
c©2014/2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works. The definitive version of this paper will be published in 2nd International Workshop on Management of SDN and NFV
Systems, 2015, DOI: $doi.

Performance Benchmarking of a
Software-Based LTE SGW

Stanislav Lange∗, Anh Nguyen-Ngoc∗, Steffen Gebert∗, Thomas Zinner∗, Michael Jarschel‡, Andreas Köpsel§,
Marc Sune§, Daniel Raumer‖, Sebastian Gallenmüller‖, Georg Carle‖, and Phuoc Tran-Gia∗

∗University of Würzburg, Institute of Computer Science, Chair of Communication Networks, Würzburg, Germany
{stanislav.lange, anh.nguyen, steffen.gebert, zinner, trangia}@informatik.uni-wuerzburg.de

‖Technische Universität München, Department of Informatics, Chair for Network Architectures and Services, Germany
{raumer, gallenmu, carle}@net.in.tum.de

‡Nokia, Munich, Germany
michael.jarschel@nokia.com
§BISDN, Berlin, Germany

{andreas.koepsel, marc.sune}@bisdn.de

Abstract—Network Functions Virtualization (NFV) is a con-
cept that aims at providing network operators with benefits in
terms of cost, flexibility, and vendor independence by utilizing
virtualization techniques to run network functions as software
on commercial off-the-shelf (COTS) hardware. In contrast, prior
solutions rely on specialized hardware for each function. Perfor-
mance evaluation of such systems usually requires a dedicated
testbed for each individual component. Rather than analyzing
these proprietary black-box components, Virtualized Network
Functions (VNFs) are pieces of software that run on COTS
hardware and whose properties can be investigated in a generic
testbed. However, depending on the underlying hardware, operat-
ing system, and implementation, VNFs might behave differently.
Therefore, mechanisms for the performance evaluation of VNFs
should be similar to benchmarking of software, where different
implementations are compared by applying them to predefined
test cases and scenarios. This work presents a first step towards a
benchmarking framework for VNFs. Given two different imple-
mentations of a VNF that acts as LTE Serving Gateway (SGW),
influence factors and key performance indicators are identified
and a comparison between the two mechanisms is drawn.

Index Terms—SDN, NFV, Benchmarking, VNF.

I. INTRODUCTION

Specialized middleboxes are an integral part of today’s
network infrastructure. They provide, mostly hardware-based,
solutions for a wide range of applications including firewalls,
load balancers, (overlay) network management, and monitor-
ing. Although these specialized devices bring benefits in terms
of performance, several drawbacks regarding cost, flexibility,
and vendor-dependence have created a trend towards Network
Functions Virtualization (NFV). The core idea of NFV is to
leverage virtualization mechanisms in order to migrate the
functionality of the specialized middleboxes to software run-
ning on COTS hardware. In addition to reducing the costs for
purchasing the hardware, network operators gain advantages
like vendor independence and flexibility.

These network functions that are separated from the data
plane and virtualized on COTS hardware raise questions about
the performance evaluation of networks and their components
that rely on NFV. As functionality is no longer necessarily
co-located with forwarding elements questions arise about the
performance evaluation of networks and their components that
rely on NFV. We discuss the challenges in Section II. In
Section III, we illustrate these challenges in a case study and
provide solutions by means of an exemplary performance eval-
uation of an SDN/NFV-based LTE Serving Gateway (SGW)
in the mobile core. Section IV concludes this work.

II. BENCHMARKING OF VNFS

Each virtualized network function (VNF) has a specified
behavior that relates to sets of performance indicators and
network parameters. Therefore, a general framework to bench-
mark network functions does not exist. Nevertheless, guide-
lines for the performance evaluation of VNFs are essential to
achieve comparable benchmarking results.

A. State of the Art

In 1994, the need for well defined benchmarks of net-
work interconnect devices was served by RFC 2544 [1]. It
defined how latency and throughput of a device under test
(DuT) should be measured and, thus, developed to a de facto
standard. The defined guidelines (including key performance
indicators and relevant benchmarking parameters) were used
for benchmarks of network devices like routers, switches, or
firewalls. Subsequent documents extend the methodology by
tests [2], updates, and remarks [3], [4], adapting it to keep
pace with the capabilities of network devices.

The grown performance of COTS hardware aided a change
towards software-based solutions that provide an additional
architectural layer of abstraction compared to closed network

boxes. The performance of these systems depends on hardware
and the software implementation. Due to the latter, a more
fine grained analysis of performance limitations and their
causes is possible. Rather than performance modeling of black
box hardware, benchmarking of software has moved into the
focus. The additional layer was also used to implement further
metering points in it. However, results of these white box
measurements have to be considered carefully, as metering
on the DuT may affect the tested behavior [5].

Furthermore, a recent IETF draft [6] discusses the novel
challenges that are introduced with VNF benchmarking, e.g.,
phenomena like shared resources between multiple VNFs
and their impact on the performance of individual VNFs.
In [7], the performance of DPDK-accelerated switching and
routing VNFs is evaluated with respect to throughput and
latency. The analysis shows that, when offered traffic to two
gigabit Ethernet physical interfaces, NFV-based approaches
can achieve line rate throughput as well as a latency that does
not impact performance in an enterprise network. Similarly, [8]
shows a DPDK-accelerated virtualized system that achieves
performance levels that are close to that of non-virtualized
systems in terms of latency. The authors of [9] focus on
benchmarking NFV infrastructures with respect to resilience
and the effects of faults on their performance. Further options
for hardware acceleration for VNFs include FPGAs [10], [11]
as well as NPU and GPU resources [12], [13], each resulting
in different trade-offs between flexibility and performance.

[14] and [15] present platforms that enable fast packet
processing on COTS hardware running VNFs. In the case
of forwarding, both solutions can process packets at line rate
on a 10 Gbps link while introducing latencies in the order of
magnitude of 50 µs.

B. Challenges with VNFs

To benchmark the performance of a VNF, the challenges
of classical benchmarking get extended by three additional
problems: complexity, abstraction, and concurrency.

The increased system complexity: Software-based network
devices introduce only a single layer of abstraction com-
pared to dedicated bare metal devices. However, the use
of (host) virtualization techniques and the execution in the
cloud adds further abstraction layers that each introduce their
own performance limitations, i.e., the hypervisor, the virtual
switch, and the physical and virtual interfaces [5]. This work
investigates whether hardware acceleration mechanisms, e.g.,
Intel’s DPDK [16], improve performance or if the performance
remains the same due to higher complexity.

The virtualization of a network function inherits the abstrac-
tion of the data plane from the executing hardware. Therefore,
absolute performance values are less meaningful without an
understanding of how they relate to the performance of un-
derlying components. This, for instance, leads to the following
question: if the processing power of the unit performing NFV
is too low, how can it be accelerated if the employed cloud
solution has doubled the amount of physical CPU cores?

In addition to increased complexity and a higher level of
abstraction, the interpretation of results and application on real
world setups gets even more challenging due to concurrency.
In real setups, (virtual) network functions interact with other
components, which may be other VNFs or the data plane.

III. CASE STUDY

In order to demonstrate performance benchmarking of a
VNF, we compare two implementations of a network function
acting as a Serving Gateway (SGW) in the mobile core. After
introducing the basic terminology used in this context, the
experiment setup and details of the two alternative imple-
mentations are presented. Finally, the implementations are
compared with respect to various performance indicators.

A. Network Function Under Test
The LTE Evolved Packet Core (EPC) is comprised of vari-

ous specialized components. The components’ responsibilities
range from purely control plane related tasks, e.g., in case of
Mobility Management Entities (MMEs), to combinations of
control and user plane processing as in the case of SGWs. In
this work, the user plane functionality of the latter is moved
to a virtual network function. In particular, its task lies in
transporting user data traffic through the LTE network. For this
purpose, the traffic is encapsulated via the GPRS Tunneling
Protocol (GTP). More specifically, the UDP-based GTP-u
protocol is used. Figure 1 depicts the structure of GTP-u
packets that are sent to the VNF discussed in this work. On top
of UDP in the stack, a GTP header indicates the presence of
an encapsulated IP packet that follows immediately. In order
to identify GTP packets’ membership to a particular tunnel,
the GTP header includes a Tunnel Endpoint Identifier (TEID).
In the following, GTP tunnels are also referred to as bearers.

Little information regarding the number of GTP-u packets
a traditional SGW can handle is publicly available. According
to [17], the signaling load (GTP-c) of an LTE network is
around 94,000 messages per second per million smartphone
users.

Ethernet
IP

UDP
GTP

IP
ICMP

Fig. 1: Structure of the GTP-u packets considered in this work.

B. Setup
Figure 2 shows the two main components of the testbed

as well as the main steps of the experiment. First, GTP-u
traffic is generated via the Spirent C11, a dedicated hardware-
based traffic generator equipped with four 1 GbE interfaces.
This traffic is processed by the VNF installed on a commodity
server2 running a Linux operating system (OS)3.

1http://www.spirent.com/Ethernet Testing/Platforms/C1 Chassis
2Intel Xeon E5-2620 v2 CPU at 2.10 GHz, Intel I350 NICs, 32 GB of RAM
364 bit version of Debian 7.7 (wheezy, kernel version 3.2.0-4-amd64)

http://www.spirent.com/Ethernet_Testing/Platforms/C1_Chassis

Fig. 2: Test setup

After processing, the server forwards the altered GTP-u
packets to the ingress port of the Spirent chassis, where per-
formance indicators are recorded by hardware capture cards.
These include the one way delays, the received packet rate,
as well as the amount of packet loss. In order to obtain the
net processing times at the server, packet transmission times
are deduced by performing a loopback test, i.e., transmitting
packets of different sizes from the generator’s sending port
to its receiving port. Furthermore, capturing packets at the
receiving port of the traffic generator via tools like Wireshark4

allows verifying that packet headers are modified as expected.
To measure the baseline performance, the SGWs are con-

figured to change the TEID as well as the IP source and
destination fields of incoming GTP-u traffic according to
currently present bearer entries.

Both implementations of the SGW VNF are based on
the eXtensible OpenFlow data path daemon5 (xdpd), which
allows designing data path elements and supports GTP traffic.
In particular, the xdpd software is responsible for matching
incoming packet headers against the installed flow table entries
and, in the presented case, modifying their TEID. In the xdpd
version used in this work, the matching algorithm consists of
a loop that goes through each flow table entry and checks for a
match. Hence, the runtime of the matching algorithm is linear
in the number of flow table entries.

The first SGW VNF uses MMAP-based xdpd, where pack-
ets are copied to the OS user-space and thus, are expected to
have longer processing times. In case of the used Linux OS,
the network I/O API that is utilized by this implementation
is the New API [18] (NAPI). Hence, in the following, this
implementation is referred to as the NAPI-based approach.

Second, a DPDK-accelerated implementation6 is evaluated
which promises faster packet processing through reduced
overhead for packet I/O [16], [19]. When running DPDK-
based applications, a core mask can be specified in order to
change the number of cores that are used. In all presented
experiments, this parameter is set to 0x03, which corresponds
to utilizing a total of two cores, one core for management and
one for I/O on all ports. Increasing the number of cores did
not affect the results, neither with respect to the processing
times nor with respect to the maximum packet rate that can
be handled without packet loss. This parameter may become
relevant in the context of link capacities beyond 1 Gbps.

4https://www.wireshark.org/
5http://www.xdpd.org/, version 0.7.5
6Version 1.7.1 of the DPDK libraries is used.

0

10

20

30

80,000 100,000 120,000 140,000 160,000 180,000

Packet Rate [pps]

P
ac

ke
t L

os
s

P
er

ce
nt

ag
e

Packet Size [Byte]
128
256

Fig. 3: Packet loss in case of small packet sizes when using
the NAPI-based SGW implementation.

The systems are offered loads with varying packet sizes
and rates. Each test run lasts 5 minutes and experiments for
each set of configuration parameters are repeated 10 times in
order to obtain confidence intervals for the key performance
indicators. In order to find the performance limits for use in a
practical context, the load is increased until packet loss occurs.
Additionally, the influence of the number of present bearers on
the resulting processing times and packet loss is investigated.
When multiple bearers are registered on the server, the traffic
generator sends GTP packets with corresponding TEIDs in a
round robin fashion, i.e., one GTP packet for each bearer.

C. NAPI-based SGW

In Section III-B, two key performance indicators are identi-
fied for the purpose of benchmarking an SGW implementation.
The occurrence of packet loss shall be minimized in order to
provide a reliable service as well as fast processing of requests.
When designing a network architecture containing SGW com-
ponents, the operator has to consider feasible alternatives that
meet the requirements of the particular use case. By utilizing
the presented benchmarking methodology, it is possible to
quantify the performance and limits of implementations and
thereby assist the decision making process.

In nearly all practical scenarios, packet loss needs to be
avoided. Thus, Figure 3 presents an analysis of the influence
factors on the occurrence of packet loss as well as limits re-
garding the maximum load that can be handled without packet
loss. While the x-axis denotes the number of packets that are
sent to the server each second, the bars indicate the resulting
packet loss percentage. Differently colored bars correspond to
different packet sizes and whiskers represent 95% confidence
intervals obtained from 10 experiment repetitions.

Low packet rates, i.e., 120,000 pps and less, are han-
dled without packet loss. However, rates beyond roughly
130,000 pps result in a steady increase of loss. As the confi-
dence intervals for both of the displayed packet sizes overlap
and the corresponding mean values do not deviate from each
other significantly, the packet rate is identified as the main
influence factor on the packet loss rate. As discussed in [20],

https://www.wireshark.org/
http://www.xdpd.org/

0

50

100

150

200

250

100 1,000 10,000 20,000 60,000 80,000

Packet Rate [pps]

M
ea

n
P

ro
ce

ss
in

g
T

im
e

[µ
se

c] Packet Size [Byte]
128
256
512
1024
1400

Fig. 4: Influence of packet rate and size on mean processing
times using the NAPI-based SGW.

user space packet frameworks process packets of different
sizes at an almost identical speed because only headers are
copied and processed. Larger packet sizes are omitted due to
the fact that these can be handled at line rate when only one
bearer is installed. For example, a rate of roughly 89,000 pps
corresponds to the capacity of the 1 Gbps link when a packet
size of 1400 Byte is used. However, investigations regarding
the processing times of packets show that not only packet rate
but also packet size influences SGW performance.

After identifying the range of packet rates that can be
handled by the NAPI-based implementation, benchmarking is
performed with respect to processing times in this interval.
Figure 4 displays mean processing times for packet sizes
between 128 and 1400 Bytes, covering commonly observed
values. The x and y-axis represent the packet rate and the
mean processing time in microseconds, respectively. Again,
10 repetitions are performed in order to obtain confidence
intervals and bar colors indicate the packet size. There are
three main observations. First, very low packet rates, i.e.,
100 and 1,000 pps, result in high processing times, roughly
230 and 110 µs, respectively. A possible explanation for this
behavior is the interrupt mitigation mechanism that is part of
the NAPI. In order to decrease the overhead that results from
each individual packet causing an interrupt, this mechanism
accumulates packets until either a certain amount of packets
is collected or processing is initiated by a timeout. Second,
the lowest processing times are observed for rates between
10,000 and 20,000 pps, corresponding to scenarios that are not
affected by interrupt mitigation anymore and simultaneously
do not expose the system to a high load. Finally, the processing
time increases steadily when the maximum rate approaches the
previously determined limits. While the packet size does not
have a significant impact on the processing times observed
at low packet rates, higher rates have a larger effect on the
processing times of bigger packets. This can be explained
by the fact that combining a given packet rate with different
packet sizes results in changes to the link utilization, which
also poses an influence factor on processing times.

0.0

2.5

5.0

7.5

10.0

10 30 50 70 90 95

ρ

M
ea

n
P

ro
ce

ss
in

g
T

im
e

[µ
se

c] Packet Size [Byte]
128
256
512
1024
1400

Fig. 5: Processing times for different link utilizations and
packet sizes using the DPDK-enabled SGW implementation.

D. DPDK-enabled SGW

While the NAPI-based SGW implementation is capable of
processing packets of 1400 Bytes in size at line rate, it suffers
from packet loss when receiving small packets at rates beyond
130,000 pps. In contrast to this behavior, the DPDK-enabled
approach can handle even small packets, i.e., 128 Bytes in
size, at line rate. This corresponds to a packet rate of around
970,000 pps, or an increase by a factor of more than 7 when
compared to the maximum tolerable rate achieved by the
previous user-space approach.

In addition to the performance gain in terms of maxi-
mum packet rate without packet loss, DPDK significantly
accelerates the processing of packets at the SGW. Figure 5
presents the processing times measured in various conditions
with respect to packet size and packet rate. In order to fit
the various combinations of these two parameters into one
graphic, the x-axis displays the link utilization, ρ, which is
calculated as the ratio between the bandwidth that results from
a particular configuration and the link capacity of 1 Gbps.
The y-axis shows the mean processing times and bar colors
denote different packet sizes. As processing times of the
SGW implementation are very stable for the scenarios under
test, the narrow confidence intervals are barely visible. The
observed processing times start at roughly 5 microseconds and
do not exceed 8 microseconds, corresponding to a speedup
by a factor larger than 8 when compared to the processing
times of the NAPI-based solution ranging from 40 to 230 µs.
Furthermore, the packet size is the main influence factor on
the resulting processing times, as indicated by almost constant
values among configurations sharing the same packet size
parameter. An increase in packet size results in an increase in
the mean processing time. Nevertheless, an additional effect
is visible: an increase in the packet rate also results in a slight
but consistent increase of processing times.

E. Scenarios Featuring Multiple Bearers

All results presented so far are based on environments that
feature only one single bearer. While these provide important

insights into the behavior of the different implementations
and the influence factors on their performance, they are not
sufficient for deriving practical guidelines with respect to
the choice of implementation for a particular use case and
dimensioning the system for a given load. Therefore, an
investigation of the relationship between the number of bearers
that are present in a system and various performance indica-
tors is performed. Given a number of installed bearers, the
maximum packet rate an implementation can handle without
the occurrence of packet loss is empirically identified. Then,
the processing times are measured for these scenarios.

Figure 6 provides an aggregated view on the packet rates
that the SGW implementations discussed in this work can
handle when different numbers of bearers are present. The
numbers of bearers for which the rate limits are determined
are between 1 and 400, as indicated by the x-axis. The y-axis
shows the corresponding maximum packet rate that can be
handled by a particular combination of SGW implementation
and packet size, which are represented by line style and color,
respectively. Solid lines denote the DPDK-enabled implemen-
tation, dashed lines denote the NAPI-based implementation.
For the sake of clarity, only the two extreme values for the
packet size are shown, i.e., 128 Byte and 1400 Byte.

In case of both implementations, a steady decrease of
the maximum tolerable load is observed when the number
of bearers is increased. The main reason for this behavior
lies in the matching algorithm used by the xdpd software
which both implementations have in common. As discussed
in Section III-B, the matching procedure that is utilized has
linear time requirements with respect to the number of flow
rules in the SGW’s table. Given the fact that increasing the
number of bearers in the system corresponds to increasing
this number of flows, it follows that a growing number of
bearers also causes higher processing times. Consequently, the
process of matching incoming packets becomes the system’s
bottleneck and affects the maximum packet rate that can be
handled without the occurrence of packet loss.

When using the NAPI-based approach, both packet sizes
yield almost identical values for the resulting maximum packet
rate. This is consistent with the results from Section III-C,
where no significant influence of the packet size on the maxi-
mum tolerable load is observed. Only for numbers of bearers
below 50, the maximum rate for small packets exceeds that
for big packets. This stems from the fact that the maximum
packet rate is not only limited by the processing time of the
server, but also by the link capacity, i.e., 1400 Byte packets
are processed at line rate for up to 10 bearers.

In contrast, the gap between the two curves corresponding
to the DPDK-enabled solution is significantly larger and closes
only after 200 bearers are present in the system. As discussed
in Section III-D, the DPDK-accelerated SGW can process
packets of all considered sizes at line rate when one bearer is
installed. Hence, the initial gap represents the rate limitation
due to the link capacity. With an increasing number of bearers,
however, the portion of the total processing time that is caused
by the packet matching routine outweighs that caused by the

●●

●

●

●

●

●

●

●

●

●● ● ● ● ● ● ●

●

●

●● ● ●

● ●
●

●

●
●

●● ● ● ● ●
●

●

●
●

0

250,000

500,000

750,000

0 100 200 300 400

Number of Bearers

M
ax

. P
ac

ke
t R

at
e

w
/o

 L
os

s

Implementation
DPDK−enabled
NAPI−based

Packet Size [Byte]
●

●

128
1400

Fig. 6: Influence of the number of installed bearers on the
maximum packet rate without the occurrence of packet loss.

network I/O API and the maximum rate decreases. After the
maximum rate for small packets drops below the rate required
for line rate with large packets, the rate limitation is not caused
by the link capacity anymore and thus, both curves overlap.

For all considered packet sizes and numbers of bearers, the
DPDK-enabled SGW implementation outperforms the NAPI-
based approach in terms of maximum packet rate. While the
advantage of the former is especially pronounced in the case
of small packets and low numbers of bearers, there is still an
improvement by a factor of almost two when considering the
highest number of bearers. Independent of the network I/O
mechanism, the maximum tolerable rate decreases due to the
data plane software that is responsible for packet matching.

Although the rate limits determined in the previous para-
graphs provide upper bounds for the load that can be applied
to the systems without causing packet loss, the resulting pro-
cessing times may not be feasible in practice. Thus, Figure 7
highlights the processing times of the SGW VNFs when facing
these circumstances. Like in the previous figure, the x-axis
shows the number of bearers that are present in the system.
The y-axis displays the mean processing time observed when
packets arrive at the maximum rate for a particular combina-
tion of network I/O API, packet size, and number of bearers.
In addition to the bar color representing the aforementioned
configuration, whiskers denote 95% confidence intervals that
are obtained from 10 experiment repetitions.

Until a number of 100 bearers is reached, the DPDK-
accelerated solution not only outperforms the NAPI-based
approach with respect to the maximum tolerable packet rate,
but also regarding the mean processing time of individual
packets. In this interval, the former achieves processing times
below 20 microseconds while the latter has processing times
of roughly 100 and 250 microseconds for packet sizes of 128
and 1400 Byte, respectively. As soon as 200 or more bearers
are installed, however, the processing times of the DPDK-
enabled approach are higher than those of the NAPI-based
implementation. The main reason for this behavior is that the
packet rate and thus, the total amount of table lookups differ

0

500

1,000

1,500

2,000

2,500

1 2 5 10 20 30 50 100 200 400

Number of Bearers

M
ea

n
P

ro
c.

 T
im

e
[µ

se
c]

 a
t M

ax
. R

at
e

Configuration
DPDK − 128 Byte
DPDK − 1400 Byte
NAPI − 128 Byte
NAPI − 1400 Byte

Fig. 7: Influence of the number of bearers on the processing
time at the highest rate that can be handled without loss.

for the two implementations. As discussed in the context of
Figure 6, the DPDK-enabled SGW is capable of processing
almost two times more packets.

IV. CONCLUSION

This work presents a testbed and methodology for com-
paring the performance of two different implementations of a
VNF that acts as a Serving Gateway (SGW) in the mobile core.
One approach is based on the Linux NAPI, while the other uses
Intel DPDK libraries. The performance is quantified by means
of three indicators. First, the maximum amount of packets that
can be handled per second without the occurrence of packet
loss. Second, the processing time of each packet under differ-
ent conditions in terms of link load. Third, the influence of
the number of GTP bearers on the aforementioned measures.
All measurements are performed with the Spirent TestCenter,
an industry-level packet generator and test platform.

When performing the comparison with only one bearer in
the system, a significant advantage of the DPDK-enabled ap-
proach is observed in terms of the maximum tolerable packet
rate as well as the processing time of individual packets. In
these scenarios, the DPDK-based solution achieves processing
times that are orders of magnitude lower than those of the
NAPI-based implementation. However, both implementations
suffer from the matching algorithm used in the data plane
component that constitutes the system’s bottleneck in terms
of processing times and, in turn, also maximum tolerable rate
when multiple bearers are installed on the SGW. This common
bottleneck results in a convergence of both approaches with
respect to the investigated performance indicators.

There are multiple directions for future work, e.g., a per-
formance evaluation featuring more sophisticated matching
algorithms or an investigation of the behavior and limits of
the implementations in the context of links whose capacity
exceeds 1 Gbps. An additional aspect includes the impact on an
SGW’s performance when it needs to process incoming GTP-u
user plane traffic and GTP-c control traffic simultaneously.
Furthermore, an investigation of the influence of different com-
binations of VMs, hypervisors, and NICs on VNF performance

in virtualized environments can aid in identifying practically
feasible combinations.

ACKNOWLEDGMENTS
This work has been performed in the framework of the

CELTIC EUREKA project SASER-SIEGFRIED (Project ID
CPP2011/2-5), and it is partly funded by the BMBF (Project
ID 16BP12308). The authors alone are responsible for the
content of the paper.

REFERENCES

[1] S. Bradner and J. McQuaid, “RFC2544: Benchmarking Methodology
for Network Interconnect Devices,” IETF, 1999.

[2] R. Asati, C. Pignataro, F. Calabria, and C. Olvera, “RFC26201: Device
Reset Characterization,” IETF, 2011.

[3] S. Bradner, K. Dubray, J. McQuaid, and A. Morton, “RFC6815: Applica-
bility Statement for RFC 2544: Use on Production Networks Considered
Harmful,” IETF, 2012.

[4] “Y.1564: Ethernet service activation test methodology,” ITU-T, 2011.
[5] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle, “Performance

Characteristics of Virtual Switching,” in IEEE International Conference
on Cloud Networking (CloudNet), 2014.

[6] A. Morton, “Considerations for Benchmarking Virtual Network
Functions and Their Infrastructure,” Internet-Draft draft-morton-
bmwg-virtual-net-03, 2015. [Online]. Available: http://www.ietf.org/
internet-drafts/draft-morton-bmwg-virtual-net-03.txt

[7] Overture, Brocade, Intel, Spirent, and Integra, “NFV Performance
Benchmarking for vCPE,” Executive Summary, 2015.

[8] J. DiGiglio and D. Ricci, “High Performance, Open
Standard Virtualization with NFV and SDN,” White paper,
Intel Corporation and Wind River, 2013. [Online]. Avail-
able: https://www.intel.eu/content/dam/www/public/us/en/documents/
white-papers/communications-virtualization-snd-nfv-paper.pdf

[9] D. Cotroneo, L. De Simone, A. Iannillo, A. Lanzaro, and R. Natella,
“Dependability Evaluation and Benchmarking of Network Function
Virtualization Infrastructures,” in IEEE Conference on Network Soft-
warization (NetSoft), 2015.

[10] S. Byma, J. G. Steffan, H. Bannazadeh, A. L. Garcia, and P. Chow,
“FPGAs in the Cloud: Booting Virtualized Hardware Accelerators
with OpenStack,” in IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2014.

[11] X. Ge, Y. Liu, D. H. Du, L. Zhang, H. Guan, J. Chen, Y. Zhao, and
X. Hu, “OpenANFV: Accelerating Network Function Virtualization with
a Consolidated Framework in Openstack,” in Proceedings of the 2014
ACM Conference on SIGCOMM, 2014.

[12] Z. Bronstein, E. Roch, J. Xia, and A. Molkho, “Uniform handling and
abstraction of NFV hardware accelerators ,” IEEE Network, 2015.

[13] L. Nobach and D. Hausheer, “Open, elastic provisioning of hardware
acceleration in NFV environments,” in International Conference and
Workshops on Networked Systems (NetSys), 2015.

[14] J. Hwang, K. Ramakrishnan, and T. Wood, “NetVM: High Perfor-
mance and Flexible Networking Using Virtualization on Commodity
Platforms,” in USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2014.

[15] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and
F. Huici, “ClickOS and the Art of Network Function Virtualization,” in
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2014.

[16] “Intel Data Plane Development Kit (DPDK).” [Online]. Available:
http://dpdk.org

[17] “Signaling is growing 50% faster than data traffic,” White
Paper, Nokia Siemens Networks, 2012. [Online]. Avail-
able: http://networks.nokia.com/system/files%20/document/signaling
whitepaper online version final.pdf

[18] J. H. Salim, R. Olsson, and A. Kuznetsov, “Beyond softnet,” in Pro-
ceedings of the 5th annual Linux Showcase & Conference, 2001.

[19] S. Gallenmüller, P. Emmerich, F. Wohlfart, D. Raumer, and G. Carle,
“Comparison of Frameworks for High-Performance Packet IO,” in
ACM/IEEE Symposium on Architectures for Networking and Commu-
nications Systems (ANCS), 2015.

[20] L. Rizzo, “netmap: A Novel Framework for Fast Packet I/O,” in USENIX
Annual Technical Conference, 2012.

http://www.ietf.org/internet-drafts/draft-morton-bmwg-virtual-net-03.txt
http://www.ietf.org/internet-drafts/draft-morton-bmwg-virtual-net-03.txt
https://www.intel.eu/content/dam/www/public/us/en/documents/white-papers/communications-virtualization-snd-nfv-paper.pdf
https://www.intel.eu/content/dam/www/public/us/en/documents/white-papers/communications-virtualization-snd-nfv-paper.pdf
http://dpdk.org
http://networks.nokia.com/system/files%20/document/signaling_whitepaper_online_version_final.pdf
http://networks.nokia.com/system/files%20/document/signaling_whitepaper_online_version_final.pdf

	Introduction
	Benchmarking of VNFs
	State of the Art
	Challenges with VNFs

	Case Study
	Network Function Under Test
	Setup
	NAPI-based SGW
	DPDK-enabled SGW
	Scenarios Featuring Multiple Bearers

	Conclusion
	References

