

A Management Framework for Secure Multiparty Computation in Dynamic Environments

Marcel von Maltitz, Stefan Smarzly, Holger Kinkelin, Georg Carle

vonmaltitz@net.in.tum.de

Technical University of Munich (TUM)

Department of Informatics

Chair of Network Architectures and Services

Taipei, 23.04.2018

Outline

- 1. Motivation: Data Processing in Smart Environments
- 2. Problems for Privacy
- 3. Background: Secure Multiparty Computation
- 4. Migration to SMC
- 5. Technical Overview

Motivation

Smart Environments are equipped with a variety of sensors in each room A common use case is providing aggregated sensor and user data to

- support automatic controllers (e.g. HVAC and lighting)
- enable interaction interfaces (e.g. voting-based room configuration)
- inform users (e.g. public displays)

Problems

Central Infrastructure = Trusted Third Party

Conflicts with Privacy Requirements:

- Raw data accessible by TTP
- Data usage intransparent
- Revocation of data

Modelling

- Data gathering initially decentralized
- Data owner ≠ data processor ≠ data consumer
- Data usage: Aggregated local values for remote consumer
- Individual data more critical than aggregates
- Privacy [1-6] means
 - Data minimization
 - Unlinkability / Purpose binding
 - Transparency / Usage insights
 - Intervenability / Control over own data

0

Background: Secure Multi-Party Computation

Definition (cf. [7]):

There are n parties $P_1, ..., P_n$. Each party P_i holds a secret value x_i .

Secure Computation of $y = f(x_1, ..., x_n)$ is performed if two conditions are satisfied:

- Correctness: the correct value of y is computed
- Privacy: y is the only new information that is released

Example: Addition

Party	x _i	Share P ₁	Share P ₂	Share P ₃
P ₁	10	3	2	5
P ₂	5	1	2	2
P ₃	7	4	1	2
Result	22	8	5	9

From TTP to SMC: Challenges

Dynamic Environment

- Parties previously unknown
- Subsets of Parties
- Different input data
- Computations previously unknown

Orchestration of Computations

- Synchronized communication
- No error handling

Service character

- Access for data consumers
- Metadata about available information
- Only parties obtain result

Architectural Overview: Hybrid Approach

Virtual Centrality

- Introduction of gateway (GW) for SMC network
- Single, generic endpoint for requests
- Hides complexity and fragility of SMC network

Decentralization

- Self-management
- Local storage of raw values
- Only reveal processed data via collaborative computations (SMC)

Peers | Self-Organization

Chair of Network Architectures and Services Department of Informatics Technical University of Munich

Gateway

Realized Features

Applicability

• Adaptiveness in

dynamic environments

- Automatic session configuration
- Automated and continuous execution of SMC
- Robustness of computations

Privacy

- Confidentiality
- Unlinkability of data
 SMC
- Data minimization
- Transparency of data-processing
- Intervenability for peers

Conclusion

- Secure multiparty computation realizes/supports realization of privacy properties
- New challenges arise when applying SMC in dynamic contexts
- We propose a wrapper around SMC to solve to these problems
- Then, SMC can be used as a robust service for continuous and automated computations