

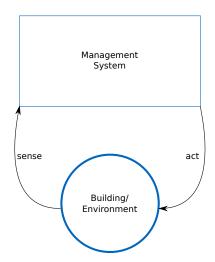
Leveraging Secure Multiparty Computation in the Internet of Things

Marcel von Maltitz, Georg Carle

Tuesday 12th June, 2018

Chair of Network Architectures and Services Department of Informatics Technical University of Munich

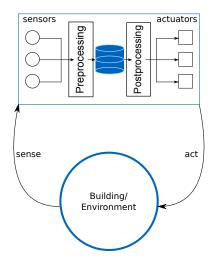
Smart Buildings - Industrial State of the Art



https://www.siemens.com/innovation/en/home/pictures-of-the-future/infrastructure-and-finance/smart-cities-smart-buildings.html Marcel von Maltitz and Georg Carle — Leveraging Secure Multiparty Computation in the Internet of Things

Smart Buildings: Model

Smart Buildings - Industrial State of the Art



https://www.ge.com/digital/predix-platform-foundation-digital-industrial-applications

Smart Buildings: Model

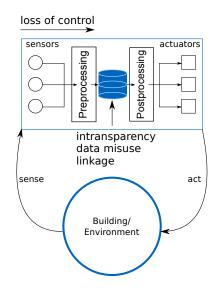
Smart Buildings: Privacy Criticality

Types of Sensors

- Brightness
- Temperature / Humidity
- CO₂ concentration
- Motion
- Weight (on floor)
- Device usage
- Power consumption

• ...

Privacy-criticality


- Location
- Behavioral patterns (cf. [8])

Threats (cf. [5])

- Intransparency of data usage
- Data misuse (other purpose)
- linkage (combination of data for more insights)
- Loss of control (data subjects)

Smart Buildings: Privacy Criticality

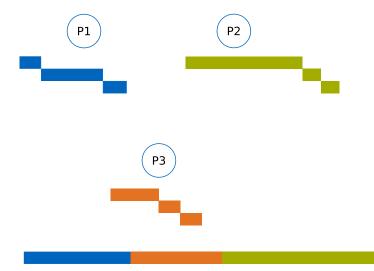
Smart Buildings: Application for Secure Multiparty Computation

Marcel von Maltitz and Georg Carle — Leveraging Secure Multiparty Computation in the Internet of Things

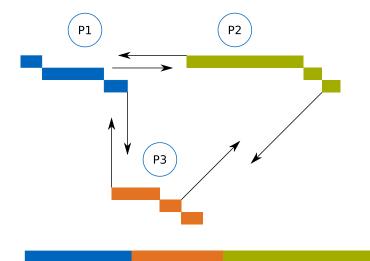
1Ш

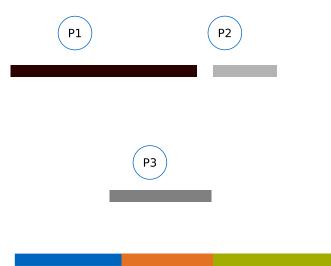
9

Definition (cf. [6])

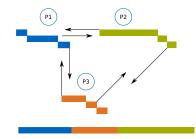

Given n parties P_1, \ldots, P_n . Each party P_i holds a secret value x_i . Secure Computation of $y = f(x_1, \ldots, x_n)$ is performed if two conditions are satisfied:

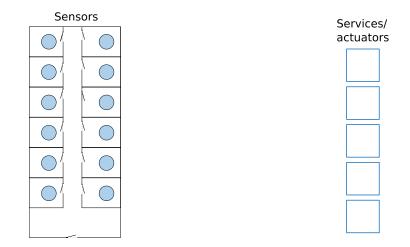
- Correctness: the correct value of y is computed
- Privacy: y is the only new information that is released



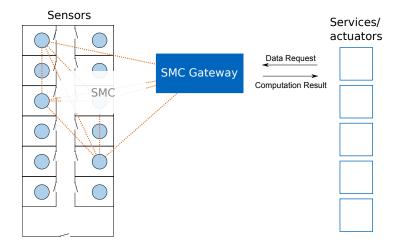


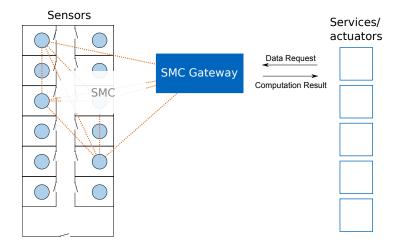
Marcel von Maltitz and Georg Carle — Leveraging Secure Multiparty Computation in the Internet of Things 10



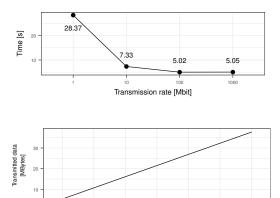


Secure Multiparty Computation: Previous Applications


- (Double) auctions [2]
- EU emission trading scheme (CO₂ trading) [9]
- KPI ranking among companies [1]
- Network anomaly and outage detection [4, 7]
- Federated learning (distributed machine learning) [3]



https://www.ge.com/digital/predix-platform-foundation-digital-industrial-applications


A Performance and Resource Consumption Assessment of Secure Multiparty Computation. M. von Maltitz and G. Carle. (2018, submitted)

Parameters

- #Nodes
- CPU #cores and frequency
- network latency
- transmission rate
- packet loss
- parallelization

Variables

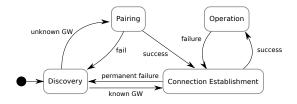
- Execution time
- CPU consumption
- Memory allocation (stack, heap)
- Bandwidth usage

11

Number of Peers [#]

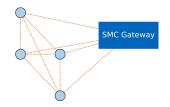
13

15



A Management Framework for Secure Multiparty Computation in Dynamic Environments.

M. von Maltitz, S. Smarzly, H. Kinkelin, and G. Carle (NOMS 2018, DOMINOS Workshop)


Peer Orchestration

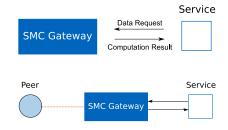
- Discovery
- Pairing
- Recovery

Session Management

- Session Creation
- Peer allocation
- Monitoring
- Recovery

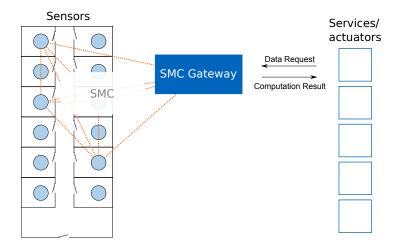
Access control and Accountability for Secure Multiparty Computation.

M. von Maltitz, D. Bitzer, and G. Carle. (2018, submitted)


Client Interaction

- Request and query formats
- Request generation
- Access control and authorization
- Request \rightarrow session translation
- Result validation

Peer-side privacy protection


- Transparency of requests
- Intervenability upon computation
- Accountability of performed requests/ computations

Bibliography

ТШ

- D. Bogdanov, R. Talviste, and J. Willemson. Deploying secure multi-party computation for financial data analysis. *Financial Cryptography*, pages 57 – 64, 2012.
- [2] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. Jakobsen, M. Krøigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M. Schwartzbach, and T. Toft. Secure multiparty computation goes live.

In Lecture Notes in Computer Science, volume 5628 LNCS, pages 325-343, 2009.

- [3] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage, A. Segal, and K. Seth. Practical Secure Aggregation for Privacy Preserving Machine Learning. In *Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security*, volume 2017, pages 1175–1191, 2017.
- [4] M. Burkhart, M. Strasser, D. Many, and X. Dimitropoulos. SEPIA: Privacy-preserving Aggregation of Multi-domain Network Events and Statistics. *Proceedings of the 19th USENIX Conference on Security*, page 15, 2010.
- [5] H. Chan and A. Perrig. Security and privacy in sensor networks. *Computer*, 36(10):103–105, 2003.
- [6] R. Cramer, I. B. Damgard, and J. B. Nielsen. Secure Multiparty Computation and Secret Sharing. Cambridge University Press, New York, NY, USA, 2015.
- [7] M. Djatmiko, D. Schatzmann, X. Dimitropoulos, A. Friedman, and R. Boreli. Collaborative Network Outage Troubleshooting with Secure Multiparty Computation. *IEEE Communications Magazine*, (November):78–84, 2013.

Bibliography

- [8] A. Ridi, C. Gisler, and J. Hennebert.
 A survey on intrusive load monitoring for appliance recognition.
 Proceedings International Conference on Pattern Recognition, pages 3702–3707, 2014.
- [9] M. Zanin, T. T. Delibasi, J. C. Triana, V. Mirchandani, E. Álvarez Pereira, A. Enrich, D. Perez, C. Paşaoğlu, M. Fidanoglu, E. Koyuncu, G. Guner, I. Ozkol, and G. Inalhan. Towards a secure trading of aviation CO2 allowance. *Journal of Air Transport Management*, 56:3–11, 2016.