
Technische Universität München
Department of Informatics

Chair for Network Architectures and Services

Comparison of
Memory Mapping Techniques

for High-Speed Packet Processing

Master’s Thesis in Informatics

Chair for Network Architectures and Services
Department of Informatics

Technische Universität München

by

Sebastian Gallenmüller





Technische Universität München
Department of Informatics

Chair for Network Architectures and Services

Comparison of
Memory Mapping Techniques

for High-Speed Packet Processing

–

Vergleich von
Speichermappingtechniken zur

Hochgeschwindigkeitspaketverarbeitung

Master’s Thesis in Informatics

Chair for Network Architectures and Services
Department of Informatics

Technische Universität München

by

Sebastian Gallenmüller

Supervisor: Prof. Dr.-Ing. Georg Carle
Advisors: Florian Wohlfart, M. Sc.

Daniel Raumer, M. Sc.
Submission date: September the 11th, 2014





I confirm that this master’s thesis is my own work and I have documented all sources and
material used.

Garching, September the 11th, 2014





Abstract:

Network stacks currently implemented in operating systems can no longer cope with the
high packet rates offered by 10 GBit Ethernet. Thus, frameworks were developed claiming
to offer a faster alternative for this demand. These frameworks enable arbitrary packet
processing systems to be built from commodity hardware handling a traffic rate of several
10 GBit interfaces, entering a domain previously only available to custom-built hardware.

Three examples for this kind of framework are netmap, PF RING ZC, and Intel DPDK.
The common structure and techniques shared by these frameworks are presented. In
addition, differences in implementation and architecture are closely examined. API and
usage of these frameworks are demonstrated with code examples.

Moreover, a model is developed during this work, demonstrating the fundamental relation-
ship between costs and performance of these packet processing frameworks. This model
describing an arbitrary complex packet processing application allows building tailor-made
systems for a specific packet processing task. As the performance to be expected from
available equipment can now be predicted using the model the hardware for the packet
processing application can be chosen accordingly. The model is verified with measurements
and the behavior of each framework is investigated in different scenarios.

Measurements begin with a basic packet forwarding scenario based on a network consist-
ing of three servers connected via 10 GBit Ethernet with one server acting as a packet
forwarder. Forwarding is done using an application running on top of a packet process-
ing framework. This application is gradually modified during this thesis to demonstrate
more complex packet processing scenarios. Thus, factors influencing the throughput like
CPU load, memory connection, or the number of packets processed simultaneously can be
examined more closely.

The insights gained by this thesis can be applied to realize packet processing applications
by choosing the framework best fit for the application’s requirements. In addition, the
performance to be expected from this kind of application is presented together with useful
hints to reach the full potential of those frameworks.





Zusammenfassung:

Netzwerkstacks, die aktuell in Betriebssystemen zum Einsatz kommen, sind den Paket-
raten, wie sie 10 GBit Ethernet bietet, nicht länger gewachsen. Um dieser Anforderung
nachzukommen, entstanden Frameworks als eine leistungsfähigere Alternative zu den Netz-
werkstacks. Diese Frameworks ermöglichen die Erstellung beliebiger Anwendungen zur
Paketverarbeitung, die auf gewöhnlicher Hardware den Netzwerkverkehr mehrerer 10 GBit
Schnittstellen verarbeiten können und damit in Bereiche vordringen, die ehemals speziali-
sierten Hardwaresystemen vorbehalten war.

Mit netmap, PF RING ZC und Intel DPDK werden drei Vertreter dieser Frameworks
näher untersucht. Vorgestellt werden der gemeinsame Aufbau und Techniken, die von
diesen Frameworks eingesetzt werden, ebenso wie die Unterschiede in Implementierung und
Architektur. Anhand von Programmbeispielen werden API und Benutzung vorgestellt.

Ferner wird in dieser Arbeit ein Modell entwickelt, das den grundlegenden Zusammen-
hang zwischen den aufgewandten Kosten und der erreichbaren Leistung dieser Paketver-
arbeitungsframeworks aufzeigt. Dieses Modell, mit dessen Hilfe beliebig anspruchsvolle
Paketverarbeitungsvorgänge dargestellt werden können, erlaubt die Herstellung von Sys-
temen, die perfekt auf die Anforderungen der Paketverarbeitung angepasst sind. Da die
zu erwartende Leistung verfügbarer Hardware nun eingeschätzt werden kann, kann auch
die Hardware für die Paketverarbeitungsprogramme passend ausgewählt werden. Dieses
Modell wird mittels Messungen verifiziert und das Verhalten der Frameworks wird in ver-
schiedenen Szenarien untersucht.

Das grundlegende Szenario der Messungen ist eine Paketweiterleitung. Die Tests finden in
einem 10 GBit Ethernet Netzwerk statt, das aus drei Servern besteht, wobei ein Server die
Pakete weiterleitet. Die Paketweiterleitung wird von einer Anwendung durchgeführt, die
auf jeweils eines der Frameworks zur Paketverarbeitung aufsetzt. Diese Anwendung wird
im Laufe der Arbeit schrittweise modifiziert, um komplexere Paketverarbeitungsvorgänge
darstellen zu können. Dadurch können Faktoren, die den Paketdurchsatz beeinflussen, wie
zum Beispiel die CPU Leistung, die Speicheranbindung oder auch die Anzahl gleichzeitig
verarbeiteter Pakete näher untersucht werden.

Die Erkenntnisse, die in dieser Arbeit gewonnen werden, können dazu dienen Anwendun-
gen zur Paketverarbeitung zu entwerfen, unter Auswahl des Frameworks, das den An-
forderungen der Anwendung am besten gerecht wird. Zusätzlich wird die zu erwartende
Leistung einer solchen Anwendung vorgestellt, inklusive einiger Hinweise, um das volle
Potential dieser Frameworks auszuschöpfen.





Contents

1 Introduction 1

1.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 State of the Art 3

2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 High-Performance Applications . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Hardware Features enabling High-Speed Packet Processing . . . . . . . . . 5

2.4 Accelerating the Host Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 High-Speed Packet Processing Frameworks 9

3.1 Common Acceleration Techniques . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Specialized Acceleration Techniques . . . . . . . . . . . . . . . . . . . . . . 10

4 Netmap 13

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.4 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 PF RING 19

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2 Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.4 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Data Plane Development Kit 25

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.2 Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.4 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



ii Contents

7 Setup 33

7.1 Memphis Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.2 High-Performance Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . 35

8 Modelling Packet Processing Applications 37

8.1 Identification of Potential Bottlenecks . . . . . . . . . . . . . . . . . . . . . 37

8.2 Designing a Generic Performance Prediction Model . . . . . . . . . . . . . . 38

8.3 Derivation of a High-Performance Prediction Model . . . . . . . . . . . . . 38

9 Packet Processing Frameworks - Quantitative Evaluation 41

9.1 Prerequisites for Measurements . . . . . . . . . . . . . . . . . . . . . . . . . 41

9.2 Determination of Consumed CPU Resources . . . . . . . . . . . . . . . . . . 42

9.3 Hardware Dependent Measurement of Expended Processing Time . . . . . . 43

9.4 Measuring Expended Processing Time under High Load . . . . . . . . . . . 45

9.5 Removing Hardware Dependency from CPU Load Measurements . . . . . . 46

9.6 Influence of Burst Size on Throughput . . . . . . . . . . . . . . . . . . . . . 50

9.7 Influence of Memory Latency . . . . . . . . . . . . . . . . . . . . . . . . . . 51

10 Conclusion and Outlook 57

10.1 Comparison of High-Speed Packet Processing Frameworks . . . . . . . . . . 57

10.2 Evaluation of Model and Measurements . . . . . . . . . . . . . . . . . . . . 58

10.3 Additional Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

10.4 Possible Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

List of Figures 61

Bibliography 63



1. Introduction

Since the introduction of integrated circuits for computers, Moore’s Law has provided the
basis for advancements in computer hardware by predicting an exponential growth for
the number of transistors per integrated circuit. Up until today, this development allows
the integration of new features into CPUs like larger caches, additional cores, or memory
controllers leading to increased processing capabilities. Advancements offered by Moore’s
Law are not limited to CPUs but are also used to promote the progress in other domains
like digital signal processing. For network signal processing this enables the integration of
more complex algorithms for filtering, error correction, or compression resulting in higher
available bandwidth.

The advancements in hardware need to be accompanied by changes in software to fully
utilize the new hardware features. For instance, software needs to be adopted to benefit
from modern multi core architectures. This also applies for advancements in network
hardware where currently a shift from 1 GBit Ethernet to 10 GBit Ethernet is happening
(at least for server hardware). Network stacks that are implemented in operating systems
like the Linux network stack cannot cope with the tens of millions packets per seconds
offered by hardware.

Several frameworks specialized in high-speed transfer of packets have been developed claim-
ing to fill this performance gap between hard- and software. These frameworks make use of
recently added hardware features of CPUs and network processors currently not supported
by regular network stacks and enable packet processing at full line rate on several 10 GBit
interfaces based on commodity hardware. However, this focus on raw performance leads
to the necessity of adaptations in architecture and programming interfaces compared to a
regular network stack. Additional performance was gained by removing features provided
by the operating system’s network stack, like support for protocols like TCP or UDP.

A common misconception seems to be that these frameworks replace a general-purpose
network stack. This led Intel to put an explicit note on the front page of their framework’s
website stating that DPDK is “not a networking stack” [1]. These frameworks should
be seen as a high-performance but stripped down interface for packet IO rather than a
substitute for a full-blown network stack.

1.1 Goals

This thesis sums up the current state of high-speed packet processing on commodity hard-
ware. Therefore, a overview is given over related work and available solutions for handling



2 1. Introduction

network traffic based on PC hardware, i.e. using the network IO capability of a standard
operating system or using a framework, specialized in high-performance packet process-
ing. The three most prominent representatives of these frameworks, namely netmap [2],
PF RING ZC [3], and DPDK [4] are closely examined.

The theoretical background explaining the performance increase of those frameworks is
investigated. Therefore, architectural design and acceleration techniques both common to
all three frameworks are explained but also differences between them are identified.

A model is designed describing the performance of a packet processing system. Using this
model the expectable throughput of each framework with the available processing power
offered by hardware can be predicted.

Finally, measurements are designed and executed to verify the model but also to show the
implications resulting from varying designs in different scenarios. These measurements
start with a very basic forwarding scenario and get more complex when taking different
batch sizes or cache effects into account, leading to a simplified software router emulation
based on the investigated frameworks.

1.2 Structure

This thesis starts in Chapter 2 with an overview over the current state of the art in
packet processing on commodity hardware looking at literature and relevant hardware
and software features.

After that Chapter 3 presents the main acceleration techniques of high-speed packet pro-
cessing frameworks.

The following three chapters present the frameworks netmap (Chapter 4), PF RING ZC
(Chapter 5), and DPDK (Chapter 6). Each of these three chapters shows the architecture
and demonstrates the API with code examples of the respective framework.

Chapter 7 explains the test setup used to conduct the measurements of this thesis.

In Chapter 8 a model is designed to describe a generic packet processing application.
During this chapter the model is refined to describe a application realized in one of the
mentioned frameworks.

An evaluation of the three frameworks is presented in Chapter 9. There the model is
verified by various measurements starting with a simple forwarding scenario. These sim-
ple forwarders are gradually modified during the course of this chapter to emulate more
complex scenarios like routing.



2. State of the Art

This chapter discusses the current state of the art in packet processing on commodity
hardware by investigating related work. Moreover, hardware features enabling high-
performance packet processing are presented. This chapter ends with a description of
software systems for packet transmission currently offered by operating systems.

2.1 Related Work

The traditional way of packet processing uses methods and interfaces offered by operating
systems. During the last few years a number of frameworks emerged that allow to shift
the packet processing to user space.

Packet Processing using Standard Operating Systems

Kohler et al. [5] developed a modular software router called Click. Click is an example
for a packet processing application using the standard interfaces provided by Linux. This
router can either run as a user space application but offers better performance if loaded
as a Linux kernel module. Click is highly adaptable through its modular architecture that
allows for the free combination of modules needed for a specific packet processing task.
An architecture which makes Click a software platform with possibilities similar to those
of specialized packet processing frameworks.

A publication by Bolla et al. [6] presents an evaluation of software routers running on
Linux based on commodity hardware. Typical problems of packet processing in Linux are
addressed. Furthermore, performance and latency of software routers based on Linux and
Click are evaluated. This paper provides performance figures achievable with convention-
ally designed applications like this thesis does for high-performance frameworks.

Another notable example for a packet processing application is Open vSwitch introduced
by Pfaff et al. [7]. This software switch is able to connect virtual machines allowing a high
degree of flexibility due to its programmable rule set. Rules are specified in OpenFlow [8]
and allow adopting this switch to different packet processing scenarios, which makes this
application a competitor for the specialized frameworks. A comparison of switching perfor-
mance between Open vSwitch and a configured Linux kernel is included. For performance
reasons part of Open vSwitch is realized as a kernel module designed to handle the main
load of the packet processing task.



4 2. State of the Art

Packet Processing using Specialized Frameworks

Deri, the developer of PF RING, has published several papers about the predecessors of
the framework, which is called PF RING ZC in its most recent version.

A publication from 2003 by Deri [9] presents a software solution purely designed for fast
packet capture. To buffer packets, a data structure called PF RING is used. Basic tech-
niques to accelerate packet reception are presented. It includes a rudimentary comparison
of packet capture rates between the newly designed framework and the Linux kernel.

One year later Deri [10] introduced a packet processing framework called nCap capable of
high-speed packet capture and transmission. He explains the basic design decisions allow-
ing the high-performance of nCap, its API, and includes one test showing the performance
gain compared to Linux.

Rizzo [2] presents his solution of a packet processing framework, which is called netmap. He
analyzes shortcomings of the network stack implemented by BSD and introduces netmap.
The acceleration techniques, the API, and the architecture of this framework are presented
in detail. In addition, packet generation and forwarding performance is evaluated. A
survey compares different forwarding scenarios including solutions based on BSD, Click,
Open vSwitch, or netmap alone.

A joint publication by Deri and Rizzo [11], the authors of netmap and PF RING, presents
a comparison between their respective frameworks. This paper compares the different
organizational structures and architectures of both frameworks but it lacks comparative
performance measurements. However, the PF RING version presented in this publication
is not the ZC version evaluated by this thesis but its predecessor.

Wind River [12] published a white paper giving an overview over the packet processing
framework DPDK. The process of packet processing in Linux is explained and compared
to DPDK. In addition, basic acceleration techniques and an overview over the most im-
portant libraries included in DPDK are presented. Beside DPDK, commercial products
based on DPDK provided by Wind River are presented. This paper does not contain any
performance figures or comparisons to other frameworks.

The basics of network stacks and different solutions for high-performance packet process-
ing are discussed by Garćıa-Dorado et al. [13]. The frameworks investigated are PF RING
DNA, the predecessor of PF RING ZC, netmap, PacketShader [14], and PFQ [15]. The
theoretical background of network stacks and frameworks are explained in detail. Descrip-
tions and measurements presented are limited to the reception of packets; packet sending
is neither explained nor measured.

Other Notable Examples for Packet Processing Frameworks

Some frameworks are not part of a closer investigation by this thesis due to different
reasons like stopped development, immaturity, or hardware dependencies.

Han et al. [14] have developed PacketShader, a high-performance software router with
support for GPU acceleration. The packet engine of this router is publicly available offering
similar features as the frameworks investigated by this thesis. Code is updated very rarely
and there seems to be no implementation of this engine except for the use in PacketShader.
Therefore, this thesis passes on a closer examination.

Another framework is presented by Bonelli et al. [15] called PFQ. The focus was the ac-
celeration of packet monitoring systems. Therefore, PFQ was developed exclusively for
packet capturing. However, it is updated and enhanced regularly, for instance, sending
functionality was only added recently. As it seems to be more immature than the frame-
works investigated for this thesis and due to the apparent lack of applications using PFQ



2.2. High-Performance Applications 5

this framework was not examined. Nevertheless, it may become a powerful competitor to
the investigated frameworks in the near future.

An example for a vendor specific implementation of a high-performance packet process-
ing framework is OpenOnload by Solarflare [16]. This framework implements a complete
network stack with the traditional BSD socket API allowing an easy migration of network
applications. The architecture of this framework is explained and the integration of state
sharing mechanisms between kernel and different user processes needed for protocol han-
dling. However, this network stack can only be used in combination with NICs provided by
Solarflare. The presentation of this framework does not include any performance figures.
Lacking the equipment, this framework was not assessed in this thesis.

Another open source packet processing framework is called Snabb Switch [17]. This frame-
work is realized in the Lua Language. The focus of this framework is lowering the entry
barrier by offering a simple and clean API together with a language that is easy to un-
derstand. Due to the novelty of this framework, documentation is limited and only basic
performance figures are available. This is also the reason why that framework was not
examined.

2.2 High-Performance Applications

Each of the examined frameworks is either part of applications or applications were adopted
to make use of these frameworks.

For instance, a virtual switch called VALE was realized on top of netmap by Rizzo and
Lettieri [18]. Support for netmap was also included in the software router Click [19] and
in the firewall ipfw [20].

The maker of PF RING ZC ntop offers different tools with integrated PF RING support.
One of those tools is a network traffic recorder called n2disk [21]. Moreover, a traffic
monitoring tools is offered called nProbe [22].

Intel adopted Open vSwitch, a virtual switch, to use DPDK [23]. Wind River, a subsidiary
Intel, offers a Linux network stack accelerated by DPDK as part of its Network Acceleration
Platform [12].

2.3 Hardware Features enabling High-Speed Packet Pro-
cessing

High-speed packet transfer is not only done by simply switching a slower network chip
for a faster one but needs additional hardware features to make use of modern CPUs’
processing power, involving caches, memory access techniques, and several cores.

Caches

Figure 2.1 shows the different memory levels of a CPU with typical values for size and
access time. It also shows that access times increase from top to bottom but also the size
of the respective memory level. Faster memory is more expensive and therefore slower,
less costly memory is available in larger quantities.

Memory accesses of programs have certain properties. Recently used memory locations
have a high probability of being used again (temporal locality). Memory locations next to
recently accessed data are also likely to be accessed by a program (spacial locality). These
basic locality principles are the reason why fast caches, despite offering only a fraction of
the size available in main memory, hide access times effectively and efficiently.



6 2. State of the Art

Size Speed

1000 B Register 0.3 ns

64 KB Layer 1 Cache 1 ns

256 KB Layer 2 Cache 3− 10 ns

2− 4 MB Layer 3 Cache 10− 20 ns

4− 16 GB Memory 50− 100 ns

Figure 2.1: Cache hierarchy (cf. Hennessy et al. [24])

To improve access times even more, data can be put into the cache before the data is
actually needed. The data to cache can be guessed with high probability due to the locality
principles. This can be done in software (software prefetching) or hardware (hardware
prefetching). [24]

Transition Lookaside Buffer

To access a virtually addressed memory location, the virtual address has to be converted
to a physical one before it can be accessed. The previously presented principles of locality
also hold for these accesses. Subsequently, a specialized cache is implemented called Tran-
sition Lookaside Buffer (TLB) containing a limited number of virtual to physical address
mappings.

To access a date, the virtual address of this date is looked up in the TLB and if the TLB
contains an entry for this mapping, the physical address is returned. In this case, a costly
address conversion does not need to be performed. Therefore, the TLB effectively reduces
memory access time. [24]

Direct Memory Access

Direct Memory Access (DMA) is a feature allowing IO devices to access memory without
involving the CPU. Therefore, a CPU has to prepare a buffer in memory and sends a
descriptor containing a pointer to the buffer’s location to an IO device, for instance, a
Network Interface Card (NIC). The NIC can use this buffer for reading or writing data
independently freeing the CPU for other tasks.

Huggahalli et al. developed a technique called Direct Cache Access (DCA) allowing a
NIC to put incoming packets directly into the cache of a CPU. This speeds up packet
processing, as the latency introduced by a copy from memory to CPU for processing is
avoided. [25]

Non-Unified Memory Access

Systems with a Non-Unified Memory Access (NUMA) are characterized by differences in
memory access latencies caused by the physical memory connection. These differences are
the result of the memory links in systems with more than one CPU. On those systems, every
CPU is directly attached to a part of the memory via its own memory controller. However,
part of the memory is only available by accessing the memory through a different CPU.
To guarantee fast memory access, memory allocation in directly attached RAM should
always be preferred. [26]



2.4. Accelerating the Host Stack 7

Receive-Side Scaling

To utilize modern multicore processors, NICs have to direct incoming packets to different
queues with each queue belonging to a different CPU core. Hash functions ensure that
packets belonging to the same traffic flow are distributed to their respective processing
core. This technique allows scaling the traffic processing capabilities with the number of
cores available on a CPU. One implementation of this technology is called Receive-Side
Scaling (RSS). [26]

Offloading Features

Another possibility to save processing time on the CPU is to shift checksum validation and
calculation from the CPU to the NIC. For instance, the CRC checksums used by Ethernet
frames can be calculated in hardware for outgoing packets or validated for incoming traffic
without CPU involvement. Similar features exist for checksums of higher-level protocols
like IP and TCP freeing additional resources on the CPU. [26]

2.4 Accelerating the Host Stack

In traditional operating systems, IO like network operations are handled by interrupts.
This way the processing time for polling the network device is saved freeing the CPU
resources for other tasks. In addition, reaction time to incoming network traffic is kept low
as interrupts are triggered immediately to inform the CPU about newly arrived packets.
In cases of high network load, the interrupt driven system is slowed down as interrupts
have priority over other tasks causing a system to process nothing else but the interrupts.
This phenomenon is referred to as interrupt livelock. To fix this problem, the interrupts
for a device are disabled during phases of high load and this device is polled instead. [27]

Linux kernel versions prior to 2.4.20 [28] suffered from this livelock problem. The problem
was fixed by the introduction of the so-called New API (NAPI). Using NAPI a network
device interrupts on the reception of a packet. Subsequently, interrupts are disabled for
this device and the device is scheduled for polling. Incoming packets are buffered and the
OS regularly polls the device. On a polling call, the device gets a chance to offer a specified
number of packets (quota). If the device has more than a number of quota packets to offer,
the device is again scheduled for polling. Otherwise, polling is disabled and interrupts are
reenabled for this device. [29]



8 2. State of the Art



3. High-Speed Packet Processing
Frameworks

The following section provides a detailed description of techniques used by high-performance
packet processing frameworks.

3.1 Common Acceleration Techniques

Despite their different backgrounds and design philosophies netmap, PF RING ZC, and
DPDK use very similar techniques to speed up packet processing. Some features are newly
introduced for packet processing like bypassing the regular network stack, avoidance of
packet copying or pre-allocation of memory [2, 12, 10]. Other techniques are already used
by the OS like polling for newly arrived packets or processing in batches [29].

Bypass of the Standard Network Stack

A packet processing framework completely bypasses the standard OS functions for packet
handling. For the kernel and its network stack, it seems as if there is no network traffic at
all. A packet processing framework has less functionality than a general-purpose network
stack handling a variety of protocols, for instance, IP and TCP. Subsequently, the resources
used for protocol handling are not needed effectively reducing packet processing time.

Avoidance of Packet Copying

To send packets using traditional system interfaces, the packet data must be copied from
a user socket to kernel buffers or vice versa for the reception of packets. This introduces
additional delay for packet processing avoided by a packet processing framework. There the
packet buffers reside in a memory location shared by applications and packet processors,
i.e. a network device delivers/fetches the packet data to/from the same memory location
(via DMA) where an application reads/writes the packet data.

The time needed for duplicating packets depends on the packets’ length. Subsequently,
the per-packet processing costs are determined by the length of the packets. Avoiding
the copying of packets renders the processing costs independent from the length of the
packets at least for the packet processing framework. The collection of packet data in the
application and the time needed for the DMA transfer still depends on the length of the
packet.

Another advantage is the possibility to easily realize packet forwarding applications. Re-
ceived packet data does not need to be copied by the application to the packet buffer of
the outgoing interface but can simply be marked for sending.



10 3. High-Speed Packet Processing Frameworks

Pre-allocation of Memory

The allocation of memory is done in the kernel of the OS. An allocation may be necessary
if a packet buffer has not enough free space for newly received packets. This leads to a
system call for memory allocation introducing a delay before the packets can be received.
The same thing happens if a packet buffer is too small to hold the data filed for sending.

In packet processing frameworks the memory used for packet buffers is pre-allocated, i.e.
memory allocation only happens in the startup phase of an application. Pre-allocation
subsequently avoids the unnecessary allocation overhead during packet processing. As the
amount of memory cannot be changed during runtime, the size of the allocated memory
must be chosen to fit the application’s needs.

Polling & Interrupts

NAPI switches to polling mode under high load to avoid blocking the system with interrupt
handling. [29]

Applications running on top of high-performance frameworks use polling as these applica-
tions are specifically designed for handling high traffic loads. Interrupts are only used to
wake up a sleeping application in netmap or PF RING ZC if the respective blocking API
call was used. DPDK completely avoids interrupts.

Multiple queues of NICs are supported by all the investigated frameworks to allow simul-
taneous polling of different cores for additional speed-up.

Batch Processing

All three frameworks provide functions for processing several packets with a single API
call, i.e. the packets are processed in batches. The frameworks use the word burst syn-
onymously. Every API call has fixed costs, for instance, to load the instructions or needed
data structures to the cache. If packets are processed in batches, these fixed API costs are
distributed to a number of packets. This lowers the average per-packet processing costs
compared to an API where only a single packet is processed per call.

3.2 Specialized Acceleration Techniques

Some features are not used by each framework like huge pages or the avoidance of system
calls.

Huge Pages

PF RING ZC and DPDK use bigger memory pages called huge pages. The size of these
pages is increased from 4 KB to 2 MB. Larger pages reduce the number of misses in the
TLB and the costs for handling TLB misses. Both properties lead to shorter memory
access times for data structures residing in memory allocated in huge pages. [12]

Using huge pages reduces the number of usable page entries in the TLB, for instance for a
recent Intel processor from 256 entries of 4 KB pages to 32 entries of 2 MB pages. Despite
the reduced number of entries, the amount of data addressed by the TLB is still larger for
the bigger pages. [26]



3.2. Specialized Acceleration Techniques 11

Avoidance of System Calls

System calls handle functionality offered by an OS, like calls for initiating packet transfer.
If a system call is executed by an application, the OS takes over control from the appli-
cation. Subsequently, the execution of the application is paused and the context changes
from kernel space to user space. There the packet transfer from or to the NIC and addi-
tional packet processing happen, e.g. protocol handling. After that, context is switched to
user space and the application is put in charge. Pausing the application, context switches,
loading of different cache entries, and packet processing causes high costs for these system
calls.

PF RING ZC and DPDK completely avoid these system calls for packet processing and
offer user space functions replacing these calls. Therefore, these frameworks have no costs
caused by system calls handling packet transfer.

The solution netmap prefers is not removing system calls for packet processing but heavily
modifying them. The work done during a system call is reduced to simple checks of the
packet buffer like updating the number of free/available packet slots. Costs of system calls
are reduced even more by larger batch sizes resulting in fewer system calls and distributing
its costs over a larger number of packets.



12 3. High-Speed Packet Processing Frameworks



4. Netmap

This chapter gives an introduction into the technical background of netmap as presented
by Rizzo [2]. The architecture and API of netmap are demonstrated using a piece of
example code.

4.1 Overview

Application
netmap API

Host Stack

NIC

netmap rings:

NIC rings:

Figure 4.1: Overview over netmap (cf. Rizzo [2])

Figure 4.1 shows a simplified version of a typical application using netmap for its com-
munication. Data is exchanged between application and NIC via data structures called
netmap rings and NIC rings. Incoming and outgoing traffic uses separate rings; one or
more rings may be available per direction. During the execution of an application using
netmap, the host stack is cut off from communication. This state of execution is called
netmap mode.

Packets may be delivered from the application to the host stack and vice versa via two
special host rings. A possible use case for these rings is the realization of a packet filter. The



14 4. Netmap

packet filter is realized as netmap application using the high-speed interfaces to forward
traffic from or to the host stack through the host rings. OS and applications do not need
to be changed and can still use their traditional interfaces.

4.2 Driver

To use netmap a modified driver must be installed. A number of prepared driver patches
for widely used NICs are included in the netmap repository1. Different 1 GBit NICs by
Nvidia, Realtek, and Intel are supported using the forcedeth, r8169, or e1000 drivers.
Moreover, virtio driver for virtual interfaces and the ixgbe for 10 GBit Intel NICs drivers
are available. The modifications of the drivers were kept small only needing roughly 100
lines for the driver patch files. Reducing the necessary changes to a driver simplifies the
implementation of netmap support for new drivers.

As long as no netmap application is active, the driver behaves like the standard NIC driver.
The NIC is managed by the OS and delivers packets to the standard system interfaces,
until a netmap application is started and takes over control. Subsequently, behavior is
changed to the way described in Section 4.1.

4.3 Architecture

netmap_if

num_rings

ring_ofs[0]

...

ring_ofs[n]

netmap_ring

ring_size

cur

avail

flags

buf_ofs

slot[0] index

packet_buf

pkt_buf

pkt_buf

pkt_buf

pkt_buf

NIC ring

...

Shared Memory

Figure 4.2: Data structures of netmap (cf. Rizzo [2])

The main data structures used by netmap are shown in Figure 4.2.

The data structures netmap_if, netmap_ring und packet_buf reside in a single not swap-
pable section of memory, allocated by the kernel and shared by all processes. As every
process works in its own virtual address space references are kept relative. These rela-
tive references allow every process to calculate the correct position in memory for a data
structure independent from its own address space. All the data structures mentioned
are allocated when entering netmap mode to avoid allocation delay during execution as
explained in Chapter 3.

The data structure netmap_if contains read-only information about the network interface,
including the number of netmap_rings in num_rings and the array ring_ofs[] with
entries pointing to the netmap_rings.

1https://code.google.com/p/netmap/

https://code.google.com/p/netmap/


4.4. API 15

A ring buffer called netmap_ring references the hardware independent buffers of a network
interface. Such a ring buffers exclusively incoming traffic or exclusively outgoing traffic.
Every ring has a maximum size of entries (ring_size), a pointer to the current read/write
position (cur), a number of free/occupied entries (avail), and a field (buf_ofs) containing
the offset between the ring and the beginning of the paket_buf data structure. Moreover,
the ring contains the array slot[] with a number of ring_size entries, containing the
entries for packet_buf.

Every entry of packet_buf contains a single network frame. These entries are shared
between kernel processes, user processes, and the DMA Engine of the NIC. Every slot
contains variables for keeping additional data for each packet, for instance, the length of
the network packet.

4.4 API

The netmap API keeps the familiar Linux interfaces for opening a device and sending
or receiving packets. The structure of a typical netmap program is given in Listing 4.1.
This example forwards packets from interface eth0 to eth1. To reduce the amount of
code, the forwarder was simplified, for instance, the error handling or support for several
netmap_rings was removed.

In line 2 and 3 the forwarding application opens the NICs named eth0 and eth1 with the
following function call:

nm_desc* nm_open(ifname, ...)

This call is an easy way to open and configure a netmap device. It uses stan-
dard system calls that can also be called separately without the use of this
convenience function.

An interface name can be specified with the argument ifname. The prefix
netmap: opens the Ethernet device in netmap mode. The omitted arguments
can be used to configure the device or the memory mapping.

As a first step the function nm_open() creates a file descriptor using the system
call open("/dev/netmap", O_RDWR). The next step configures the NIC and
generates the data structures (cf. Figure 4.2) with the system call ioctl(fd,
arg1, arg2) using the previously generated file descriptor. The argument
arg1 configures the usage of the NIC’s hardware rings. In standard configu-
ration, the value is set to NIOCREG to bind all available hardware rings to this
single file descriptor. It is also possible to only bind a selected pair of hard-
ware rings to the file descriptor. This allows a thread or a process to allocate
an exclusive pair of rings used for Receive-Side Scaling (cf. Section 2.3). The
argument arg2 is set to the name of the NIC.

Beside other values, the file descriptor and a pointer to netmap_if are put into
the return argument of type nm_desc*.

The forwarder creates pointers to the netmap_rings to access the packets in line 5 and
6. As different processes with their own virtual address spaces use the same descriptors
rx_if and tx_if, the pointers to the data structures are only kept as offsets. To calculate
pointers from the offsets of their respective descriptors, the macros NETMAP_RXRING() and
NETMAP_TXRING() are used.

After this initialization phase, the forwarder enters an infinite loop, which begins with a
call to receive packets.



16 4. Netmap

1 nm_desc ∗rx_if , nm_desc ∗tx_if ;
2 rx_if = nm_open ("netmap:eth0" , . . . ) ;
3 tx_if = nm_open ("netmap:eth1" , . . . ) ;
4

5 netmap_ring ∗rxring , netmap_ring ∗txring ;
6 rxring = NETMAP_RXRING ( rx_if−>nifp , rx_if−>first_rx_ring ) ;
7 txring = NETMAP_TXRING ( tx_if−>nifp , tx_if−>first_tx_ring ) ;
8

9 while (1 ) {
10

11 ioctl ( rx_if−>fd , NIOCRXSYNC , NULL ) ;
12

13 int pkts = MIN ( nm_ring_space ( rxring ) , nm_ring_space ( txring ) ) ;
14

15 if ( pkts ) {
16

17 int rx = rxring−>cur ;
18 int tx = txring−>cur ;
19

20 while ( pkts ) {
21

22 netmap_slot ∗rs = &rxring−>slot [ rx ] ;
23 netmap_slot ∗ts = &txring−>slot [ tx ] ;
24

25 /* copy the packet length. */

26 ts−>len = rs−>len ;
27

28 /* switch buffers */

29 uint32_t pkt = ts−>buf_idx ;
30 ts−>buf_idx = rs−>buf_idx ;
31 rs−>buf_idx = pkt ;
32

33 /* report the buffer change. */

34 ts−>flags |= NS_BUF_CHANGED ;
35 rs−>flags |= NS_BUF_CHANGED ;
36

37 rx = nm_ring_next ( rxring , rx ) ;
38 tx = nm_ring_next ( txring , tx ) ;
39

40 pkts −= 1 ;
41

42 }
43

44 rxring−>cur = rx ;
45 txring−>cur = tx ;
46

47 ioctl ( tx_if−>fd , NIOCTXSYNC , NULL ) ;
48

49 }
50

51 }
Listing 4.1: Simplified forwarder implemented in netmap2

2The complete example code is available at https://code.google.com/p/netmap/source/browse/
examples/bridge.c

https://code.google.com/p/netmap/source/browse/examples/bridge.c
https://code.google.com/p/netmap/source/browse/examples/bridge.c


4.4. API 17

ioctl(fd, NIOCRXSYNC, ...)

This system call makes newly received packets available in the netmap_rings.
Therefore, the ring’s avail value is set to the number of received packets. The
available packets are referenced by the array slot[] starting at the value cur.

The arguments of this function are a file descriptor of the NIC and the value
NIOCRXSYNC rendering this ioctl() call a receiving call.

Before packets can be processed, the minimum between the packets received in rxring

and the available space in txring is calculated. As soon as free space is available in the
txring and packets are ready for processing in the rxring, the inner loop starting at
line 20 iterates over every single slot. The currently active entry of the array slot[] is
marked by the value of cur. The cur entry of the receiving ring is put into rs marking
the current position to read packets from. To send packets, the first free entry of slot[]
in the sending ring is used referenced by ts. The length of the packet to forward is copied
to the sending slot in line 26. Afterward, the pointers to the packet buffers are switched
between the receiving and the sending ring. The flag fields of the rs and ts slot entries
are set to NS_BUF_CHANGED marking the change of ownership of these packet buffers. As
soon as the inner loop ends, the packets processed are filed for sending with the following
call:

ioctl(fd, NIOCTXSYNC, ...)

This system call makes packets available for the NIC to send. Therefore, the
packets must be available in the packet buffers referenced by the slots of a
netmap_ring. On completion of ioctl() the avail value is updated to indi-
cate the number of free packet buffers referenced by slot[] for sending. The
value cur marks the position of the first free packet buffer in slot[].

The arguments of this function are a file descriptor of the sending NIC and the
value NIOCTXSYNC rendering this ioctl() call a sending call.

Blocking Send/Receive

The previously presented send/receive calls based on ioctl() are non-blocking, i.e. a
call returns even if no work was done and avail value was not updated. In addition to
these, the API offers two additional calls for sending and receiving packets with a blocking
behavior:

poll()/select():

These two system calls process the netmap_rings the same way as the ioctl()
calls would. The only difference is that these blocking calls do not return
before the avail value has changed, which happens if new slots for transmit
are available or new packets have arrived.

Differences to Standard System Calls

The traditional system calls for packet transmission and reception do more work than the
respective calls of the netmap framework. For instance, memory needs to be allocated
and packets have to be copied. These operations are not necessary in netmap. Therefore,
the work to be done during system calls is kept very small making the system calls less
expensive. The steps performed during these modified system calls involve:



18 4. Netmap

• Validation of cur/avail values and the contents of the respective slots (lengths,
buffer indices).

• Synchronization of content between hardware rings and netmap_rings and informing
NICs about newly available buffers or packets ready to transmit.

• Updating the avail value of a netmap_ring.

These checks increase the robustness of netmap against wrong data originating from the
user application. They offer a basic protection from crashes during system calls.



5. PF RING

In this chapter, an overview over PF RING is presented. After an introduction into the dif-
ferent versions of PF RING, the youngest and most powerful version called PF RING ZC
is explained in more detail. Architecture and API are described based on publications of
Deri [10, 11] and the user manual [30].

5.1 Overview

A typical application using PF RING is depicted in Figure 5.1. The application uses
a library to access the packet buffers called PF RING. Separate rings are available for
sending and receiving packets. The NIC driver uses the same rings for accepting packets
or offering newly arrived packets.

Application

PF RING Library

PF RING PF RING

NIC Driver

Figure 5.1: Overview over PF RING (cf. PF RING user manual [30])

5.2 Driver

Over nearly one decade, various versions of PF RING were developed with only slightly
different names, but great differences in performance and architecture. While the basic



20 5. PF RING

packet buffer of PF RING was kept throughout different versions, the feature set and the
performance of driver and library differ from version to version.

Discontinued Drivers

The first option is to use PF RING in combination with standard Linux NIC drivers. This
offers great flexibility as every driver supported by Linux can be used, but the performance
gain using PF RING is low.

Using an optimized driver version called PF RING aware driver accelerates the transmis-
sion of packets from NIC to ring for increased performance. However, drivers have to be
adapted.

Another discontinued diver version was called TNAPI. Specifically built for monitoring
purposes, it supports only packet reception and distribution of packets to several processing
threads.

The highest performance is gained by using a specialized driver transmitting packets di-
rectly into and from user space without the need to copy packets. This version of PF RING
was called DNA and had a library called Libzero offering convenient functions for packet
processing.

PF RING ZC

The most recent version of PF RING is called PF RING ZC.

The drivers delivered with the ZC version combines the features of the PF RING aware
drivers and the DNA drivers. As long as the DNA feature is not used this driver behaves
like a standard Linux driver. With the transparent_mode option, aware drivers can copy
a packet into the PF RING buffer and deliver an additional copy to the standard Linux
interfaces. This configuration offers a lower performance than using the DNA feature of
the ZC driver. If an application uses this feature, packets bypass the kernel and standard
interfaces for increased performance.

Modified drivers for Intel cards (e1000e, igb, and ixgbe) are included in PF RING ZC.

For this thesis only the ZC version of PF RING is investigated, as it is the only high-
performance version currently under development.

5.3 Architecture

The source code of the PF RING ZC library is not publicly available. Therefore, only a
very coarse overview is given over the architecture.

PF RING ZC offers basic building blocks for an easy implementation of applications. One
important feature is that the ZC library transmits packet between queues, threads, and
processes without the need to copy the packet.

Another important structure is the pfring_zc_cluster. This cluster is identified by an
ID and used for grouping threads or processes to share packets amongst them.

To transmit packets between packet processing entities, e.g. NICs, processes, or threads
pfring_zc_queue is used. Queues can be combined to form a pfring_zc_multi_queue.

For the distribution of packets to different entities, pfring_zc_worker is used. Two
different kinds of workers are offered a balancer and a fanout. The balancer can distribute
packets coming from one of several incoming queues to one of several outgoing queues.
The distribution function can be programmed. Fanout uses multiqueues as an outgoing
queue to distribute an incoming packet to every member connected to the multiqueue.



5.4. API 21

Worker

zc:eth0

zc:eth1

Consumer 0

Consumer 1

Figure 5.2: PF RING ZC cluster (cf. PF RING user manual [30])

The pfring_zc_buffer_pool is a memory pool, which is used, for instance, by the workers.

Figure 5.2 shows an application using a PF RING ZC cluster. It consists of two NICs,
a worker for packet distribution, and two packet consumers. The NICs, worker, and
consumers use separate pfring_zc_queues for submitting and accepting packets. The
worker can be realized either as balancer to distribute a packet to one of the consumers
or as fanout to deliver every packet to both consumers using a pfring_zc_multi_queue.
The consumers can be realized as threads or as separate processes to do arbitrary packet
processing. In the displayed example, packets are delivered back to the worker after being
processed by the consumers. Other solutions are possible including the packets being put
into a queue connected to another consumer or the packets being processed without any
output.

5.4 API

The API of PF RING ZC is different from the standard Linux interface. With the transi-
tion to the ZC version, the API was reworked to provide a clean and consistent interface.
One feature of the API is convenient multicore support as shown in Figure 5.2.

The structure of a simple forwarder using PF RING ZC is given in the Listing 5.1. The
packets are forwarded from eth0 to eth1 in a dedicated thread. Because of the simplicity
of the forwarding, only one thread without any workers for balancing suffices. To reduce
the amount of code, the forwarder was simplified, for instance, the error handling was
removed. Errors are indicated by negative return values for functions returning integers
or NULL for functions returning structs like pfring_zc_queue.

The first step in the PF RING ZC sample forwarder is the creation of the cluster.

pring_zc_create_cluster(id, len, meta_len, num_buff, numa, huge_mnt):

This call creates a new cluster returning the cluster handle on success.



22 5. PF RING

1 #define BURST SZ 32
2

3 pfring_zc_cluster ∗zc ;
4 pfring_zc_queue ∗inzq , ∗outzq ;
5 pfring_zc_pkt_buff ∗buff [ BURST_SZ ] ;
6

7 int start_forwarder ( ) {
8

9 zc = pfring_zc_create_cluster (
10 1 , /* cluster id */

11 1536 , /* buffer length */

12 0 , /* buffer metadata length */

13 65537 , /* num of buffers */

14 . . . ) ;
15

16 /* prepare buffers and queues */

17 for ( int i = 0 ; i < BURST_SZ ; ++i )
18 buff [ i ] = pfring_zc_get_packet_handle (zc ) ;
19 inzq = pfring_zc_open_device (zc , "zc:eth0" , rx_only , 0) ;
20 outzq = pfring_zc_open_device (zc , "zc:eth1" , tx_only , 0) ;
21

22 /* start forwarder */

23 pthread_create ( . . . , forwarder_thread , . . . ) ;
24

25 }
26

27 void∗ forwarder_thread ( ) {
28

29 int tx_queue_not_empty = 0 ;
30

31 while (1 ) {
32

33 /* receive packets */

34 int num_pkts = pfring_zc_recv_pkt_burst (inzq , buff , BURST_SZ , 0) ;
35

36 if ( num_pkts > 0) {
37

38 /* send packets */

39 pfring_zc_send_pkt_burst ( outzq , buff , num_pkts , 0) ;
40 tx_queue_not_empty = 1 ;
41

42 } else {
43

44 if ( tx_queue_not_empty ) {
45

46 pfring_zc_sync_queue (i−>outzq , tx_only ) ;
47 tx_queue_not_empty = 0 ;
48

49 }
50

51 }
52

53 }
54

55 }
Listing 5.1: Simplified forwarder implemented in PF RING ZC1

1The complete example code is available at https://svn.ntop.org/svn/ntop/trunk/PF RING/userland/
examples zc/zbounce.c?p=7718

https://svn.ntop.org/svn/ntop/trunk/PF_RING/userland/examples_zc/zbounce.c?p=7718
https://svn.ntop.org/svn/ntop/trunk/PF_RING/userland/examples_zc/zbounce.c?p=7718


5.4. API 23

The cluster is identified by a unique id. Buffer size is determined by len. A
buffer must be large enough to hold a maximum sized packet. For optimal
usage of caching, a multiple of 64 should be chosen. The meta_len value
determines the size of the buffers containing metadata. Argument num_buff

gives the number of buffers in total, which, for example, are used by queues.
To allocate the buffers in a memory space directly connected to the used CPU
socket, the NUMA node id can be entered in numa. The mount point used by
huge pages can be set manually or detected automatically if huge_mnt is set
to NULL.

The next step is to create the buffer, which has to contain at least a number of BURST_SZ
entries. After that, the NICs are prepared by opening a read-only queue on interface eth0

and a write-only queue on interface eth1. The prefix zc: is used to signal the driver to
switch to ZC mode.

pfring_zc_open_device(cluster_handle, if_name, q_mode, flags):

This function call opens a network device returning a queue to this interface
on success.

A device is opened by using the cluster_handle. The interface is identified
by its if_name and the direction of the queue (input or output) is determined
by the q_mode. Additionally, flags can be specified.

After initialization is finished, the actual forwarding thread is started, which enters an
infinite loop trying to read the queue for newly arrived packets. The number of received
packets is returned and these packets are available in buff.

pfring_zc_recv_pkt_burst(queue, pkt_handles, max_batch, block):

To receive a batch of packets, this function is used.

For the reception of packets, the queue must be specified along with an array
of buffers (pkt_handles). This buffer must contain at least max_batch entries,
as this is the maximum number of packets, which can be received during a
call. It is also possible to receive fewer packets. The return parameter reports
the number of newly received packets. If the block flag is set, this call is
a blocking call, i.e. it sleeps until at least one packet is received. Without
blocking, no interrupts are used but for waking up the caller from a blocking
call, an interrupt is triggered.

On a successful reception of packets, the buffer is forwarded to the outgoing queue.

pfring_zc_send_pkt_burst(queue, pkt_handles, max_batch, flush):

For sending packets in batches, this function is called.

The first three arguments have the same purpose as the parameters of the
receiving call with the exception that an outgoing queue must be used. If the
flag flush is set, the packets residing in the queue are flushed to the recipient
immediately.

After filing packets for sending, the ingoing queue is read again. If no new packets have
arrived and the outgoing queue is marked as not empty, the queue is flushed by executing
the function pfring_zc_sync_queue on the outgoing queue.



24 5. PF RING



6. Data Plane Development Kit

This chapter presents Intel’s Data Plane Development Kit (DPDK). Information about
DPDK its driver, its architecture, and its API are taken from the extensive documentation
offered by Intel [31, 32].

6.1 Overview

The main goal of DPDK is not only to accelerate the packet IO mechanisms but also to offer
a collection of libraries and components for comprehensive packet processing. A DPDK
based application can select the libraries needed for its processing task. The most basic
libraries are presented in Figure 6.1 with the most important library called Environment
Abstraction Layer (rte_eal) on top. The EAL initializes and manages the different packet
processing threads. The other libraries displayed use functionality offered by the EAL.

rte_mbuf

rte_timer rte_malloc rte_mempool rte_ring

rte_eal

Figure 6.1: Basic libraries offered by DPDK (cf. DPDK programmer’s guide [31])

6.2 Driver

Drivers for Intel’s 1 GBit and 10 GBit NICs are included. In addition, a number of
virtualized drivers were adapted to DPDK. The driver is called Poll Mode Driver (PMD)



26 6. Data Plane Development Kit

as packets only can be polled without the use of any interrupts. To use the devices with
this driver, the NICs have to be bound to the driver. The Linux kernel cannot use these
interfaces as long as they are bound to the PMD. To bind/release NICs to/from the PMD,
a script is available called pci_unbind.py. [33]

This driver is based on the igb_uio driver. UIO drivers are specially designed drivers
aiming to do most of the processing in user space. An UIO driver still has a part of its
code realized as kernel module but its tasks are reduced. For instance, the kernel module
only initializes devices or acts as interface for the PCI communication. [34]

6.3 Architecture

The basic architecture is shown in Figure 6.1. The main library called Environment Ab-
straction Layer (rte_eal) offers a generic interface for applications hiding implementation
details of hardware and OS from the application or other libraries. Moreover, the EAL
initializes application and resources, e.g. memory, PCI components, and timers.

A Timer Manager (rte_timer) allows to call functions asynchronously, once or periodical.
The precise reference time is provided by the EAL.

A component called Memory Manager (rte_malloc) allocates memory in huge pages to
use the memory more efficiently.

The Network Packet Buffer Management (rte_mbuf) can create or destroy packet buffers.
These buffers may be adopted to hold other data. All buffers are created at startup of an
application.

The Ring Manager (rte_ring) offers lock free ring buffers of fixed size. These rings
support several producers and several consumers. They can be used as a communication
facility between different threads.

The Memory Pool Manager (rte_mempool) is used to store objects (usually the previously
described mbufs) in rings. Additionally a per-core object buffer is provided by this library.
To optimize memory access, objects are distributed equally over the available memory
channels.

DPDK also provides libraries for higher-level functionality for example, a library called
librte_hash can be used to provide hash based forwarding of packets. In addition,
a longest prefix matching algorithm is included in DPDK (librte_lpm). The library
librte_lpm provides useful methods for handling protocols like IP, TCP, UDP, and SCTP.
For instance, header structure information is given or the protocol numbers used by IP.

6.4 API

The API of DPDK has defined its own interface for packet processing. This is by far the
most powerful API of the investigated frameworks. Therefore, even a simplified forwarder
without error handling is split in two phases the initialization and the forwarding phase
shown in Listing 6.1 and Listing 6.2. In the terminology of DPDK, threads are called lcore
due to running on a dedicated core. The main thread or master lcore executes the first
phase and the forwarding is done on a regular lcore.

The first step of the initialization phase is the initialization of the EAL by entering the
command line arguments to the initialization call.



6.4. API 27

1 struct rte_mempool∗ pktbuf_pool = NULL ;
2 int rx_port_id = 1 ;
3 int tx_port_id = 0 ;
4

5 int main ( int argc , char ∗∗argv ) {
6

7 rte_eal_init (argc , argv ) ;
8

9 pktbuf_pool =
10 rte_mempool_create ("mbuf_pool" , NB_MBUF ,
11 MBUF_SIZE , 32 ,
12 sizeof ( struct rte_pktmbuf_pool_private ) ,
13 rte_pktmbuf_pool_init , NULL ,
14 rte_pktmbuf_init , NULL ,
15 rte_socket_id ( ) , 0) ;
16

17 rte_pmd_init_all ( ) ;
18 rte_eal_pci_probe ( ) ;
19

20 prepare_dev ( rx_port_id ) ;
21 prepare_dev ( tx_port_id ) ;
22

23 rte_eal_remote_launch (run , NULL , 1) ;
24 rte_eal_wait_lcore (1 ) ;
25

26 return 0 ;
27 }
28

29 static void prepare_dev ( int id ) {
30

31 int sock_id = rte_eth_dev_socket_id (id ) ;
32

33 rte_eth_dev_configure (id , 1 , 1 , &port_conf ) ;
34 rte_eth_rx_queue_setup (id , 0 , 128 , sock_id , &rx_conf , pktbuf_pool ) ;
35 rte_eth_tx_queue_setup (id , 0 , 512 , sock_id , &tx_conf ) ;
36 rte_eth_promiscuous_enable (id ) ;
37

38 }
Listing 6.1: Simplified forwarder implemented in DPDK (Initialization)1

1The complete example code is available at http://www.dpdk.org/browse/dpdk/tree/examples/l2fwd/
main.c?h=1.6.0

http://www.dpdk.org/browse/dpdk/tree/examples/l2fwd/main.c?h=1.6.0
http://www.dpdk.org/browse/dpdk/tree/examples/l2fwd/main.c?h=1.6.0


28 6. Data Plane Development Kit

Master Lcore

rte_eal_init

rte_eal_memory_init

rte_eal_logs_init

rte_eal_pci_init

...pthread_create(1)

pthread_create(n)

wait all threads

other inits...

rte_eal_remote_launch

rte_eal_mp_wait_lcore

Lcore n

init

wait

run

wait

Lcore 1

wait

Lcore 1

init

wait

run

wait

Figure 6.2: rte_eal_init() (cf. DPDK programmer’s guide [31])



6.4. API 29

rte_eal_init(argc, argv):

This call prepares the application by initializing different components and cre-
ating the threads used by the application. It returns if all threads created are
in a waiting state. Figure 6.2 visualizes this call.

Mandatory arguments needed for this init call are -c and -n. The c-parameter
must be followed by a bitmask specifying the cores used. For instance 0x5
enables the 0th core and the 2nd core, therefore two threads are created. The
indices of the cores are determined by the OS. The n-parameter followed by a
number specifies the number of memory channels used per processor socket.

After initialization of the EAL, the memory pool is allocated.

rte_mempool_create(name, n, el_size, cache_size, priv_size,

mp_init, mp_arg, obj_init, obj_arg, socket_id, flags):

This function creates a memory pool, which, for instance, is used to allocate
packet buffers.

The pool has a name and contains n elements of size el_size. If the argument
cache_size is set to a non-zero number, a per-lcore buffer is allocated. Ac-
cesses of a lcore to this respective cache are faster, than accesses to non-cached
elements. The priv_size is used to store private data after a pool. Argument
mp_init references a function accepting mp_arg as its argument. This function
is called at initialization of a pool before the object initialization. It can be
used to initialize the private data store. The argument obj_init initializes
every object at pool initialization. This function takes obj_arg, a pointer to
the pool, an object pointer, and the object number as arguments. To allocate
the pool in a NUMA aware manner, the socket_id of the used CPU can be
specified. The flags can make the pool a single producer or single consumer
queue. In addition, usage of memory channels and cache alignment can be
configured.

Afterward, the driver is initialized (rte_pmd_init_all()) and devices are discovered on
the PCI bus and initialized (rte_eal_pci_probe()). Subsequently, the ports of these
discovered devices can be started with the prepare_dev() function. This is called once
for the receiving port and once for the transmitting port identified by their respective id.

The prepare_dev() call configures the device for the usage with one receive queue and
one transmit queue. To reduce the lines of code, the configuration structs port_conf,
rx_conf, and tx_conf are omitted.

rte_eth_dev_configure(port_id, rx_q, tx_q, conf):

This function is a mandatory call to configure an Ethernet device, which must
be executed before any other function on the device can be called.

The port to configure is specified in port_id. For this port, the number of
read/write queues to allocate is determined by the values of rx_q and tx_q.
Parameter conf is a struct containing various configuration data for features
like offloading or options for RSS.

After configuring the device, the queues are configured.



30 6. Data Plane Development Kit

rte_eth_rx_queue_setup(port_id, q_id, desc, sock_id, rx_conf,

mb_pool):

This function configures the receive queue for a port of an Ethernet device.

The port_id identifies the Ethernet port and q_id the hardware queue on this
port. For this port a number of desc receive descriptors is allocated. The
parameter sock_id specifies the NUMA socket. Different thresholds are given
in the struct rx_conf. Finally, the memory pool, where the packet buffers are
allocated, is determined by mb_pool.

rte_eth_tx_queue_setup(port_id, q_id, desc, sock_id, tx_conf):

This function configures the transmit queue of a port belonging to an Ethernet
device.

The used arguments are similar in functionality to their respective arguments
for the receive queue setup with the exception of tx_conf, which contains
different thresholds.

After initializing the queues, the port is set to promiscuous mode for accepting all incoming
packets. On completion of prepare_dev() the forwarding thread is started by launching
the function run on core with id 1.

rte_eal_remote_launch(func, arg, lcore_id):

This function can only be called from the master lcore and launches a function
func with the argument arg on a lcore with the ID lcore_id.

The launch call returns immediately so the execution of the main thread is blocked by
waiting on the completion of lcore 1 with rte_eal_wait_lcore().

The forwarding thread is shown in Listing 6.2. It has an infinite loop starting with a
receive call, which receives a batch of up to MAX_PKT_BATCH packets.

rte_eth_rx_burst(rx_port_id, rx_queue_id, buffer, batch):

This function retrieves a batch of packets on a queue of a port specified by
rx_queue_id and rx_port_id. The received packets are available in the array
buffer. Per call a number of up to batch packets can be received. The actual
number of received packets is returned.

On a successful reception of packets, the received packets are put into the array m_table.
If this table holds enough packets, i.e. the MAX_PKT_BATCH is reached, a transfer of this
table is filed before a new receive call is executed.

rte_eth_tx_burst(tx_port_id, tx_queue_id, buffer, batch):

This function sends packets on queue tx_queue_id of port tx_port_id. The
array buffer contains the packets to send and batch specifies the maximum
number of packets to file for send in this call. A number of the packets actually
stored in the descriptors of the transmit ring is returned. This number may be
lower than batch.

If the transmission of packets failed, the packet buffers remaining in m_table are freed
manually with rte_pktmbuf_free().



6.4. API 31

1 #define MAX PKT BATCH 32
2

3 void run ( ) {
4

5 struct rte_mbuf ∗pkts_burst [ MAX_PKT_BURST ] ;
6 struct rte_mbuf ∗m ;
7 struct rte_mbuf ∗m_table [ MAX_PKT_BURST ] ;
8 int len = 0 ;
9

10 while (1 ) {
11

12 int nb_rx = rte_eth_rx_burst ( rx_port_id , 0 , pkts_burst , ←↩
MAX_PKT_BATCH ) ;

13

14 for ( int j = 0 ; j < nb_rx ; j++) {
15

16 m = pkts_burst [ j ] ;
17 m_table [ len++] = m ;
18

19 /* enough pkts to be sent */

20 if ( len == MAX_PKT_BATCH ) {
21

22 int ret = rte_eth_tx_burst ( tx_port_id , 0 , m_table , ←↩
MAX_PKT_BATCH ) ;

23

24 if ( ret < MAX_PKT_BATCH ) {
25

26 do {
27 rte_pktmbuf_free ( m_table [ ret ] ) ;
28 } while (++ret < MAX_PKT_BATCH ) ;
29

30 }
31

32 len = 0 ;
33

34 }
35

36 }
37

38 }
39

40 }
Listing 6.2: Simplified forwarder implemented in DPDK (Forwarding)



32 6. Data Plane Development Kit



7. Setup

This chapter presents the environment with the software and hardware used for this thesis.
Measurements were conducted using a specialized test network. This testbed is called the
MEMPHIS testbed depicted in Figure 7.1.

Ka
un

as

Kla
ipe

da

Ta
rtu

Na
rva

Ni
da

Ce
sis

1 GBit Control Network
10 GBit Test Network

Figure 7.1: Testbed topology



34 7. Setup

7.1 Memphis Testbed

The Memphis testbed consists of two separate networks, a management network and a test
network. Every server is connected to the management network, which itself is controlled
by a management server named Kaunas. This server loads the software for the experiments
on the test servers, which subsequently execute the measurements on the test network.
The connections of the test servers shown in Figure 7.1 are direct connections between the
servers without the use of hubs or switches to provide measurements unaltered by possible
influences of these interconnecting devices.

The test servers mainly used for this thesis were Narva, Tartu, and Klaipeda in a forwarding
scenario with Narva as a traffic generator, Klaipeda acting as traffic sink, and Tartu
configured for packet forwarding. Cesis and Nida are the newest servers of the testbed
(available since June 2014) using the latest hardware. These two servers were only used
for specially selected measurements to show differences between the older NICs used in
Narva, Tartu, and Klaipeda and the newer NICs used in Cesis or Nida.

Hardware

Narva/Klaipeda Tartu

Mainboard Supermicro X9SCM-F Supermicro X9SCM-F
Memory DDR3, 16 GB DDR3, 16 GB
CPU Intel Xeon E3-1230 (3.2 GHz) Intel Xeon E3-1230 V2 (3.3 GHz)
NIC Intel X520-SR1 Intel X520-SR2 (to Narva/Klaipeda)

Intel X540-T2 (to Nida)

Table 7.1: Hardware configuration Narva, Klaipeda, and Tartu

Cesis Nida

Mainboard Supermicro X9SRH-7TF Supermicro X9DRH-iTF
Memory DDR3, 16 GB DDR3, 16 GB
CPU Intel Xeon E5-2640V2 (2.0 GHz) 2x Intel Xeon E5-2640V2 (2.0 GHz)
NIC Intel X540 (dual port, on board) Intel X540 (dual port, on board)

Intel X540-T2 (dedicated) 2x Intel X540-T2 (dedicated)

Table 7.2: Hardware configuration Cesis and Nida

Certain features influence the processing capabilities of CPUs depending on the current
system state. Turbo-Boost and SpeedStep adapt the CPU’s clock frequency to the current
system load, which subsequently influences measurement results. Therefore, these fea-
tures were disabled to provide constant processing performance for consistent, repeatable
measurements. With Hyper-Threading, each physical core is split into two virtual ones,
allowing for the scheduling of two processes to the same physical core. This leads to differ-
ent results from a scheduling of two processes to different physical cores, counteracting the
reproducibility of measurement results. Therefore, Hyper-Threading is also disabled. [26]

Software

Measurements are based on a Linux distribution named Grml Live Linux 2013.02 using a
Linux kernel of version 3.7 provided by the MEMPHIS testbed. Being a live system the
operating system is freshly loaded on every reboot ensuring a consistent foundation for
every experiment.



7.2. High-Performance Frameworks 35

7.2 High-Performance Frameworks

The versions of the packet processing frameworks are given in Table 7.3. Drivers are
included in the frameworks, netmap patches the standard Linux driver ixgbe, PF RING ZC
provides a modified ixgbe driver (v.3.18.7), and DPDK uses an adapted version of igb uio.

Framework Version

netmap 1 published on 23rd March 2014
PF RING ZC 2 6.0.2
DPDK 3 1.6.0

Table 7.3: Versions of the investigated packet processing frameworks

1https://code.google.com/p/netmap/
2https://svn.ntop.org/svn/ntop/trunk/PF RING/
3http://www.dpdk.org/download

https://code.google.com/p/netmap/
https://svn.ntop.org/svn/ntop/trunk/PF_RING/
http://www.dpdk.org/download


36 7. Setup



8. Modelling Packet Processing
Applications

To provide a better understanding how packet processing applications work, a model is
conducted to describe such an application. This chapter starts with the investigation of
potential bottlenecks to get the main influencing factors of packet processing performance.
These factors allow to set up a model for packet processing applications in general. After-
ward, this model is adapted to the packet processing frameworks. Describing this kind of
application allows to determine the resources needed by the framework itself.

Beside deepening the knowledge about packet processing applications the model enables
several possibilities, e.g. to compare different frameworks, to predict the performance of
an application using a specific framework, or to provide a tool assessing the applicability
of hardware systems for a particular packet processing task.

8.1 Identification of Potential Bottlenecks

As a first step for the design of a model describing the performance of a generic packet
processing system, factors influencing performance have to be identified.

The NIC is designed to process 10 GBit/s transfer rates. Therefore, the subsequent inter-
connects and processing elements need to be investigated for potential bottlenecks.

Modern CPUs have an integrated PCI express (PCIe) controller to connect external de-
vices [26]. PCIe is a point-to-point bus system, i.e. the full bandwidth is available for every
device and does not need to be shared with other devices. The NIC uses an 8x PCIe 2.0
interface offering a usable link bandwidth of 32 GBit/s in each direction. The available
bandwidth suffices for handling full line rate traffic. There is even enough bandwidth
capacity left to handle the overhead of the protocol running on the PCIe bus. [35]

Incoming packets have to be transferred to RAM. Therefore, the memory bandwidth also
needs to be considered. A typical configuration for currently available DDR3 memory
provides a bandwidth of 21.2 Gigabyte/s (dual channel mode with effective clock speed of
1333 MHz, also used by test system presented in Chapter 7) [24]. The available bandwidth
suffices for several 10 GBit NICs and therefore does not need to be considered for the
available test setup.

With the interconnects providing sufficient bandwidth, the CPU remains the only factor
due to the limited processing capabilities beside the obvious 10 GBit/s limit of the NIC.



38 8. Modelling Packet Processing Applications

8.2 Designing a Generic Performance Prediction Model

To understand the influence of the CPU in a generic packet processing scenario, a model
was conducted, which can be described by the following formula:

FCPU ≥ T · Cpacket

The available resources are represented by the frequency of the CPU (FCPU ). The total
costs of the packet processing task are given by T · Cpacket, i.e. the number of processed
packets represented by throughput T and the costs Cpacket each packet causes on the
CPU. FCPU is fixed depending on the used hardware. Therefore, the available resources
are bound by this limit, i.e. they have to be smaller or equal than FCPU . In addition, T
is limited by the Ethernet limit of 10 GBit/s.

0 cequal
0

tmax

Cpacket

T

Figure 8.1: Simple model

The Figure 8.1 derived from this model shows the effects of the two limiting factors,
i.e. CPU frequency limit and Ethernet limit. Throughput starts at the limit of tmax

packets per second. The value tmax depends on the size of the packets for instance 14.88
million packets per second can be achieved when using 64 Byte sized packets. As long as
tmax is reached, i.e. the costs Cpacket are cheap enough to be fully handled by the available
CPU, the traffic is bound by the limit of the NIC. At the point cequal the throughput
begins to decline. Beyond this point, processing time of the CPU does not suffice the
traffic capabilities of the NIC, i.e. the traffic becomes CPU bound and the throughput
subsequently sinks.

8.3 Derivation of a High-Performance Prediction Model

Due to the architecture of the frameworks, which all poll the NIC in a busy waiting manner,
an application uses all the available CPU cycles all the time. If the limit of the NIC is
reached but T ·Cpacket is lower than the available CPU cycles, the cycles are spent waiting
for new packets in the busy wait loop. To include these costs, a new value is introduced
C∗
packet leading to the new formula:

FCPU = T · C∗
packet

The costs per packet C∗
packet can originate from different sources:

1. CIO: These costs are used by the framework for sending and receiving a packet. The
framework determines the amount of these costs. In addition, these costs are constant
per packet due to the design of the frameworks, e.g. avoiding buffer allocation.



8.3. Derivation of a High-Performance Prediction Model 39

2. Ctask: The application running on top of the framework determines those costs,
which depend on the complexity of the processing task.

3. Cbusy: These costs are introduced by the busy wait on sending or receiving packets.
If throughput is lower than tmax, i.e. the per-packet costs are higher than cequal, Cbusy

becomes 0. The cycles spent on Cbusy are effectively wasted as no actual processing
is done.

The formula for the refined model is:

FCPU = T · (CIO + Ctask + Cbusy)

Figure 8.2 shows the behavior of the throughput while increasing Ctask for the refined
model. Furthermore, the relative part of the three components of C∗

packet is shown with
highlighted areas. These areas depict the accumulated per-packet costs of their respective
component x called C%

x .

CIO was kept to a randomly chosen, but fixed value throughout the plot. The relative
importance of C%

IO sinks because of two reasons. The first reason is the sinking throughput
with fewer packets needing a lower amount of processing power. The second reason is that
while Ctask increases the relative portion of cycles needed for IO gets smaller.

For low values of Ctask many cycles are not used by CIO, which increases busy waiting
that leads to a high value for Cbusy. C%

busy decreases linearly while C%
task grows accordingly

until cequal is reached. This point subsequently marks the cost value, where no cycles are
wasted on busy waiting.

Ctask increases steadily, which leads to a growing relative portion of C%
task.

C%
busy

C%
IO

C%
task

0 cequal
0

tmax

Ctask

T

Figure 8.2: Refined model with relative components of C∗
packet

In Chapter 9, measurements are used to generate data for this model. The first step is to
determine the framework dependent value CIO, which allows comparing the efficiency of
packet IO between frameworks.



40 8. Modelling Packet Processing Applications



9. Packet Processing Frameworks -
Quantitative Evaluation

Section 2.1 introduced various publications on the three frameworks netmap, PF RING ZC,
and DPDK. Though all these publications cover only a single framework or offer merely in-
complete comparisons lacking tests. This chapter tries to provide new information by con-
ducting comparative measurements of all three frameworks under identical circumstances.
Therefore, various measurements are presented using artificial but realistic scenarios to
investigate the performance of these frameworks. Furthermore, the model presented in
Chapter 8 is verified using these measurements.

9.1 Prerequisites for Measurements

Narva
(SRC)

Tartu
(FWD)

Klaipeda
(SINK)10 GbE 10 GbE

Figure 9.1: Forwarding setup

A basic scenario for packet processing is L2 forwarding, which also was performed for the
present survey. Forwarding was chosen as it is integrated as an example project by each
framework respectively ensuring optimal performance. Moreover, forwarding is a basic
building block for more complex applications such as routing, where the forwarding to
different interfaces is determined by a routing table, or packet filtering, where forwarding
or dropping of packets depends on the filtering options.

The measurements were performed on the Memphis testbed as shown in Figure 9.1. Eth-
ernet frames were generated on Narva, forwarded by Tartu, and received by Klaipeda.
To determine the throughput a packet counter script is running on Klaipeda. For the
calculation of CIO the CPU load is measured on Tartu. The packet generator running on
Narva is a PF RING based tool called pfsend, which is able to generate traffic at full line
rate.

The sampling time for one iteration of a series of measurements was 30 seconds. In
fact the RFC 2544 [36] describing methods for measuring network equipment suggests
a test duration of 60 seconds. However, tests showed that the frameworks generate a
stable throughput rendering longer measurement times unnecessary. In addition, the 30



42 9. Packet Processing Frameworks - Quantitative Evaluation

seconds limit allows to double the possible iterations using the same amount of time. The
following experiments present average values taken over the 30 second measurement period.
Confidence intervals are unnecessary as results are highly reproducible. An observation
also made by Rizzo in the initial presentation of netmap [2].

Adaption of Functionality

Only the forwarder included in DPDK accessed and modified the Ethernet frame header.
The alternative solution was implemented by the other two forwarders, i.e. forwarding
without any access or modification of the Ethernet header. Aiming for a comparable and
realistic scenario the processing of the Ethernet frame was also implemented into the other
forwarders.

PF RING ZC and netmap offer blocking calls for packet reception in contrast to DPDK,
which does not offer this feature. To provide a common basis for comparative tests, only
non-blocking calls were investigated.

The API of PF RING ZC offers - beside the batch calls for packet IO - single packet receive
and send functions. As the included forwarder example uses these single packet variants,
the code was changed to process batches to ensure comparable results.

Packet Size

Due to avoidance of buffer allocation and packet duplication (cf. Section 3.1) CPU load
for forwarding mainly depends on the number of packets processed, making the processing
costs of a minimal sized packet nearly as high as costs for a maximum sized packet. To aim
for the most demanding scenario, the packet size used in the forwarding traffic consisted
of 64 B packets, the minimal frame size for Ethernet. For the same reasons netmap [2]
was introduced with measurements also done using only the smallest possible packets.

Testing exclusively on the minimal packet size ignores suggestions of RFC 2544 [36]. This
request advises to test for different frame sizes on Ethernet (64 B, 128 B, 256 B, 512 B,
768 B, 1024 B, 1280 B, 1518 B). To minimize test duration, only 64 B, 128 B, 512 B,
and 1518 B frames were tested, in order to exclude possible anomalies. However, the
outcome of all measurements could be predicted from only looking at the results of the
64 B experiment. Therefore, only the results of these measurements are presented.

9.2 Determination of Consumed CPU Resources

Usually standard Linux tools like top allow logging the CPU load. However, due to the
busy wait loop polling the network interface the forwarders always generate full load on
the CPU cores used by the framework. This observation can also be explained using the
model. The value measured by top is a combination of CIO, Cbusy and Ctask without
the possibility to determine their relative portion. Therefore, this value is useless for the
calculation of CIO.

The load on the CPU can also be measured using a Linux profiling tool like perf. How-
ever, this application needs processing time for its own execution, which influences the
measurement. PF RING ZC and DPDK also suggest to pin threads to certain cores to
minimize system overhead and provide high-performance. Running a profiling tool on the
same core would counter these design principles.

Rizzo [2] evaluated the performance of netmap by lowering the CPU frequency while
measuring the throughput. This allows finding the minimal clock frequency needed for
transmitting at full line rate. This point is highlighted as cequal in Figure 8.2. There Cbusy

is 0. In addition, the forwarders are kept very simple that Ctask can be approximated with
a value of 0. Subsequently, the transmission efficiency of CIO can be calculated from these
measured results.



9.3. Hardware Dependent Measurement of Expended Processing Time 43

9.3 Hardware Dependent Measurement of Expended Pro-
cessing Time

To measure forwarding efficiency, Rizzo’s method was chosen. Therefore, the frequency of
the CPU used by Tartu was adjusted using a tool called cpufrequtils. This tool allows
running the CPU at fixed, predefined operating frequencies that are provided by the CPU.
The frequency range offered by Tartu’s CPU starts at 1.6 GHz and ends 3.3 GHz, with
intermediate steps of 100 or 200 MHz.

1.6 2 2.4 2.8 3.2
0

5

10

15

CPU Frequency [GHz]

T
h
ro

u
gh

p
u
t

[M
p
p
s]

netmap
PF RING ZC

DPDK

Figure 9.2: Throughput at different CPU frequencies

Figure 9.2 shows the throughput achieved by all three frameworks for forwarding 64 B
packets. The expected behavior for all three frameworks was to forward fewer frames for
slower clock frequencies. However, three different results were measured:

• netmap: behaves as anticipated. It starts at roughly 11 Mpps at 1.6 GHz and
increases throughput linearly until line speed is reached for clock speeds higher than
3 GHz.

• PF RING ZC: transmits at full line rate for every clock speed offered by the CPU.

• DPDK: reaches line speed at 1.6 GHz but decreases its throughput performance for
faster clock speeds.

The explanation for the behavior of PF RING ZC is probably the higher efficiency com-
pared to netmap. Therefore, the minimal clock speed could still be too high to lower the
throughput.

The behavior of DPDK was further investigated. It was speculated that the decline in
throughput was caused by a high number of polls. Subsequently, a new counter was
introduced to the forwarder counting the receive API calls per second, which is shown in
Figure 9.3.

The forwarder included in DPDK works with a batch size of 32, i.e. the NIC is polled in
a busy wait manner until at least 32 packets are available (cf. Listing 6.2). From that
information, the minimal number of polls per second to reach line rate can be calculated:

Maximum Packet Rate

Batch Size
=

14.88 Mpps

32
≈ 0.47 MPolls/s



44 9. Packet Processing Frameworks - Quantitative Evaluation

1.6 2 2.4 2.8 3.2
0

1

2

3

4

5

6

CPU Frequency [GHz]

P
o
ll

R
a
te

[M
P

o
ll
s/

s]

DPDK

Figure 9.3: Pollrate of DPDK forwarder at different CPU frequencies

If the forwarder meets this number of receive calls (evenly distributed over one second),
every call returns with 32 newly arrived packets. For less calls the line rate is no longer
reached but for a higher number of calls the busy loop immediately polls the NIC again.
This high number of polls during a short period of time leads to the decreasing throughput,
which is shown in Figure 9.3. At a clock speed of 1.6 GHz the calculated minimal poll
rate is roughly met and DPDK reaches line rate as shown in Figure 9.2. For higher clock
speeds the number of polls increase, which subsequently lowers the throughput.

To avoid this poll rate problem, the forwarder was modified limiting its poll calls to the
required minimum. Therefore, the minimal wait time between two consecutive receive
calls was calculated:

Time Period

Calls
=

1 s

0.47 MCalls
≈ 2.128

µs

Call

As sleep() and usleep() proved to be too inaccurate for this minimal wait time a
more precise timer was needed. Therefore, a precise timestamping method based on the
RDTSC [37] cycle counter of the CPU was developed. Now the minimal wait time needs
to be converted to CPU cycles:

Time Period

Calls
=

3300 MCycles

0.47 MCalls
≈ 7000

Cycles

Call

To adhere to this minimal wait time, every receive call is timestamped with the CPU’s
cycle counter. By adding 7000 cycles to this value the earliest point for the next receive
call is calculated. This minimum delay is enforced by a busy wait loop before every
receive call that loops until the RDTSC reaches the previously calculated value. With
that improvement DPDK was - like PF RING ZC - able to reach full line rate for every
given clock speed.

Further investigations showed that the poll rate problem could not be reproduced for the
PF RING ZC framework. Nevertheless, it was observed for netmap in a different scenario.
The packet generator included in netmap tries to send packets in a busy loop. In this loop
the send call is executed even if no space in the send buffer is available also leading to a
decreased throughput for higher CPU frequencies. There the problem could also be fixed
with an enforced minimum delay between polls.

The poll rate problem was further investigated as Cesis and Nida became available to the
testbed. The experiments were repeated on these new servers running the same software



9.4. Measuring Expended Processing Time under High Load 45

with the exact same settings, but NICs were changed to Intel X540 cards. On those cards,
unnecessary polls did not lower the throughput. As the only difference between these
two test setups was the changed hardware, the poll rate problem seems to be a hardware
problem as it only occurred on Tartu using Intel X520 cards.

9.4 Measuring Expended Processing Time under High Load

1.6 2 2.4 2.8 3.2
0

10

20

30

CPU Frequency [GHz]

T
h
ro

u
gh

p
u
t

[M
p
p
s]

netmap
PF RING ZC
DPDK

Figure 9.4: Bidirectional forwarding

Measurements in Section 9.3 showed that there was no influence of clock frequency on
the throughput for PF RING ZC and DPDK. It was suspected that the CPU load was
too low for the given clock frequencies. As these frequency operation points are fixed
and cannot be changed without changing the hardware, the CPU load was changed. This
was achieved by switching from unidirectional forwarding to bidirectional forwarding. For
this experiment, Klaipeda and Narva both run a packet generator and the measurement
script. The forwarder on Tartu forwards in both directions and must process twice as
many packets roughly doubling the load on the CPU.

To increase the CPU load, the forwarding applications were limited to the use of one core.
DPDK and netmap already support bidirectional forwarding on one core, the forwarder
of PF RING ZC had to be adapted to meet this requirement. The generated packets had
a length of 64 B. The results of this measurement are shown in Figure 9.4. It depicts the
accumulated throughput of both directions for all supported CPU operation frequencies.

One observation is the fact that netmap has a higher throughput in Figure 9.4 than in
Figure 9.2 for the same clock frequencies. For instance at 1.6 GHz the unidirectional
forwarder has a throughput of 10.8 Mpps but for bidirectional forwarding a throughput
of 13.9 Mpps was measured. The costs for a netmap API call are high as system calls
are used for packet reception and transmission. Bidirectional and unidirectional forwarder
have the same number of API calls but the received/transmitted packets per call are higher
in the bidirectional case. Therefore, the API overhead is distributed to a larger number
of packets reducing the average per-packet costs resulting in a higher throughput. For the
other two frameworks this observation could not be made as unidirectional forwarding was
limited by the NIC and not the CPU.

However, the major observation to be made is the fact that the theoretical limit of bidirec-
tional forwarding is never reached. This limit would be 29.8 Mpps for 64 B packets but it
is never met by the forwarders. Despite the availability of CPU resources all frameworks
peak long before the clock frequency reaches its maximum. PF RING ZC and netmap
both peak at a throughput of 21.1 Mpps and DPDK at 23.8 Mpps. Therefore, the CPU



46 9. Packet Processing Frameworks - Quantitative Evaluation

cannot be the limiting factor in this measurement. Even the activation of a poll rate
limiter did not change the outcome of this experiment.

A possible explanation for the limitation of bidirectional forwarding could be an overloaded
PCIe bus. However, this assumption could not be proven on Tartu, as the CPU did
not support the measurement of the PCIe throughput. The more recent CPUs used by
Cesis and Nida allowed the measurement of PCIe utilization. The link between NIC and
CPU has the same properties using a PCIe version 2 with eight lanes. Therefore, the
bidirectional forwarding experiment was repeated with DPDK on these servers. There the
theoretical limit of the NIC was reached. Although two cores had to be used due to the
lower CPU frequency of the CPU used on Cesis and Nida. Furthermore, a tool called
Performance Counter Monitor1 provided by Intel was used to measure PCIe utilization
during the experiment. The PCIe link was only utilized to 63% / 50% from NIC to CPU
or vice versa. Therefore, the PCIe bus utilization is no explanation for the low throughput
performance of the NICs. It seems to be another hardware limitation of the X520 cards
used by the older servers, which no longer holds for X540 cards used by the newer servers.

9.5 Removing Hardware Dependency from CPU Load Mea-
surements

Bidirectional forwarding was able to lower the throughput for all three frameworks, but
showed hardware limitations of the NIC, which make it difficult to clearly decide if a
decline happens because of the NIC limit or insufficient CPU resources. Therefore, this
method cannot be used to measure the precise CPU load during forwarding. However,
the previously presented measurements showed also that unidirectional forwarding was
not sufficient to show a decline in throughput for PF RING ZC and DPDK due to the
frequency restrictions of the CPU.

An optimal solution combines a unidirectional forwarding scenario with a higher CPU
load. To surpass the hardware limits opposed by the CPU, a new method was developed
to lower the processing capabilities without hardware dependency. Therefore, a piece of
software was developed, which takes a predefined number of cycles to execute.

Generating and Measuring CPU Load

1 inline void wait_cycles ( uint32_t wait_value ) {
2 asm volatile ("mov %0, %%ecx"

3 "label: dec %%ecx"

4 "cmp $0, %%ecx"

5 "jnz labelb" : : "r" ( wait_value ) ) ;
6 }

Listing 9.1: Busy wait loop in assembler

The code for this CPU load generator is shown in Listing 9.1 and was put into a header file
to easily integrate the software into the forwarders. This function was declared as inline
to avoid overhead due to the function call. Volatile assembler instructions were used to
prevent the compiler from optimizing this code that could influence the number of cycles
needed for execution. The asm() function of gcc allows to embed assembler instructions
into regular C code.

1http://www.intel.com/software/pcm

http://www.intel.com/software/pcm


9.5. Removing Hardware Dependency from CPU Load Measurements 47

Listing 9.1 implements a wait loop with the number of loop iterations as input argument
(wait_value). Line 2 loads the first argument to register ecx. Subsequently, the content
of ecx gets decremented, and compared to 0. As a last step, a jump to the label called
label is performed if the result of the compare operation was false. If cmp evaluates to
the value true the loop is finished. The compiler takes care of restoring the registers to
the original values before the execution of this call as the registers are probably used by
other methods.

To measure the execution of a piece of code, a method for precise benchmarking on CPUs
using x86 or x64 is described by Paoloni [37]. For this measurement a hardware counter
counting every clock on a CPU, called RDTSC and RDTSCP are used.

1 int start = asm ("RDTSC" ) ;
2 /* code to benchmark */

3 int end = asm ("RDTSC" ) ;

Listing 9.2: Naive benchmarking on x64

A naive implementation of benchmarking is shown in pseudo code in Listing 9.2. There
the values of RDTSC are read before and after code to benchmark to calculate the time
difference by subtracting start from end.

However, modern CPUs with out of order execution can reorder the instructions for opti-
mization purposes. If the code to benchmark contains a memory access, the second counter
evaluation could be executed while waiting for memory rendering this method useless for
benchmarking. For precise benchmarking, the sequence of execution is critical and must
be enforced. This can be done by calling a serialization instruction before reading the
counter, forcing the CPU to finish all instructions before the serialization instruction.

1 int start = asm ("CPUID
2 RDTSC" ) ;
3 /* code to benchmark */

4 int end = asm ("RDTSCP
5 CPUID" ) ;

Listing 9.3: Precise benchmarking on x64

The benchmarking solution presented in pseudo code in Listing 9.3 performs the serial-
ization instruction CPUID before the first counter evaluation. The second time the RDTSCP

variant of the counter evaluation is used, which ensures that the code to benchmark is com-
pleted before reading the value of the counter. The second CPUID call ensures completion
of counter reading before executing the following instructions.

Another factor influencing the measured time difference is the cache. The first execution
of a piece of code contains the time needed for copying the code into the cache. Therefore,
the first measurement is omitted in the following measurements.

Figure 9.5 shows the wait_cycles() function for wait_values between 1 and 1000. The
experiment was performed on Tartu with a fixed CPU frequency of 3.3 GHz. Every single
point in this graph represents the average of 100000 benchmark calls. Using the data a
linear function was derived to calculate real cycles from wait_value:

Cycles = wait_value + 77



48 9. Packet Processing Frameworks - Quantitative Evaluation

1 100 200 300 400 500 600 700 800 900 1000
0

250

500

750

1,000

wait_value [uint32_t]

C
y
cl

es

Figure 9.5: Measurement of wait_cycles

Enhancing Forwarder to a Generic Packet Processing Application

The wait_cycles() function can be used to emulate a CPU load with a predefined number
of cycles. Therefore, this function was implemented into the three forwarders. A new
command line argument in the forwarders specifies a fixed number of cycles, which is
spent for each packet using wait_cycles(). These cycles spent on waiting can simulate
an arbitrary complex processing task with a fixed runtime. Therefore, this forwarder can
now be considered as a generic emulator for a packet processing application using a fixed
number of cycles per packet.

Moreover, this packet processing emulator can be described by the model in Figure 8.2.
The wait_cycles() function simulates the runtime of Ctask. Ctask is increased until all
cycles are spent either on Ctask or on CIO and no more cycles are spent on waiting for
packets (Cbusy). Using such a point in the measurement allows to calculate the only
remaining unknown variable CIO as Cbusy is 0 for such a throughput, FCPU is given by
the CPU with 3.3 GHz, Ctask is a predefined value, and T is measured.

Figure 9.6 shows the experiment with the generic packet processing emulators of all three
frameworks. The DPDK forwarder used a limited poll rate to reach line rate on low CPU
load.

The upper graph of Figure 9.6 appears to behave as it was predicted by the model (cf. Fig-
ure 8.2). PF RING ZC and DPDK offer roughly the same and netmap offers lower perfor-
mance. This difference in performance can be explained by the architecture of netmap. In
netmap system calls cause additional overhead effectively reducing CPU cycles available
for packet processing. DPDK has slightly lower performance for Ctask values from 50 to
100 than PF RING ZC. That difference is caused by the poll rate limiter, which was tuned
very carefully to meet the optimal poll rate for Ctask being 0. Only at this point line rate
is achieved. To meet the optimal poll rate that close for higher values of Ctask would have
needed additional manual tuning. For values of 150 or higher for Ctask DPDK has slightly
higher performance than PF RING ZC.

The lower graph of Figure 9.6 shows the per-packet costs CIO + Cbusy. By calculating
CIO both components can be displayed separately. The curves can also be divided in
two groups the very smooth curves of DPDK and PF RING ZC and the rough curve of
netmap. This also can be explained with the system call architecture of these frameworks.
System calls and user space functions work on the same cache. Therefore, the user space
function of netmap might evict data from cache needed by the system call and vice versa.



9.5. Removing Hardware Dependency from CPU Load Measurements 49

0 200 400 600 800 1000

0

5

10

15

Ctask [CPU cycles]

T
h
ro

u
gh

p
u
t

[M
p
p
s]

netmap (NM)

PF RING (PR)

DPDK (DK)

0 200 400 600 800 1000
0

50

100

150

200

250

Ctask [CPU Cycles]

C
P

U
C

y
cl

es

NM (CIO+Cbusy)

NM (CIO)

NM (Cbusy)

PR (CIO +Cbusy)

PR (CIO)

PR (Cbusy)

DK (CIO +Cbusy)

DK (CIO)

DK (Cbusy)

Figure 9.6: Generic packet processing application with fixed per-packet costs

This leads to a higher variance in data access times depending on the current location of
the data to be accessed. DPDK and PF RING ZC generate no system calls for packet
processing. Therefore, no competition happens for the space in the caches leading to more
homogenous access times resulting in a smoother graph.

The previously presented measurement was done using 64 B packets. It was repeated
with larger packet sizes of 128 B, 512 B, and 1518 B. Nevertheless, the curves for these
measurements are omitted, as they do not contain any unexpected results. Using larger
packets the throughput was able to reach line rate for even higher values of Ctask. However,
the value of CIO remained constant for these measurements. This shows that CPU load
generated by these frameworks depends on the number of packets to be processed rather
than the size of these packets.

Framework Average CIO [CPU Cycles]

netmap 178
PF RING ZC 110
DPDK 105

Table 9.1: Efficiency of packet reception and transmission

The efficiency of every framework is given (CIO) in Table 9.1. Using these values of CIO in
the model allows a prediction of packet transfer rate (T ) on a CPU with known frequency
FCPU for a packet processing application with the known complexity Ctask per packet.



50 9. Packet Processing Frameworks - Quantitative Evaluation

The value of Cbusy represents additional cycles, which should be avoided as these cycles
are wasted.

9.6 Influence of Burst Size on Throughput

0 200 400 600 800 1000

0

5

10

15

Ctask [CPU cycles]

T
h
ro

u
g
h
p

u
t

[M
p
p
s]

NM 8 Batch
NM 16 Batch
NM 32 Batch
NM 64 Batch
NM 128 Batch
NM 256 Batch

0

5

10

15

T
h
ro

u
gh

p
u
t

[M
p
p
s]

PR 8 Batch
PR 16 Batch
PR 32 Batch
PR 64 Batch
PR 128 Batch
PR 256 Batch

0 200 400 600 800 1000
0

5

10

15

Ctask [CPU Cycles]

T
h
ro

u
g
h
p

u
t

[M
p
p
s]

DK 8 Batch
DK 16 Batch
DK 32 Batch
DK 64 Batch
DK 128 Batch
DK 256 Batch

Figure 9.7: Throughput using different batch sizes

For the previous measurements, the batch size of the forwarders was kept to the default
settings included in the example code of each framework. PF RING ZC and netmap only
have a maximum batch size. Therefore, per send/receive call a number of packets between
one and the maximum batch size is processed. DPDK forwarding has a fixed batch size
and a timeout. Received packets are collected and kept in a buffer until the batch size is
reached before the packets residing in the buffer are sent. A timeout ensures the sending



9.7. Influence of Memory Latency 51

of the packets on low traffic rates, i.e. if the buffer is only filled very slowly. This is done
to avoid unnecessary high latencies for packets.

To compare the influence of batch sizes, the behavior of PF RING and netmap was changed
to the algorithm used by the DPDK forwarder. A function to accept the batch size as
command line argument was integrated into all the forwarders. This argument takes the
fixed batch size as an input value.

The results of this measurement are shown in Figure 9.7 presenting results in a separate
graph for every framework. Once again, PF RING ZC and DPDK behave rather similarly.
Starting with a batch size of 8 throughput increases for larger batch sizes. PF RING ZC
profits up to a batch size of 64. Larger batch sizes have no influence on the throughput
of this framework. DPDK is more efficient. At a batch size of 32 throughput no longer
profits from increasing the batch size.

Throughput of netmap is very dependent on the used batch size. Increasing the batch size
improved the throughput for every measured value until the throughput came close to the
values measured in Section 9.5. This behavior is a result of netmap using more expensive
system calls for sending and receiving compared to the simple function calls in user space
used by the other frameworks. If the high API call costs of netmap are distributed to a
smaller batch size, the average per-packet costs are increased lowering the throughput.

These results show that netmap should only be used with batch sizes of at least 256 to
offer performance close to what the other frameworks can achieve.

9.7 Influence of Memory Latency

Typical packet processing applications often depend on a data structure as a rule set
describing the operations to be executed for a certain packet. In a routing scenario, this rule
set is a lookup table, which is applied to generate a forwarding decision. The time needed
for an access to this lookup table is critical for the final speed of the packet processing task.
Therefore, the forwarding emulator was adapted to perform a data dependent operation
for every packet processed. For this purpose a special data structure was developed. This
data structure is similar to the data structure used for cache measurements described by
Drepper [38].

Design of the Test Data Structure

The main goal of this data structure is to generate a predictable amount of memory
accesses to introduce latency while waiting for data. Processing overhead of this data
structure should kept low as only the latency introduced by the memory access should
be measured. Moreover, the size of this data structure should be variable to test for the
effects of different cache levels.

As a basic data structure, a singly linked list was chosen. The size of the list can be
influenced by two parameters the size of a single list element and the number of elements
in this list.

1 #define PADDING 7
2

3 struct element {
4 struct element∗ next ;
5 uint64_t pad [ PADDING ] ;
6 }

Listing 9.4: List element



52 9. Packet Processing Frameworks - Quantitative Evaluation

Listing 9.4 shows an element of this list. The element contains a pointer to the next list
element called next and an array pad, which can be adapted to vary the size of each
element. For this measurement the element size was set to 64 B (8 B for next and 56 B
in total for pad) to match the cache line size of 64 B [26]. This size guarantees one access
per element as only a single element is kept in one cache line. In addition, the elements
are aligned so no element is distributed to several cache lines what would result in several
cache accesses per element.

To generate an infinite number of memory accesses with a limited amount of elements in
the list, head and tail of this list were connected to build a circular queue.

A normal queue can be connected linearly, i.e. the element referenced by next has its
start address directly after the currently selected element. Prefetching mechanisms (cf.
Section 2.3) would cache the next elements. Therefore, this access pattern would produce
a high number of cache hits. As this access pattern is not realistic for the data structures,
which are used in network filters or routers, the links of the queue were randomized to
counteract the prefetching mechanisms. The algorithm chosen to generate these connec-
tions produces no subcycles, i.e. every element of the list is seen exactly once on a traversal
of the whole queue. In addition, the seed, which determines the list connections, was kept
the same over all measurements to ensure comparability of results between different test
runs.

A technique supported by Linux is the usage of larger memory pages. Regular sized pages
have a size of 4 KB and the larger ones called huge pages have a size of 2 MB. The larger
pages lead to a more efficient use of the TLB (cf. Section 2.3) as less memory address
calculations have to be performed. To test the influence of page size, the queue can either
be allocated using normal sized pages or the larger ones.

Results of a test run generated from 1 million iterations in the queue are shown in Figure 9.8
with separate curves for 4 KB and 2 MB pages. The larger pages seem to have no influence
as long as the data structure fits completely into cache. However, if the data structure has
to be accessed in RAM the larger pages have a positive influence on access times.

1 K 16 K 256 K 4 M 64 M
0

50

100

150

200

250

300

Worklist Size [Byte]

C
P

U
C

y
cl

es

4 KB pages
2 MB pages
L1 Cache Size
L2 Cache Size
L3 Cache Size

Figure 9.8: Measurement of cache test queue with 4 KB and 2 MB pages

Measurement of Memory Access Latency on Packet Processing Perfor-
mance

The previously described data structure was implemented into the forwarder, which now
can generate a memory access delay beside the fixed CPU load per packet by performing
one iteration in the previously presented queue. An additional command line argument



9.7. Influence of Memory Latency 53

specifies the use of regular sized or huge pages. The size of the memory access list can also
be chosen via a command line argument. For this experiment, the forwarders use their
native algorithm for choosing the batch size.

Figure 9.9 shows the throughput of the adopted forwarders using regular sized memory
pages. The size of the queue was doubled after each iteration starting with a size of 1 KB
up to a size of 512 MB. Additionally, a fixed CPU load of 100 cycles per packet had to
be introduced to lower the throughput. Without this offset the influence of the cache
delay would be invisible due to Cbusy. The throughput of the netmap curve is lower as the
100-cycle offset has a stronger influence on this framework (cf. Figure 9.6).

All three frameworks show a drop in performance before the queue reaches the size of a
cache level. This can be explained by different data structures competing for the space in
the cache, i.e. the data structures needed by the application without the additional queue.

The throughput of PF RING ZC for queue sizes fitting into the third level cache is higher
than the throughput of DPDK, which offers better performance in every other tested
configuration. This shows that DPDK depends to a greater extent on the L3 cache for its
operation as PF RING ZC.

1 K 16 K 256 K 4 M 64 M
0

5

10

15

Worklist Size [Byte]

T
h
ro

u
gh

p
u
t

[M
p
p
s]

netmap
PF RING ZC
DPDK
L1 Cache Size
L2 Cache Size
L3 Cache Size

Figure 9.9: Forwarding with one cache access per packet (4 KB pages)

The same experiment was repeated with the queue allocated in huge pages. Results are
displayed in Figure 9.10. As long as the test data structure fits into cache, the throughput
is nearly the same as for the previous experiment, but for non-cached data accesses, the
throughput is roughly 0.5 Mpps higher.

This experiment shows that performance heavily relies on data access times. In this test
scenario with an offset of 100 CPU cycles, the throughput drops by almost 6 Mpps when
RAM accesses cannot be cached any longer. This drop can be reduced to only 5.5 Mpps
by using huge pages. However, even in this case a packet processing application can profit
from cached data structures. Subsequently, the caching behavior should be considered
when designing a packet processing application. This starts by choosing a CPU with a
cache size meeting the application’s requirement. In addition, reducing the size of data
structures to fit into cache or reordering data to use prefetching should be considered.

Measurement of Cache Hits/Misses

The Intel Ivy Bridge CPUs provide counters for the measurement of specific hardware
events [26]. For the previous measurements, counters for the cache hits and the cache
misses on every cache level were monitored using these hardware registers. To read them



54 9. Packet Processing Frameworks - Quantitative Evaluation

1 K 16 K 256 K 4 M 64 M
0

5

10

15

Worklist Size [Byte]

T
h
ro

u
gh

p
u
t

[M
p
p
s]

netmap
PF RING ZC
DPDK
L1 Cache Size
L2 Cache Size
L3 Cache Size

Figure 9.10: Forwarding with one cache access per packet (2 MB pages)

the profiling tool perf was applied. Each iteration of the test lasted 2 minutes with the
hardware counters read every 10 seconds. As only 4 hardware counters are available,
only 4 events can be monitored simultaneously. Therefore, the L1 and L2 events were
monitored 6 times. Afterward, the L3 events were measured 6 times. The profiling tool
has no measurable influence on forwarding performance it only reads hardware registers
and sleeps otherwise so the overhead and possibly introduced cache accesses are kept to a
minimum.

The results of this measurement are presented in Figure 9.11 for each framework separately.
Only the results for 2 MB pages are displayed. The outcome for 4 KB pages is nearly
identical. The total number of hits (and misses) sinks during the course of this experiment
as the throughput declines, i.e. the CPU idles and generates less data accesses.

One observation is the high number of L1 Hits in all three cases. This is the case because
every variable used regularly effectively never leaves this cache level, i.e. the cache is hit
every time on access. The decline of the L1 hits seems to be very little but due to the
use of a log scale the number of hits roughly halves during the experiment for all three
frameworks.

Another observation is the usage of the cache by the test data structure. The test data
structure initially fits into the L1 cache, i.e. an access to the data structure generates a L1
hit with a high probability. Even if a miss is generated, the date is found in the L2 cache
with a high probability. By increasing the size of the test data structure, the number of
hits in the L1 cache decreases but the number of hits in L2 hits increases. The maximum
of L2 hits is reached even before the L1 size limit of 32 KB as the cache is not exclusively
used by the test data structure. This observation holds for the iteration from L2 to L3
but also from L3 to memory.

The numbers in Figure 9.11 show differences in the absolute numbers for the frame-
works. Nevertheless, explained behavior is obvious for the curves of DPDK and netmap.
PF RING ZC has a similar behavior with the exception of the curve for the L3 cache.
This cache is already heavily used where the other two frameworks are still generating L2
cache hits. A possible explanation is that the L2 cache is already used by a large data
structure of the frameworks itself, which competes for the cache. This is indicated by the
earlier decline of the L2 hit curve at only 128 KB. However, as the source code is closed
for this framework this assumption was not verified.



9.7. Influence of Memory Latency 55

1 K 16 K 256 K 4 M 64 M

100

102

104

106

108

Worklist Size [Byte]

C
a
ch

e
A

cc
es

se
s

[A
cc

es
s/

s] NM L1 Hits
NM L1 Misses
NM L2 Hits
NM L2 Misses
NM L3 Hits
NM L3 Misses
L1 Cache Size
L2 Cache Size
L3 Cache Size

100

102

104

106

108

C
ac

h
e

A
cc

es
se

s
[A

cc
es

s/
s] PR L1 Hits

PR L1 Misses
PR L2 Hits
PR L2 Misses
PR L3 Hits
PR L3 Misses
L1 Cache Size
L2 Cache Size
L3 Cache Size

1 K 16 K 256 K 4 M 64 M
100

102

104

106

108

Worklist Size [Byte]

C
ac

h
e

A
cc

es
se

s
[A

cc
es

s/
s] DK L1 Hits

DK L1 Misses
DK L2 Hits
DK L2 Misses
DK L3 Hits
DK L3 Misses
L1 Cache Size
L2 Cache Size
L3 Cache Size

Figure 9.11: Cache hit/miss measurements during forwarding (L1-L3)



56 9. Packet Processing Frameworks - Quantitative Evaluation



10. Conclusion and Outlook

The previous chapters presented a new solution for packet processing breaking with the
established way of packet processing by radical reduction of functionality and putting the
focus on performance. Three different approaches were introduced: netmap, PF RING ZC
and DPDK.

10.1 Comparison of High-Speed Packet Processing Frame-
works

netmap PF RING ZC DPDK

Throughput
performance

+ ++ ++

System calls for
packet send/receive

+ - -

Support for blocking
calls

+ + -

API ease of learning + + -

Framework function
scope

- + ++

Robustness ++ - -

Support for huge
pages

- + +

NUMA awareness - + +

Table 10.1: Summary of features supported by different packet processing frameworks

Table 10.1 provides a compact repetition of the findings for the different frameworks pre-
senting their individual advantages and disadvantages.

The netmap framework has the most conservative design of all three contestants using
well-known software interfaces of Linux and BSD. This familiarity of the API reduces the
barriers for programmers and simplifies adopting programs to netmap. Using system calls



58 10. Conclusion and Outlook

for checkups also increases the robustness of the framework. A price that is paid with a
lower performance compared to its rivals.

To aim for simplicity is the goal of PF RING ZC, which, for instance, is shown by the
custom, simple API. Despite its convenience, the software interface is still powerful enough
to write multithreaded, high-speed packet processing applications with only a few lines of
code. Nevertheless, the API leads to greater effort for the adaption of applications to
PF RING ZC. To use this framework, a commercial license is needed and the source code
of the ZC library is not publicly available in contrast to its competitors.

DPDK being a collection of libraries goes beyond pure packet IO. The variety of function-
ality offers a high degree of freedom for the design of packet processing applications with
previously unmet transfer rates. Flexibility and performance are at the expense of simplic-
ity rendering the API the most powerful but also the most complex API of its competitors.
Despite the complexity the whole framework is well documented and performance is even
higher compared to the already very fast PF RING ZC.

Comparing these frameworks shows that redesigning packet IO can result in great per-
formance benefits. Moreover, it is demonstrated that the more a frameworks breaks with
traditional designs the greater are the performance gains. Even though DPDK offers the
best performance of all competitors, considering other factors like robustness, ease of use,
and barriers to entry make its contestants viable alternatives for the realization of packet
processing applications. For instance, adopting legacy applications to a packet processing
framework is more easily realized in netmap because of the similar API. Programmers
new to packet processing can realize applications faster in PF RING ZC than in any other
framework due to the low entry barrier of the API. If the highest performance or a ad-
ditional libraries offered by DPDK are requirements of the packet processing application,
DPDK should be the framework of choice.

10.2 Evaluation of Model and Measurements

Another outcome of this thesis is a model description of a generic packet processing appli-
cation. To use this model the application specific per-packet costs must be available. In
combination with a frame specific constant provided in this thesis and the available pro-
cessing power this model allows to predict the expectable throughput of a packet processing
application. Knowing the throughput requirement of an application scenario the model
can also be used to assemble the hardware systems needed to meet those performance
requirements.

As various measurement methods proved to be incapable of measuring the CPU resources
needed by the frameworks a new indirect method is presented. To measure the CPU
performance needed by an application, a function is introduced using a defined number of
CPU cycles. Knowing this newly introduced additional load allows calculating the CPU
cycles needed by the application for a measurable outcome.

To realize this kind of measurement, three simple tools are presented. One of those tools
allows measuring the number of CPU cycles needed for a specific function. In addition,
the generation of a specified CPU load is demonstrated along with a method to generate
reproducible patterns of memory delay into an application.

These three tools were used to measure the outcome of packet forwarders for each frame-
work in different load scenarios. Subsequently, the CPU cycles needed to realize a measured
throughput could be calculated.

However, these tools also created additional possibilities. Many applications like routing,
switching, and filtering use the forwarding of packets as a basic building block but differ in



10.3. Additional Findings 59

their respective packet processing task. These tasks can be simulated and measured using
the previously developed tools. Therefore, the forwarders of the frameworks were enhanced
to simulate arbitrary complex processing tasks on a per-packet basis. This allows realizing
an emulator for generic packet processing applications on these once simple forwarders by
mimicking a processing task of the designated application.

10.3 Additional Findings

During the measurements, different, unexpected limits of the NICs used were observed.
Polling a NIC too often caused a decline in throughput, which could be fixed by introducing
a wait time between polls. In addition, bidirectional forwarding was not possible for
minimal sized packets at full line rate. Further investigations showed that these observed
hardware flaws only hold for the Intel X520 cards but could not be reproduced using the
newer Intel X540 cards in an otherwise unchanged software environment.

10.4 Possible Future Work

The measurements presented in this thesis focus on the throughput of the investigated
framework but neglect other possibilities for comparison with one of them being latency.
A tool for performing delay measurements on the MEMPHIS testbed using the NICs’ hard-
ware timestamping feature is currently under development. Further tests could be used to
extend the model not only to predict the expectable throughput but also to calculate the
possible latency of different packet processing scenarios.

Energy consumption is an important property of current IT systems. Nevertheless, the
polling nature of the frameworks generating full load on the CPU effectively disables power
saving mechanisms. The frameworks offer possible ways to reduce CPU load either by
sleeping during blocking calls or by using specialized interfaces to reduce energy consump-
tion. Therefore, measurements could be performed to determine the influence of these
mechanisms on power consumption, performance, or latency. The MEMPHIS testbed was
recently equipped with new hardware that allows measuring the power consumption of a
server, which could be used to investigate these suggestions.



60 10. Conclusion and Outlook



List of Figures

2.1 Cache hierarchy (cf. Hennessy et al. [24]) . . . . . . . . . . . . . . . . . . . 6

4.1 Overview over netmap (cf. Rizzo [2]) . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Data structures of netmap (cf. Rizzo [2]) . . . . . . . . . . . . . . . . . . . . 14

5.1 Overview over PF RING (cf. PF RING user manual [30]) . . . . . . . . . . 19

5.2 PF RING ZC cluster (cf. PF RING user manual [30]) . . . . . . . . . . . . 21

6.1 Basic libraries offered by DPDK (cf. DPDK programmer’s guide [31]) . . . 25

6.2 rte_eal_init() (cf. DPDK programmer’s guide [31]) . . . . . . . . . . . . 28

7.1 Testbed topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

8.1 Simple model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

8.2 Refined model with relative components of C∗
packet . . . . . . . . . . . . . . 39

9.1 Forwarding setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

9.2 Throughput at different CPU frequencies . . . . . . . . . . . . . . . . . . . 43

9.3 Pollrate of DPDK forwarder at different CPU frequencies . . . . . . . . . . 44

9.4 Bidirectional forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

9.5 Measurement of wait_cycles . . . . . . . . . . . . . . . . . . . . . . . . . . 48

9.6 Generic packet processing application with fixed per-packet costs . . . . . . 49

9.7 Throughput using different batch sizes . . . . . . . . . . . . . . . . . . . . . 50

9.8 Measurement of cache test queue with 4 KB and 2 MB pages . . . . . . . . 52

9.9 Forwarding with one cache access per packet (4 KB pages) . . . . . . . . . 53

9.10 Forwarding with one cache access per packet (2 MB pages) . . . . . . . . . 54

9.11 Cache hit/miss measurements during forwarding (L1-L3) . . . . . . . . . . . 55



62 List of Figures



Bibliography

[1] Intel DPDK: Data Plane Development Kit. http://www.dpdk.org/. Last visited
2014-09-10.

[2] Luigi Rizzo. netmap: a novel framework for fast packet I/O. In USENIX Annual
Technical Conference, pages 101–112, 2012.

[3] PF RING ZC. http://www.ntop.org/products/pf ring/pf ring-zc-zero-copy/. Last
visited 2014-09-10.

[4] Impressive Packet Processing Performance Enables Greater Workload Consolidation.
In Intel Solution Brief. Intel Corporation, 2013.

[5] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek.
The Click Modular Router. ACM Transactions on Computer Systems (TOCS),
18(3):263–297, 2000.

[6] Raffaele Bolla and Roberto Bruschi. Linux Software Router: Data Plane Optimization
and Performance Evaluation. Journal of Networks, 2(3):6–17, 2007.

[7] Ben Pfaff, Justin Pettit, Keith Amidon, Martin Casado, Teemu Koponen, and Scott
Shenker. Extending Networking into the Virtualization Layer. In Hotnets, 2009.

[8] Open Networking Foundation. OpenFlow Switch Specification 1.3.4.
https://www.opennetworking.org/images/stories/downloads/sdn-resources/
onf-specifications/openflow/openflow-switch-v1.3.4.pdf. Last visited 2014-09-10.

[9] Luca Deri. Improving Passive Packet Capture: Beyond Device Polling. In Proceedings
of SANE, volume 2004, pages 85–93. Amsterdam, Netherlands, 2004.

[10] Luca Deri. nCap: Wire-speed Packet Capture and Transmission. In End-to-End
Monitoring Techniques and Services, 2005. Workshop on, pages 47–55. IEEE, 2005.

[11] Luigi Rizzo, Luca Deri, and Alfredo Cardigliano. 10 Gbit/s Line Rate Packet Pro-
cessing Using Commodity Hardware: Survey and new Proposals. http://luca.ntop.
org/10g.pdf. Last visited 2014-09-10.

[12] High-Performance Multi-Core Networking Software Design Options. Wind River,
2011.

[13] José Luis Garćıa-Dorado, Felipe Mata, Javier Ramos, Pedro M Santiago del Ŕıo, Vic-
tor Moreno, and Javier Aracil. High-Performance Network Traffic Processing Systems
Using Commodity Hardware. In Data Traffic Monitoring and Analysis, pages 3–27.
Springer, 2013.

[14] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. PacketShader: a GPU-
accelerated software router. ACM SIGCOMM Computer Communication Review,
41(4):195–206, 2011.

http://www.dpdk.org/
http://www.ntop.org/products/pf_ring/pf_ring-zc-zero-copy/
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.4.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.4.pdf
http://luca. ntop. org/10g.pdf
http://luca. ntop. org/10g.pdf


64 Bibliography

[15] Nicola Bonelli, Andrea Di Pietro, Stefano Giordano, and Gregorio Procissi. On Multi–
Gigabit Packet Capturing With Multi–Core Commodity Hardware. In Passive and
Active Measurement, pages 64–73. Springer, 2012.

[16] Introduction to OpenOnload-Building Application Transparency and Protocol Con-
formance into Application Acceleration Middleware. Solarflare, 2013.

[17] Snabb Switch: Fast open source packet processing. https://github.com/SnabbCo/
snabbswitch. Last visited 2014-09-10.

[18] Luigi Rizzo and Giuseppe Lettieri. Vale, a switched ethernet for virtual machines. In
Proceedings of the 8th international conference on Emerging networking experiments
and technologies, pages 61–72. ACM, 2012.

[19] netmap-click netmap-enabled version of the Click modular router. https://code.
google.com/p/netmap-click/. Last visited 2014-09-10.

[20] netmap-ipfw userspace version of ipfw and dummynet using netmap for packet I/O.
https://code.google.com/p/netmap-ipfw/. Last visited 2014-09-10.

[21] n2disk. http://www.ntop.org/products/n2disk/. Last visited 2014-09-10.

[22] nProbe. http://www.ntop.org/products/nprobe/. Last visited 2014-09-10.

[23] Intel Corporation. Intel DPDK vSwitch. https://01.org/packet-processing. Last
visited 2014-09-10.

[24] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach. Elsevier, 2012.

[25] Ram Huggahalli, Ravi Iyer, and Scott Tetrick. Direct Cache Access for High Band-
width Network I/O. In ACM SIGARCH Computer Architecture News, volume 33,
pages 50–59. IEEE Computer Society, 2005.

[26] Intel Corporation. Intel 64 and IA-32 Architectures Optimization Reference Manual.
2012.

[27] Jeffrey C. Mogul and K. K. Ramakrishnan. Eliminating receive livelock in an
interrupt-driven kernel. ACM Transactions on Computer Systems, 15(3):217–252,
1997.

[28] Jamal Hadi Salim. When NAPI Comes To Town. In Linux 2005 Conf, 2005.

[29] Jamal Hadi Salim, Robert Olsson, and Alexey Kuznetsov. Beyond Softnet. In Pro-
ceedings of the 5th annual Linux Showcase & Conference, volume 5, pages 18–18,
2001.

[30] ntop. PF RING User Guide, Version 6.0.0, 2014.

[31] Intel Corporation. Intel Data Plane Development Kit (Intel DPDK) Programmer’s
Guide, January 2014.

[32] Intel DPDK: Data Plane Development Kit API. http://dpdk.org/doc/api/. Last
visited 2014-09-10.

[33] Intel Corporation. Intel Data Plane Development Kit (Intel DPDK) Getting Started
Guide, January 2014.

[34] UIO: user-space drivers. http://lwn.net/Articles/232575/. Last visited 2014-09-10.

https://github.com/SnabbCo/snabbswitch
https://github.com/SnabbCo/snabbswitch
https://code.google.com/p/netmap-click/
https://code.google.com/p/netmap-click/
https://code.google.com/p/netmap-ipfw/
http://www.ntop.org/products/n2disk/
http://www.ntop.org/products/nprobe/
https://01.org/packet-processing
http://dpdk.org/doc/api/
http://lwn.net/Articles/232575/


Bibliography 65

[35] PCI-SIG. Express base specification revision 2.0, 2006.

[36] Scott Bradner and Jim McQuaid. RFC 2544. Benchmarking methodology for network
interconnect devices, 1999.

[37] Gabriele Paoloni. How to Benchmark Code Execution Times on Intel IA-32 and IA-64
Instruction Set Architectures. 2010.

[38] Ulrich Drepper. Memory part 2: CPU caches. http://lwn.net/Articles/252125/. Last
visited 2014-09-10.

http://lwn.net/Articles/252125/


66 Bibliography


	Contents
	1 Introduction
	1.1 Goals
	1.2 Structure

	2 State of the Art
	2.1 Related Work
	2.2 High-Performance Applications
	2.3 Hardware Features enabling High-Speed Packet Processing
	2.4 Accelerating the Host Stack

	3 High-Speed Packet Processing Frameworks
	3.1 Common Acceleration Techniques
	3.2 Specialized Acceleration Techniques

	4 Netmap
	4.1 Overview
	4.2 Driver
	4.3 Architecture
	4.4 API

	5 PF_RING
	5.1 Overview
	5.2 Driver
	5.3 Architecture
	5.4 API

	6 Data Plane Development Kit
	6.1 Overview
	6.2 Driver
	6.3 Architecture
	6.4 API

	7 Setup
	7.1 Memphis Testbed
	7.2 High-Performance Frameworks

	8 Modelling Packet Processing Applications
	8.1 Identification of Potential Bottlenecks
	8.2 Designing a Generic Performance Prediction Model
	8.3 Derivation of a High-Performance Prediction Model

	9 Packet Processing Frameworks - Quantitative Evaluation
	9.1 Prerequisites for Measurements
	9.2 Determination of Consumed CPU Resources
	9.3 Hardware Dependent Measurement of Expended Processing Time
	9.4 Measuring Expended Processing Time under High Load
	9.5 Removing Hardware Dependency from CPU Load Measurements
	9.6 Influence of Burst Size on Throughput
	9.7 Influence of Memory Latency

	10 Conclusion and Outlook
	10.1 Comparison of High-Speed Packet Processing Frameworks
	10.2 Evaluation of Model and Measurements
	10.3 Additional Findings
	10.4 Possible Future Work

	List of Figures
	Bibliography

