
2019 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS)

Cryptographic Hashing in P4 Data Planes
Dominik Scholz∗, Andreas Oeldemann†, Fabien Geyer∗, Sebastian Gallenmüller∗,

Henning Stubbe∗, Thomas Wild†, Andreas Herkersdorf†, Georg Carle∗

Technical University of Munich, Germany
∗{scholz,fgeyer,gallenmu,stubbe,carle}@net.in.tum.de
†{andreas.oeldemann,thomas.wild,herkersdorf}@tum.de

Abstract—P4 introduces a standardized, universal way for
data plane programming. Secure and resilient communication
typically involves the processing of payload data and specialized
cryptographic hash functions. We observe that current P4 targets
lack the support for both. Therefore, applications and protocols,
which require message authentication codes or hashing structures
that are resilient against attacks such as denial-of-service, cannot
be implemented.

To enable authentication and resilience, we make the case
for extending P4 targets with cryptographic hash functions. We
propose an extension of the P4 Portable Switch Architecture for
cryptographic hashes and discuss our prototype implementations
for three different P4 target platforms: CPU, NPU, and FPGA.
To assess the practical applicability, we conduct a performance
evaluation and analyze the resource consumption. Our proto-
type implementations show that cryptographic hashing can be
integrated efficiently. We cannot identify a single hash function
delivering satisfying performance on all investigated platforms.
Therefore, we recommend a set of hash functions to optimize
target-specific performance.

Index Terms—Hash function, Data Plane Programming, Per-
formance Evaluation, P4

I. INTRODUCTION

The rise of paradigms like P4 [1] for programming high-
speed packet processing platforms has enabled a shift of
networking applications to the data plane. Examples of such
applications include heavy-hitter detection [2], [3] and in-
network caching for distributed services [4]. Looking at im-
plementations of those applications, hash-based data structures
like hash tables, bloom filters, or count–min sketches often
serve as a basis for efficiently tracking flows. Currently, P4
only supports few algorithms for hash functions, based on
cyclic redundancy check (CRC) or checksum calculations
commonly used in network protocols (e.g., IP, TCP check-
sums), which can operate on the header fields of a packet.

To address more secure and advanced applications in the
data plane, a wider set of hash functions with cryptographic
properties may be beneficial. Two classes of applications can
benefit: First, resilience to hash collisions can be improved
for hash-based data structures. High susceptibility to hash
collisions can create attack vectors, leading to poor resource
usage or denial of services [5]. Second, integrity protection,
which is typically implemented using hash-based message au-
thentication codes (HMAC) for instance for digital signatures
or challenge-response protocols. These are essential for secure

communication not only on the Internet but also in industrial
networks.

We argue for the benefits of including cryptographic hash
functions in P4 platforms. We present our prototype imple-
mentations for three different P4 targets: the t4p4s software
platform, the Netronome Agilio NFP-4000 Smart NIC, and the
NetFPGA SUME. Using measurements we discuss the impacts
on performance and resource consumption of cryptographic
hash implementations for these devices.

The rest of this paper is organized as follows: First, we
review related work in Section II. We argue for the inclu-
sion of cryptographic hash functions in programmable packet
processing platforms in Section III. In Section IV we discuss
our approaches to extend three different P4 targets with the
functionality to calculate cryptographic hashes over packet
data. We conduct an evaluation of our prototype implemen-
tations focusing on performance metrics as well as resource
consumption in Section V. Section VII concludes our work.

II. RELATED WORK

Various work already evaluated the suitability of hash al-
gorithms for network packets. Molina et al. [6] and Henke
et al. [7] evaluate several different functions, with a fo-
cus on packet sampling. Both works highlight that CRC32
is not recommended due to its linear dependency between
hash input and hash value, making it vulnerable to bias
and security attacks. They recommend BOB [8] as hash
algorithm in non-adversarial scenarios due to its performance
and avalanche properties. Regarding hardware implementation
of non-cryptographic hash algorithms for networking applica-
tions, Hua et al. [9] evaluated 18 different functions. They
propose a family of hash functions achieving good properties
in terms of hashing at a reduced cost regarding hardware
footprint and cost per cycle.

Use of hash functions for networking applications imple-
mented in the P4 data plane can be found in various work.
Ghasemi et al. [10] investigate performance diagnostic of
TCP with Dapper using standard 5-tuple hashes. Zaoxing
et al. [2] propose UnivMon for network flow monitoring
based on a sketch data structure where multiple pairwise-
independent hash functions are used. Cidon et al. [11] propose
AppSwitch, a cache for key-value storage using hashes of
keys. Sivaraman et al. [3] introduce HashPipe, a heavy-hitter
detection using a pipeline of hash tables, which retain counters

978-1-7281-4387-3/19/$31.00 © 2019 IEEE

for heavy flows while being memory efficient. Finally, Kucera
et al. [12] also address heavy-hitter detection using Elastic
Trie, a novel trie-based data structure. The mentioned works
either do not detail the hash algorithm used, or make use of
CRC32 as hash function, making them potentially vulnerable
to security attacks. Only Ghasemi et al. [10] explicitly describe
the strategy used to deal with hash collisions. They use a hash
chaining technique combining the hashed value and the TCP
sequence numbers.

The IEEE 802.1AE (MACsec) standard provides data con-
fidentiality and integrity through a security tag and a message
authentication code (MAC) on the data link layer. These prop-
erties are especially interesting for industrial use cases, includ-
ing automotive [13], [14] and aeronautical applications [15].
Hauser et al. [16] propose P4-MACsec for the automation of
MACsec deployment by shifting the MACsec implementation
entirely to the data plane of P4 targets. They implement
prototypes for the BMv2 model and the NetFPGA, but the
solution for the latter was not feasible due to the same prob-
lems regarding externs we encountered (see Section IV-C).
Hauser et al. [17] propose a similar approach for IPsec,
but their prototype implementation for the NetFPGA has the
same restrictions. For the ASIC prototype, all cryptographic
processing is performed by a CPU-based controller, as the
ASIC neither offers cryptographic algorithms nor adding them
as externs. This limits performance and functionality [17].

III. MOTIVATION

Hash functions play a key role in various network applica-
tions being fundamental for modern network communication.
As more and more functionality is being moved to pro-
grammable data planes, supporting hash functions with strong
cryptographic properties will be a key enabler for various
networking use cases.

A. Working with hashes in P4

The Portable Switch Architecture of P416 supports five
different functions, which may serve as hash functions: four
variants of CRC and the 16 bit one’s complement used for IP,
TCP, and UDP checksum calculation. While these may serve
as a good hash function in networking applications [18], they
do not provide cryptographic properties.

In P416, hash algorithms can be accessed via standard
function calls of external libraries, so-called externs. For
instance, the P4 switch model v1model.p4 external library
offers the generic hash function. Its parameters include the
hash algorithm to use, as well as a list of parsed header or
metadata fields to be used as input. The P4 target platform
may support additional hashing algorithms as externs.

While P4 does not directly offer primitives for working
with data structures such as hash tables or Bloom filters, P4
primitives can be used in combination with P4 registers to
emulate those data structures.

B. Applications with security properties

Various attacks have been proposed on poorly implemented
hash-based data structures. For instance, hash tables can de-
generate to linked lists with maliciously chosen input, leading
to high CPU usage in network security monitors [19]. It is
therefore recommended to either use cryptographically-strong
random number generators or keyed pseudo-random functions
instead of CRC [19], [20].

Due to the use of relatively small messages in packet
processing, the choice of a hash function for efficient pro-
cessing is not straightforward. While the SHA-2 family of
hash functions is a strong candidate regarding cryptographic
features and security, these functions were not designed with
good performance for small inputs. Popular candidates are the
SipHash family of hash functions used in various programming
languages and software [21], or the BLAKE2 family [22], both
designed for good performance for small inputs.

Cryptographic hash algorithms are found in various net-
work protocols with different uses [23]. Extending P4 and
its hardware platforms with cryptographic algorithms enables
offloading of secure applications to the data plane. A use case
of interest are MACs, where packet content is checked for
data integrity and authenticity. Hash-based MACs (HMACs)
are often used for this and can be found in various protocols
such as IPsec, TLS or IEEE 802.1AE (MACsec).

Digital signatures or challenge-response protocols, using
token or cookie mechanisms, are used to either prove the
possession of an authentication token or to encode state
that is being exchanged. One such example are TCP SYN
cookies [24], which are calculated for each incoming TCP
SYN packet during an ongoing attack and, therefore, have to
be efficiently generated and verified.

IV. HASHING EXTERN IMPLEMENTATION

We have extended three different P4 target platforms with
externs calculating cryptographic hashes. Each platform has
its own way how P4 externs can be added.

A. CPU: t4p4s

t4p4s [25] is a P4 compiler, which generates platform-
independent C code. Target-specific code can be linked with
additional libraries, in our case the Dataplane Development
Kit (DPDK version 17.08). This allows the P4 program to be
executed in user space on a CPU-based software system. We
use the name t4p4s synonymously for both the P414 compiler
and the DPDK-based P4 target.

As t4p4s only supports the TCP/IP checksum calculation
as hash algorithm, we extended it with an SSE4.2-accelerated
non-cryptographic CRC32 function. Furthermore, we added
the following open-source implementations of (pseudo-) cryp-
tographic hash functions as P4 externs: the original version
of SipHash-2-4 [21]; Poly1305-AES [26] based on [27]; the
original verion of BLAKE2b [22]; and HMAC-SHA256 and
HMAC-SHA512 based on OpenSSl (v1.1.0). The output length
in bit of each of the hash functions is listed in Table I. We

Figure 1: Integration of hash calculation and insertion

refer to related work regarding their cryptographic properties
and cryptanalysis.

B. NPU: NFP-4000 SmartNIC

The 10G Netronome Flow Processor (NFP)-4000 Agilio
SmartNIC [28] is a Network Processing Unit (NPU) that
relies on a 32 bit many-core architecture with up to 60 freely
programmable flow processing cores. A P4 compiler is offered
by Netronome, which compiles P4 code for the NPU (SDK
v6.0.4). While none of the supported hash functions has
cryptographic properties, the SmartNIC allows implementing
P4 externs in Micro-C, a variation of C used to program the
processing cores. Externs are inlined into the compiled P4
program. In addition to the existing P4 hashes for CRC32
and Checksum, we have implemented the SipHash-2-4 func-
tion in Micro-C, calculating a hash for the payload of the
Ethernet frame. The NFP-4000 features a hardware crypto
security accelerator supporting SHA1 and SHA2, however, the
accelerator was not available on our NPU, therefore we opted
for the CPU-optimized SipHash instead.

C. FPGA: NetFPGA SUME

P4->NetFPGA [29] provides an open-source hardware
design for the NetFPGA SUME board, which instantiates
P416 programs compiled via Xilinx SDNet (we used version
2018.1). We selected the open-source RTL implementations
of a SipHash-2-41 (64 bit output) and a SHA3-5122 (512 bit
output) IP core for integration into our prototype design.

Integrating the hash IP cores seamlessly as P4 externs
via interfaces defined by the P4->NetFPGA implementation
is not possible. The current design does not implement a
streaming interface for extern data in- and output, where data
is fragmented into multiple subsequent words. In- and output
data is passed among the P4 program and externs as a single
data word via a fixed number of parallel wires, requiring
thousands of wires for maximum-sized Ethernet frames. We
found that the current version of the SDNet compiler is only
able to handle input widths of up to approx. 600 B. However,
even for an input width of 64 B we were unable to obtain
timing closure due to resource congestion.

As an alternative, we have changed the P4 switch model of
the P4->NetFPGA design by integrating the hash calculation
in the egress path after the synthesized P4 program (Figure 1).
Per-packet metadata written by the P4 program instructs
the hash module whether and where to insert the hash. As
hashes are calculated after packets traverse the P4 program,
packet modifications or forwarding decisions relying on hash

1SipHash IP Core: https://github.com/secworks/siphash
2SHA3-512 (KECCAK) IP Core: https://github.com/freecores/sha3

calculations cannot be implemented in P4. Relocating the hash
IP core into the ingress path would allow hashes to be passed
to the P4 program via metadata. Another alternative is to
further enhance the P4 switch model of the P4->NetFPGA
by placing a second P4 pipeline after the hashing module.

Finally, our implementation would benefit from a traffic
manager to selectively steer traffic around the IP core to avoid
blocking of packets, which do not require hash calculation.

D. Limitations

Our extern implementations for the NFP-4000 and Net-
FPGA SUME do not use key material or an HMAC scheme
required to generate a message authentication code, but only
calculate a single cryptographic hash. This is done for sim-
plicity and to focus on evaluating the performance of the basic
cryptographic operation, which could be applied for use cases
other than HMAC calculations. However, this functionality
could be added, for instance by providing the key material
as part of P4 metadata on a per-packet basis.

V. PROTOTYPE EVALUATION

Our measurement setup consists of two servers connected
via a 10 Gbit/s Ethernet link. One server acts as a load
generator and sends packets to the device under test (DuT),
which runs an L2 forwarding P4 program that additionally
calculates hashes based on the complete Ethernet frames. The
server acting as the DuT is equipped with an Intel Xeon
CPU E5-2620 v3 (Broadwell) at 2.40 GHz and either an Intel
X540 network card, Netronome NFP-4000 SmartNIC, or the
NetFPGA SUME. For measurements performed for the CPU
target, all traffic is pinned to one CPU core.

A. Metrics for hash functions

Several metrics depending on the requirements of the ap-
plication and capabilities of the (hardware) platform are of
relevance when choosing a hash function. In high-performance
applications, the performance of the hash function in terms of
latency and processing time (e.g. clock cycles) is an important
characteristic. When implementing the hash function, its mem-
ory footprint and, when implemented in hardware, resources
of the hardware required, e.g. logic elements and registers for
an FPGA, have to be considered.

Cryptographic properties of a hash function may be limited
to a defined length (5-tuple vs. payload) and/or type of input
data (entropy of passwords vs. random data). Furthermore,
the function’s collision resistance has to be taken into con-
sideration. Finally, different applications may have different
constraints regarding the length of the produced output hash.
While a short HMAC included in an Ethernet frame causes
only minor packet overhead, it can negatively impact its
effectiveness.

B. Hash function micro-benchmarks

CPU system We investigate the individual latency of the
hash algorithm implementations. Each hash function was
executed multiple times for input data lengths ranging from

Hash Cycles Fixed cycles Cycles Output
algorithm per B per packet for 64 B length (bit)

CRC32 0.32 0.00 10.79 32
Checksum 0.44 0.00 30.06 16

SipHash-2-4 1.06 56.40 121.10 64
Poly1305-AES 1.69 83.71 170.38 128
BLAKE2b 3.14 35.85 232.77 8-512
HMAC-SHA512 3.70 1454.51 1578.14 512
HMAC-SHA256 5.57 959.69 1462.13 256

Table I: Hash function latency on CPU DuT

2 B to 1500 B on the CPU DuT. For each run, we counted the
number of CPU cycles using the timestamp counter (TSC).
To model the latency behavior of each hash function, we then
performed a linear regression based on the input data lengths
and the number of cycles consumed by each algorithm.

The number of fixed CPU cycles per packet reported in
Table I highlights that some algorithms are better suited to
process small input data such as network packets than others.
Especially when comparing HMAC-SHA256 and HMAC-
SHA512 to the other cryptographic functions, an increase
of per-packet fixed cycles by a factor of up to 40 can be
seen. To process 14.88 Mpps for 10GbE with 64 B packets on
a single CPU core clocked at 2.40 GHz, the processing for
each packet must be completed in 161 CPU cycles. Only the
non- or pseudo-cryptographic functions not using an HMAC
mode satisfy this requirement. SipHash-2-4 shows the most
promising results, being optimized for hashing on 64 bit CPU
architectures.

FPGA We evaluate the hash IP cores in our NetFPGA
SUME implementation through RTL simulations. Table II and
Figure 2 present observed latency and throughput. SHA3-
512 hash values are calculated on 72 B data blocks, SipHash-
2-4 operates on smaller 8 B blocks. If the input data must
be padded to fill the content of the last block, calculation
efficiency (i.e. B/clock cycle) decreases and throughput drops.
However, this is barely visible for SipHash-2-4 calculation
due to the small block size. While the theoretical maximum
throughput of the SHA3-512 IP core is 48 bit/clock cycle for
infinitely long input data, we observe a maximum rate of
46.14 bit/clock cycle for packets between 64 B and 1518 B.
The maximum throughput of the SipHash-2-4 IP core for these
packet lengths is 21.02 bit/clock cycle, falling slightly below
the theoretical maximum of 21.33 bit/clock cycle. Although
the throughput of the SHA3-512 calculation is significantly
higher, we were unable to operate the integrated IP core at
clock frequencies exceeding 165 MHz. While the SipHash-2-
4 logic can be operated at 200 MHz, matching the frequency
of the P4->NetFPGA pipeline, we had to place the SHA3-512
IP core in a separate clock domain.

C. Hashing complete packets

For the use case of communication integrity and authen-
tication, we evaluate the hashing of complete packets. For
each platform, we perform a baseline measurement, where the

Hash Block Size Cycles Fixed Cycles Clock
algorithm in B per Block per Packet Frequency

SHA3-512 72 12 10 165 MHz
SipHash-2-4 8 3 8 200 MHz

Table II: Hash function latency on FPGA DuT

64 300 600 900 1,200 1,518
0

20

40

Packet Size [B]

T
h
ro
u
g
h
p
u
t

[b
it
/
cl
o
ck

cy
cl
e]

SHA3-512 (165 MHz) SipHash-2-4 (200 MHz)

Figure 2: Throughput of hashing FPGA IP cores

P4 program is a simple L2 forwarder without performing any
hashing operations.

Throughput Results for maximum throughput are presented
in Table III. Independent of packet size, all three platforms
reach 10 Gbit/s in the baseline scenario, with the exception
for minimum-sized packets on the CPU target. Adding the
calculation of hashes reduces the maximum performance such
that no platform can reach line rate for packets with minimum
size. In our evaluation, the best results are achieved by the
Netronome card. Experiments with Checksum and CRC32 as
hash algorithms showed that the card can hash packets at
line rate regardless of packet size (not shown in Table III).
Using SipHash-2-4 about 75 % of line rate for minimum-sized
packets can be achieved. Despite high throughput for packet
sizes up to 900 B, performance degrades rapidly for larger
packets. This behavior can be explained by the SmartNIC’s
RAM architecture [30]. Our experiments showed that buffers
residing in a fast memory region are only used for packets
smaller than 900 B for payload processing. For larger packets,
slower shared RAM has to be accessed, causing a drop in
throughput to approx. 10−6% line rate.

The NetFPGA SUME platform achieves an almost constant

Algorithm 64 B 96 B 128 B 512 B 1024 B 1500 B

t4p4s

Baseline 95.03 100 100 100 100 100
SipHash-2-4 36.09 46.01 54.73 100 99.17 100
HMAC-SHA512 8.47 11.69 11.11 24.26 31.67 37.80

NFP-4000

Baseline 100 100 100 100 100 100
SipHash-2-4 75.60 80.71 91.61 99.15 10−6 10−6

NetFPGA SUME

Baseline 100 100 100 100 100 100
SipHash-2-4 42.00 42.18 42.29 42.56 42.61 42.52
SHA3-512 48.21 42.53 54.27 65.02 71.78 76.00

Table III: Achievable throughput for hashing frames of differ-
ent sizes in percent, relative to 10 GbE line rate

64 300 600 900 1,200 1,518
0

2

4

6

Packet Size [B]

L
at
en

cy
[µ
s]

Baseline SHA3-512 SipHash-2-4

Figure 3: Median latency for NetFPGA (2.5 Gbit/s)

2 4 6 8 10 12 14
100

101

102

Packet Rate [Mpps]

L
at
en
cy

[l
og

µs
]

Baseline 64 512 1500

SipHash-2-4 64 512 1500

Figure 4: Median latency for CPU system

performance of approx. 42 % line rate using SipHash-2-4.
The SHA3-512 IP core is clocked slower, but its higher per-
cycle throughput results in superior performance for all packet
sizes. It reaches 76 % line rate for 1500 B packets. The non-
monotonic increase of throughput is caused by the block-based
hash calculation. While our prototype is limited to open-source
hash implementations, we note that higher throughput could
be achieved with commercial IP cores.

The worst performance is shown by the CPU target. Com-
pared to the baseline, for SipHash-2-4 the throughput is more
than halved for small packet sizes, roughly matching the
calculated latency shown in Table I. Only for packets larger
than 390 B line rate is reached. Due to the large number of
fixed cycles per packet, SHA512 when used in HMAC mode
processes less than 10% line rate for minimum-sized packets
and even for large packets is unable to reach line rate.

Latency Figure 3 shows our latency measurements for the
NetFPGA SUME. As expected, latency increases linearly with
packet size with slight discontinuities due to the block-based
hash calculation. We found that for each packet size the
measured values do not differ by more than 100 ns.

For t4p4s latency is influenced by the packet rate (see
Figure 4, results for HMAC-SHA512 omitted due to low
maximum packet rates) as packets are sent either when a
burst size of 32 is reached, or after a timeout. This causes
increased latency for packet rates below 0.5 Mpps as the batch
is not filled quickly enough, instead waiting for the timeout.
The latency is independent of the algorithm used, however,
increases with packet size (l) due to the increased serialization
delay: ts(l) = ((l − 64) · bsize)/(ts10GbE) in relation to 64 B
packets, with bsize = 32 and ts10GbE = 1.25ns. Overall the

100 101 102 103 104
0

50

100

Latency [log µs]

P
er
ce
n
ta
g
e

Baseline NFP-4000 5% 80%

SipHash-2-4 NFP-4000 5% 80%

Figure 5: Latency distribution at 5 % and 80 % of respective
maximum throughput using 64 B packets

LUTs Registers BRAM
Abs. % Abs. % Abs. [kB] %

Baseline 64,533 14.90 109,783 12.67 16,362 30.92
SipHash-2-4 66,380 15.32 114,282 13.19 17,460 32.99
SHA3-512 73,449 16.95 118,689 13.70 17,460 32.99

Table IV: Resource utilization for the NetFPGA SUME

latency is between 10 µs and 80 µs, however, outliers, which
regularly occur when using the DPDK, exist (see Figure 5).

The NPU demonstrates stable behavior below 10 µs with no
outliers for the baseline scenario. Performing the SipHash-2-4
operation shifts the latency distribution to the right up to 30 µs
and increases the long tail.

Resource Consumption Packet processing in general is
parallelizable, scaling well using multi-queue NICs and multi-
core CPUs. Thus, the hardware of CPU-based systems can be
tailored to meet an application’s resource requirements.

Apart from the described performance issues, we did not
encounter resource restrictions for the Netronome card as the
P4 program is of small size even when adding the SipHash
implementation. For other applications, the program may be
too large such that the generated firmware image can no longer
be loaded onto the card.

Finally, Table IV lists the resource consumption (LUTs, reg-
isters, BRAM) of the FPGA-based implementations. Adding
hashing functionalities increases resource consumption only
moderately by no more than approx. 2 %.

VI. LIMITATIONS

The performance of the evaluated platforms depends on
the chosen hash function and their implementation. For this
work, we selected open-source implementations, because we
are primarily interested in the general feasibility of using cryp-
tographic hash functions in programmable data planes. While
we have shown that this is possible, more sophisticated hash
function implementations (e.g. commercial FPGA IP cores) in
combination with an optimized integration into the P4 program
(e.g. parallelization, pipelining) could reduce implementation
artifacts, improving the performance and resource utilization,
but would require further monetary costs and engineering
effort.

VII. CONCLUSION

Our review of the current use of hash functions in P4
applications reveals two insights. First, a prevalent use of CRC,
making applications vulnerable to potential attacks targeting
hash collisions. Second, protocols and applications requiring
cryptographic hashes for authentication or integrity cannot
be described using P4. Therefore, the implementation of
cryptographic hash functions would increase the applicability
of P4 to a wider range of use cases.

We describe prototype implementations integrating crypto-
graphic hashing algorithms in three different P4 target plat-
forms – CPU, NPU, and FPGA. Our analysis shows that the
CPU target is easily extensible, but has the highest worse-
case latency of up to several milliseconds. The tested NPU
offers the highest throughput, but cannot process packets
larger than 900 B efficiently. The FPGA-based target offers
the lowest latency with small variance. However, the hashing
IP core currently cannot be integrated using native P4 features,
limiting the programmability and requiring a change of the P4
switch model.

Our measurements show hashing performance to be highly
target, algorithm, and use case specific. Therefore, we cannot
recommend a one-size-fits-all solution. We rather suggest that
P4 targets should implement hash functions – operating on
header and payload data – from a family of algorithms,
which should be recommended by the P4 specification. These
recommendations should include cryptographic hashes and
take into account the unique characteristics of platforms such
as CPU, NPU, FPGA, or even future ASICs.

ACKNOWLEDGMENT

This work was supported by the German Research Foun-
dation (project ModANet under grant no. CA595/11-1) and
by the German-French Academy for the Industry of the
Future. The authors would like to thank Fabian Pusch for
contributions to our FPGA prototype, Philipp Hagenlocher for
the integration and evaluation of various hash functions in
t4p4s, as well as the anonymous reviewers for their valuable
feedback.

REFERENCES

[1] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming Protocol-independent Packet Processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, Jul. 2014.

[2] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
Sketch to Rule Them All: Rethinking Network Flow Monitoring with
UnivMon,” in Proceedings of the 2016 ACM SIGCOMM Conference,
ser. SIGCOMM ’16. New York, NY, USA: ACM, 2016.

[3] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-Hitter Detection Entirely in the Data Plane,” in
Proceedings of the Symposium on SDN Research, ser. SOSR ’17. New
York, NY, USA: ACM, 2017.

[4] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica,
“NetCache: Balancing Key-Value Stores with Fast In-Network Caching,”
in Proceedings of the 26th Symposium on Operating Systems Principles,
ser. SOSP ’17. New York, NY, USA: ACM, 2017.

[5] U. Ben-Porat, A. Bremler-Barr, and H. Levy, “Vulnerability of Network
Mechanisms to Sophisticated DDoS Attacks,” IEEE Transactions on
Computers, vol. 62, no. 5, May 2013.

[6] M. Molina, S. Niccolini, and N. Duffield, “A Comparative Experimental
Study of Hash Functions Applied to Packet Sampling,” in International
Teletraffic Congress (ITC-19), 2005.

[7] C. Henke, C. Schmoll, and T. Zseby, “Empirical Evaluation of Hash
Functions for Multipoint Measurements,” ACM SIGCOMM Computer
Communication Review, vol. 38, no. 3, Jul. 2008.

[8] R. Jenkins, “A Hash Function for Hash Table Lookup,” 1997. [Online].
Available: http://www.burtleburtle.net/bob/hash/doobs.html

[9] N. Hua, E. Norige, S. Kumar, and B. Lynch, “Non-crypto Hardware
Hash Functions for High Performance Networking ASICs,” in Pro-
ceedings of the 2011 ACM/IEEE 7th Symposium on Architectures for
Networking and Communications Systems, Oct. 2011.

[10] M. Ghasemi, T. Benson, and J. Rexford, “Dapper: Data Plane Perfor-
mance Diagnosis of TCP,” in Proceedings of the Symposium on SDN
Research (SOSR’17). ACM Press, 2017.

[11] E. Cidon, S. Choi, S. Katti, and N. McKeown, “AppSwitch: Application-
layer Load Balancing Within a Software Switch,” in Proceedings of the
First Asia-Pacific Workshop on Networking, ser. APNet’17. New York,
NY, USA: ACM, 2017.

[12] J. Kučera, D. A. Popescu, G. Antichi, J. Kořenek, and A. W. Moore,
“Seek and Push: Detecting Large Traffic Aggregates in the Dataplane,”
2018.

[13] J.-H. Choi, S.-G. Min, and Y.-H. Han, “MACsec Extension over
Software-Defined Networks for in-Vehicle Secure Communication,” in
2018 Tenth International Conference on Ubiquitous and Future Net-
works (ICUFN). IEEE, 2018.

[14] B. Carnevale, L. Fanucci, S. Bisase, and H. Hunjan, “Macsec-based
security for automotive ethernet backbones,” Journal of Circuits, Systems
and Computers, vol. 27, no. 05, 2018.

[15] E. Heidinger, C. Heller, A. Klein, and S. Schneele, “Quality of service
IP cabin infrastructure,” in 29th Digital Avionics Systems Conference.
IEEE, 2010.

[16] F. Hauser, M. Schmidt, M. Häberle, and M. Menth, “P4-MACsec:
Dynamic Topology Monitoring and Data Layer Protection with MACsec
in P4-SDN,” arXiv preprint arXiv:1904.07088, 2019.

[17] F. Hauser, M. Häberle, M. Schmidt, and M. Menth, “P4-IPsec: Imple-
mentation of IPsec Gateways in P4 with SDN Control for Host-to-Site
Scenarios,” arXiv preprint arXiv:1907.03593, 2019.

[18] Z. Cao, Z. Wang, and E. Zegura, “Performance of Hashing-Based
Schemes for Internet Load Balancing,” in IEEE INFOCOM 2000, 2000.

[19] S. A. Crosby and D. S. Wallach, “Denial of Service via Algorithmic
Complexity Attacks,” in USENIX Security Symposium, 2003.

[20] S. Goldberg and J. Rexford, “Security Vulnerabilities and Solutions for
Packet Sampling,” in Proceedings of the 2007 IEEE Sarnoff Symposium,
Apr. 2007.

[21] J.-P. Aumasson and D. J. Bernstein, “SipHash: A Fast Short-Input
PRF,” in Progress in Cryptology - INDOCRYPT 2012, S. Galbraith and
M. Nandi, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

[22] J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Winnerlein,
“BLAKE2: Simpler, Smaller, Fast as MD5,” in Applied Cryptography
and Network Security. Springer Berlin Heidelberg, 2013.

[23] P. Hoffman and B. Schneier, “Attacks on Cryptographic Hashes in
Internet Protocols,” RFC Editor, RFC 4270, Nov. 2005.

[24] W. M. Eddy, “TCP SYN flooding attacks and common mitigations,”
RFC 4987, 2007.

[25] S. Laki, D. Horpácsi, P. Vörös, R. Kitlei, D. Leskó, and M. Tejfel,
“High Speed Packet Forwarding Compiled from Protocol Independent
Data Plane Specifications,” in Proceedings of the 2016 ACM SIGCOMM
Conference, ser. SIGCOMM ’16. New York, NY, USA: ACM, 2016.

[26] D. J. Bernstein, “The Poly1305-AES Message-Authentication Code,” in
Fast Software Encryption, H. Gilbert and H. Handschuh, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005.

[27] Austin Appleby, “Poly1305 git repository,” 2016. [Online]. Available:
https://github.com/floodyberry/poly1305-donna

[28] “NFP-4000 Theory of Operation,” Netronome Systems Inc.,
Tech. Rep., 01 2016, last accessed: 2019-06-17. [On-
line]. Available: https://www.netronome.com/static/app/img/products/
silicon-solutions/WP NFP4000 TOO.pdf

[29] S. Ibanez, G. Brebner, N. McKeown, and N. Zilberman, “The P4-
>NetFPGA Workflow for Line-Rate Packet Processing,” in Proceed-
ings of the 2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 2019.

[30] S. Wray, “The Joy of Micro-C,” 2014, https://open-nfp.org/media/
documents/the-joy-of-micro-c fcjSfra.pdf.

