Varying Workloads,”
in Proc. of the 26th Int. Conf. on Computer Communication and Networks
(ICCCN), Jul. 2017, pp. 1–6.

[10] R. Yasaweerasinghelage, M. Staples, and I. Weber, “Predicting Latency
of Blockchain-Based Systems Using Architectural Modelling and Simu-
lation,” in Proc. of the 2017 IEEE Int. Conf. on Software Architecture
(ICSA), 2017, pp. 253–256.

[11] W. Shbair, M. G. Steichen, J. François, and R. State, “Blockchain
Orchestration and Experimentation Framework: A Case Study of KYC,”
in Proc. of the 2018 IEEE/IFIP Network Operations and Management
Symposium, Apr. 2018, pp. 1–6.

[12] P. Thakkar, S. Nathan, and B. Vishwanathan, “Performance Benchmarking
and Optimizing Hyperledger Fabric Blockchain Platform,” 2018.

[13] M. Selimi, A. R. Kabbinale, A. Ali, L. Navarro, and A. Sathiaseelan,
“Towards Blockchain-enabled Wireless Mesh Networks,” 2018.

[14] J. Göbel, H. Keeler, A. Krzesinski, and P. Taylor, “Bitcoin Blockchain
Dynamics: the Selfish-Mine Strategy in the Presence of Propagation
Delay,” Performance Evaluation, vol. 104, pp. 23–41, Oct. 2016.

[15] Y. Kawase and S. Kasahara, “Transaction-Confirmation Time for Bit-
coin: A Queueing Analytical Approach to Blockchain Mechanism,” in
Queueing Theory and Network Applications. Springer International
Publishing, 2017, pp. 75–88.

[16] M. L. Chaudhry and J. G. C. Templeton, A First Course in Bulk Queues.
Wiley New York, 1983.

[17] J. Medhi, “Waiting Time Distribution in a Poisson Queue with a General
Bulk Service Rule,” Management Science, vol. 21, no. 7, Mar. 1975.

[18] S. Gallenmüller, D. Scholz, F. Wohlfart, Q. Scheitle, P. Emmerich,
and G. Carle, “High-Performance Packet Processing and Measurements
(Invited Paper),” in Proc. of the 10th Int. Conf. on Communication
Systems & Networks (COMSNETS 2018), Jan. 2018.

[19] Ansible Inc. / Red Hat Inc., “Ansible,” 2018, [Online] https://www.
ansible.com/, last access October 15, 2019.

[20] M. Apostolaki, A. Zohar, and L. Vanbever, “Hijacking Bitcoin: Routing
Attacks on Cryptocurrencies,” in Proc. of the IEEE Symp. on Security
and Privacy (SP), 2017.


