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ABSTRACT
Centralized systems in the Internet of Things—be it local
middleware or cloud-based services—fail to fundamentally
address privacy of the collected data. We propose an archi-
tecture featuring secure multiparty computation at its core in
order to realize data processing systems which already in-
corporate support for privacy protection in the architecture.

1. INTRODUCTION
Smart environments and smart buildings constitute a

vital part of the Internet of Things. In these contexts,
sensors are deployed to gather information about the
state of the real-world environment. This information,
in turn, represents the data foundation for services that
influence the environment state, provide insights for in-
habitants and interact with them. Examples for these
services are public displays, which give statistical infor-
mation about the building state, monitoring services for
maintenance personnel and anomaly detection systems
which detect incidents and failures.

These and many other services have in common that
they do not directly work on the raw data gathered by
the sensors. Instead, they use derived aggregated results
by computational preprocessing: Public displays show
diagrams of statistical data, monitoring and anomaly
detection services work with events and alerts gained by
rules, machine learning or other types of computation.

For mediating the data flow between the sensor platforms—
the data sources—and the services—the data consumers—
typically a middleware is deployed. Its purpose encom-
passes collection and storage of raw data, analysis, pro-
cessing and finally forwarding the obtained results to the
data consuming services. This middleware can either be
a local part of the smart environment but can also be
provided as cloud service.

This type of architecture and the corresponding han-
dling of data has severe implications for the privacy
of the sensor data: 1) The middleware acts as a third
party which gains full access to raw data coming from
the sensors. This third party might not even be under
control of the administrators of the smart environment

and hence untrustworthy. 2) By pushing data to a third
party, sources lose insights into how their data is used
afterwards. Data processing becomes intransparent for
them. 3) Similarly, sources lose control over the usage
of their data. Especially, revocation of data requires
trust in the data holder to actually obey. 4) Even if
trustworthy, the third party is still a high value target
for attackers.

2. PRIVACY PRESERVING DATA PROCESS-
ING

Our vision is to realize the described functionality
while fundamentally providing privacy protection on the
architectural level. We propose that raw data created
by the distributed sources is not collected by a middle-
ware but remains distributed on these sources. This
allows secure computations and can make consent and
cooperation of the sources a necessity for the execution.

Our understanding of privacy and data protection is
based on [1, 2]. They most importantly feature the pro-
tection goals of data minimization, unlinkability, trans-
parency, and intervenability. Against this background,
the positive implications of our approach are as follows:
The amount of data in the system is minimized since
there are no intermediaries which can also access data.
Logically, the derived results are directly transmitted
from the sources to the final consumers. The potential
for data misuse and unauthorized recombination of data
is decreased since data of different sources is not stored at
the same logical place in a linkable fashion. Specifically,
only making allowed computations technically possible
concomitantly realizes purpose binding. The required
cooperation of the data sources in turn provides them
with information about the ongoing computations and
the usage of their data. This constitutes transparency,
especially when this feedback is enhanced with meta
information about the final consumer. Persisting these
insights can additionally realize accountability. Lastly,
given the cooperation requirement and aforementioned
transparency, they remain in control since they can
specifically decide beforehand whether to cooperate and
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to provide their data for the usage in question or not.

3. ARCHITECTURE DESIGN
The provided vision satisfies several data protection

goals which are not yet fulfilled by state-of-the-art archi-
tectures. In order to realize this vision technically, the
following main challenge has to be addressed: It must be
possible to derive computation results from raw data of
different sources without sharing this data among them
nor handing it to a third party for computation.

For this purpose, secure multiparty computation (SMC)
[3–5] can be employed. Instead of local computations
of a third party a secure protocol among the sources
is executed [6,7]. Afterwards each only knows its own
input and the final output of the computation. All ex-
changed intermediary data due to technical reasons does
not allow recovering other parties inputs. Mathematical
foundations for realizing arbitrary functions as SMC
invocations are known since the 80’s [8, 9] but protocol
improvements for security and performance [10, 11] and
new applications [12] are still current research.

For sucessfully applying SMC in smart environment we
propose the following architecture: The formerly stated
middleware is replaced by a gateway. The vital difference
is that the gateway does not obtain access to the raw data
of the sources. Instead, facing the sources it only fulfills
management and orchestration purposes to carry out
SMC computations. Towards the consumers, it presents
an API which abstracts from SMC and resembles an
interface a centralized middleware would provide.

Robust automated execution of SMC [13].
The main purpose of the gateway is to handle SMC

sessions in cooperation with the sources. For this, the
gateway must be initially known by them. Similarly,
upon connection interruption or due to churn of mobile
sources a present gateway has to be redetected. This is
realized by a service discovery technology like mDNS [14,
15]. After detection, a setup between the new source
and the gateway is performed: The gateway is informed
about data and computation protocols provided by the
new source. This data constitutes a state about currently
obtainable insights about the environment in the form
of a metadata directory. Furthermore, the gateway
establishes a control channel to the source allowing to
prepare and orchestrate SMC sessions.

The gateway specifies all aspects of an upcoming ses-
sion and communicates them to the participating sources:
The identity and the connection endpoints of cooper-
ators, the data to be used for computation and the
protocol to be executed. The computation itself is mon-
itored by the gateway. On success, the gateway receives
the result. If the computation fails, the gateway tries
to recover or to fully restart the session. This is hid-
den from any consumer in any possible cases to achieve

service character.

Data Requests and Access Control.
The purpose of the gateway towards the consumers is

to mimic a standard middleware providing data upon
request. Here, the metadata directory provides informa-
tion to the consumers what data is obtainable at this
point in time. This metadata should also abstract from
SMC specifics allowing to post requests which already
declare the aggregation result, e.g. “the average amount
of individuals in floor 3.A of the building per hour”.
Receiving these requests, the gateway then transforms
them into a corresponding SMC session and replies with
the result afterwards.

Correct representation of data requests supports ac-
cess control, transparency and intervenability essentially.
We assume requests to be authenticated and integrity
protected. The gateway is then able to perform access
control and plausbility checks when examining the pur-
pose of the request, the identity of the consumer and
the type of requested data. During SMC session setup
the gateway also transmits the original request of the
consumer to each collaborator, consequently realizing
request transparency for sources. Additional persisting
the requests provides distributed request accountability.
Lastly, this information can be evaluated by the sources
before executing the computation. Each source can de-
cide individually whether to contribute to the requested
computation or not. In case a single source veotes against
the computation, it cannot be executed; this is handled
as a special, expected error by the gateway and can be
addressed accordingly by it. In summary, we deliberately
leverage the necessity of cooperation when performing
computations to support the mentioned further privacy
properties.

4. CONCLUSION
We presented a vision of privacy preserving data pro-

cessing in dynamic environments. Our design features
a management and orchestration middleware for secure
multiparty computation which allows application of SMC
as an adaptive and robust service. Furthermore, we show
how the features of SMC can be complemented in order
to fulfill further established privacy protection goals.

We see that fundamental innovation in system archi-
tecture allows more straightforward addressing of privacy
goals. While also raising new challenges to be solved,
they provide an alternative approach to establishing
privacy as an afterthought in a predetermined system.
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