
Wide-Area Virtual Machine Migration as Resilience
Mechanism

Andreas Fischer∗, Ali Fessi†, Georg Carle† and Hermann de Meer∗
∗University of Passau

Email: {andreas.fischer,demeer}@uni-passau.de
†Technische Universität München
Email: {fessi,carle}@net.in.tum.de

Abstract—The resilience of services in the Internet has become
an important issue and is expected to become even more
important in the future. Virtualization is one of the means
which can be deployed for resilience purposes. In this paper
we follow a systematic approach to the use of virtualization
to increase the resilience of network services. First, we provide
an analysis of the potential failures of services running within
Virtual Machines (VM) and how VM migration or replication can
be used to address these failures. Then, we address the problem
of re-establishing connectivity between a service and its clients
upon successful migration, by leveraging results from mobility
research. A special focus is given to wide-area VM migration,
since it is considered as the solution for some difficult failures,
e.g., large-scale failures due to natural disasters.

I. INTRODUCTION

With the global internet hosting more and more critical
services like Web or DNS, which our society increasingly
depends on, network resilience has gained increased attention.
Prominent outages have been featured on the news, already1.
A network disruption can become even life threatening (e.g.
if emergency calls make use of Voice over IP services). It is,
therefore, important to find ways to strengthen and increase
the resilience of network services. Network resilience has
been defined as ”the ability of the network to provide and
maintain an acceptable level of service in the face of various
faults and challenges to normal operation” [1]. Virtualization
can achieve this goal by reducing the dependency on specific
hardware through hardware abstraction. This creates virtual
resources that can be managed more dynamically than the
underlying physical resources. Those virtual resources then
comprise a Virtual Machine (VM), in which a service can
be executed. VMs can then be migrated from one physical
host to another – possibly even without the service noticing.
This allows an operator to react more flexibly to challenges
that are affecting the hardware environment of the service.
What remains to be done is to re-route client requests to
the new location of the service in the network and to ensure
that the client correctly receives the responses of the server.
This includes directing new client requests to the correct
location, and keeping existing connections from clients alive.
It is particularly challenging when virtual machines are mi-

1E.g. http://news.cnet.com/8301-10784 3-9878655-7.html

grated between different subnets, a process known as wide-
area migration. This paper presents a systematic correlation
between failure classes and migration strategies. Moreover,
two concepts to facilitate network redirection after performing
a wide-area migration are evaluated.

The rest of this paper is organized as follows. Section II
introduces important VM migration concepts. Section III dis-
cusses how to use migration as a resilience mechanism. In
section IV, two concepts for networ redirection are evaluated.
Section V presents related work. Finally, section VI concludes
the paper and gives pointers to future work.

II. BACKGROUND

This section gives an introduction to the VM migration
concepts used in this paper. First, migration itself is presented.
Then, the concept of snapshots is explained. Finally, wide-area
migration and the subsequent network recovery are discussed.

A. VM Migration

A VM running on a first physical host can be migrated
to another physical host. The migration itself encompasses
transfer of the persistent state of the VM (i.e. its file system),
transfer of the volatile state of the VM (i.e. RAM contents and
CPU state), and the redirection of network traffic. Once the
state transfer is complete, the VM continues to run in the new
physical machine. VM migration can be performed either as a
cold migration, or as a live migration. During a cold migration,
the service is paused or terminated while the state of the VM
is transferred. The advantage of this type of migration lies
in the low complexity. However, it may incur a significant
service downtime, since the VM state can comprise several
Gigabytes of memory. An attractive alternative in terms of
resilience is live migration. During live migration, the service
continues to run on the source host. The state on the target
host is then updated iteratively until the state difference is
small. Subsequently, the VM is stopped, the rest of the state
is copied, and the VM is resumed on the target host, resulting
in a downtime of less than 0.2s [2].

B. Snapshots

A snapshot of a VM is the state of the VM at a certain point
of time. This may be only a persistent state (i.e., the VMs file



Migration

Client

VM VM

1 2

1 Traffic before migration

2 Traffic after migration

Fig. 1. Simple Network Recovery

system) if the VM was off when the snapshot was taken. Or
it includes the memory and CPU state if the VM was running
when the snapshot was taken. Snapshots can be stored in files
and replicated in different locations in the network.

C. Wide-Area VM Migration

Wide-area migration describes the concept of migrating a
VM across different subnets, resulting in a topological change
of the network. In principle, wide-area migration uses the same
concepts as local migrations. VMs can be migrated either cold
or live. However, two factors add to the difficulty of wide-area
migration. First, the bandwidth between source and destination
site is likely to be severely limited in comparison to a local
connection – i.e. the time needed for the state transfer will
increase. This situation can be partly remediated by a proactive
distribution of snapshots to potential target hosts. The second
challenge lies in the fact that, due to the new location of the
VM, with the implication of different addresses at the new
location, the routing of network traffic for the VM has to be
adapted – i.e. a network recovery has to be performed.

D. Network Recovery

In case of a cold migration with a VM reboot, the VM can
acquire its new network configuration (IP and route) using
legacy techniques like DHCP. In all other cases, the VM
is resumed on another host with its old network configura-
tion. However, the network configuration transferred from the
source host may be not compatible with the target host. If the
VM has been migrated within the same Local Area Network
(LAN) segment, the target physical host forces an ARP update
within the broadcast domain. Thus, from now on, all traffic
addressed to the VM is sent to the target physical host, which
itself forwards the traffic to the VM (see Fig. 1).

Given that this solution requires that the source and target
physical hosts are in the same LAN segment, this limits the set
of possible target hosts for a migration. In order to allow for a
migration to a different LAN on the same site or to a different
site, several solutions are possible. In Section III-C, we discuss

TABLE I
EXAMPLES OF FAILURE CAUSES CLASSIFIED ACCORDING TO [3]

Failures

Crash Omission Timing Byzantine

VM Software buffer
overflow

DoS attacks, high
CPU or RAM usage

Conceptual soft-
ware bugs

Host Hard disk or
CPU crash

High CPU or RAM
usage by concurrent
VMs

Bugs in hardware
drivers

Network Cable cut, rout-
ing failure

Network congestion,
DoS attacks

Forged DNS or
BGP messages

the solution space, present our solutions and compare them
with related work.

III. MIGRATION AS A RESILIENCE MECHANISM

In this section, we analyze how virtualization, notably
migration and replication of VMs, can help to address certain
challenges, e.g., DoS attacks or natural disasters. First, we
classify challenges (Section III-A). Then, we deduce the
appropriate VM migration strategy (Section III-B). Finally,
we explore the solution space for network recovery upon
successful migration (Section III-C).

A. Failure Classes and Challenge Classification

According to Cristian [3], server failures can be classified
into crash, omission, timing and byzantine failures. A crash
failure occurs if a component does not respond at all. An
omission failure occurs if a component does not respond to
some input. A timing failure occurs if a component responds
to input either too early or too late (also called performance
failure). Finally, a byzantine failure causes the component to
behave in a totally arbitrary manner outside of its specified
behavior. According to this classification, crash failures are a
subset of omission failures, omission failures are a subset of
timing failures, and timing failures are a subset of byzantine
failures. We use this classification as a starting point to identify
in which cases virtualization is useful to address a certain
challenge, and which parameters should be chosen to perform
a VM migration, depending on the deployment scenario and
the current challenge.

We further categorize failures into VM failures, host failures,
and network failures (see Table I). VM failures occur at the
VM itself. Host failures are all kind of failures (software and
hardware) which may occur at the server hosting the VM.
Network failures are all kind of failures that affect the network
access of the server.

Moreover, we also classify failures into predictable and non-
predictable failures. A non-predictable failure can be, e.g., due
to an unknown software bug, or a cable cut due to construction
work. A predictable failure can be, e.g., a power-supply failure
where the infrastructure (i.e., network and servers) can still run
on battery. This means that, unless power supply is recovered,
the infrastructure will fail once the battery is drained. Another
example of a predictable failure are natural disasters, like a



huricane or a tsunami which is expected to hit a data center
within the next few hours.

This distinction is particularly relevant for the feasibility of a
VM migration. If the failure is predictable, then the remaining
time until the failure actually occurs can be used to migrate
the hot state of the VM. On the other hand, if, for example,
an unforeseen failure causes the VM to be disconnected, then
the hot state of the VM cannot be migrated in time, i.e. no
live migration can be performed. Thus, the only option would
be to fallback to a previous snapshot of the VM.

B. Selection of VM Migration Strategy

The type of challenge that a network service within a
VM is facing has a direct implication on which migration or
replication techniques are suitable. We assume that there are
dedicated monitoring probes and failure detection mechanisms
which can classify a failure into the appropriate category
as given in Table I, taking into account whether the failure
is predictable or not (which can be considered as a third
dimension in addition to the two dimensions of Table I).

1) Recovering from VM Failures:
a) Crash Failures: Crash failures at the VM can be

recovered by resetting the VM into a previously created
snapshot. In this case, migration to another host is not required.

b) Omission and Timing Failures: In case of an omission
or timing failure, if the failure can be traced back to a current
overload situation at the VM, one can identify spare resources,
either on the same host, or another host in the same site, or
another site to start additional VM images and make them
available. Note that a single omission or timing failure may
not necessarily need to trigger any action. Thus, it has to be
decided depending on the application requirements, and the
number or frequency of omission of timing failures when a
service migration or replication should be triggered. For this
purpose, anomaly detection techniques are useful.

c) Byzantine Failures: Finally, as for byzantine failures
at the VM, if the root cause of the failure can be unambigu-
ously localized at the VM itself and not at the host or the
network, a migration of the VM will most likely not solve the
issue, since the failure will be migrated with the VM.

2) Recovering from Host Failures:
a) Crash Failures: If a crash failure at the host is pre-

dictable (e.g. a hard disk accumulating bad blocks, indicating
its end of life), then a live migration can be performed as long
as the host is functioning. If the crash failure is accidental, the
VM can be recovered from a previous snapshot in the same
site or on a different site.

b) Omission and Timing Failures: Omissions and timing
failures at the host are an indication that the host does not have
sufficient resources to meet the requirements of the service
running within the VM. In this case, a VM migration or
replication can be considered – to a different site, if resources
are not available locally. Since the migration itself will con-
sume additional resources, the approach of recovering VM
state from previous snapshots, stored at a different location,
in combination with recovery of the state difference can be

TABLE II
NETWORK RECOVERY SOLUTIONS

Layer Through indirection Through End-to-End

Application Proxy SIP, XMPP
Network MIP with Home Agent,

NAT, Layer 3 gateway
MIP Route Optimization

Data link Layer 2 gateway N2N

considered. In case of VM replication to another host, a subset
of the clients can be redirected to the new VM in order to
release resources at the host where the failure occurs. This is
related to network recovery (see Sec. II-D,III-C).

c) Byzantine Failures: Byzantine failures at the host can
be addressed by a live migration if the state of the VM can still
be migrated. Otherwise, a service recovery can be performed
based on a previous VM snapshot on another host.

3) Recovering from Network Failures:
a) Crash Failures: Network crash failures result into

service disconnectivity. In this case, a previous VM snapshot
should be started at a different site, in combination with
redirection of clients to the new VM.

b) Omission and Timing Failures: For omission and
timing failures, VM live migration is a suboptimal solution,
since the migration itself adds additional load to the network
and the migration will last longer. Thus, the approach of
starting a previously distributed VM snapshot at a different
site should be considered. In this case, if possible, only the
state difference of the VM has to be migrated.

c) Byzantine Failures: In case a Byzantine failure occurs
in the network, a new VM image should be started at another
site which is not affected by the failure. However, this ap-
proach has some limitations: In some cases of network failures,
VM migration or replication may not be helpful to recover
the service. For example, a DNS failure may make services
running within the same domain unavailable. A routing failure
may affect more than one site where the service is running,
thus rendering it unavailable.

C. Wide-Area Network Recovery

Given the challenges explained above that can encounter
network services, simple network recovery, as presented in
Section II-D, is considered to be insufficient. In some cases it
is necessary to migrate the service to a different geographic
location, i.e. to perform wide-area migration. However, wide-
area migration results into a mobility problem which may
render the service unreachable unless network recovery is
performed. In fact, several mobility solutions are applicable
here. In Table II, we explore the solution space for network
recovery after successful migration based on the mobility
layer. Moreover, at each layer solutions can be classified into
mobility using an indirection point and end-to-end mobility.

1) Network recovery with indirection: At the applica-
tion layer, traffic is forwarded to the VM upon successful
migration via an application-layer proxy remaining at the
source network. Fig. 2 provides an overview of this setup.



After migration of the VM from site A to site B, traf-
fic received by proxy.a.example.com is forwarded to
proxy.b.example.com, which itself forwards the traffic
to the migrated VM. This solution can be particularly attractive
since many applications support the use of proxies.

At layer 3, a well known approach with an indirection point
is Mobile IP (MIP) (RFC 3344, RFC 3775). In its simple
variant, all traffic sent to the so-called Mobile Node (MN), in
this case the VM, is sent to a gateway at the “home network”
called Home Agent (HA). The HA then forwards the traffic
tunneled to the MN in its new location.

Another approach to support wide-area VM migration is
hiding the VM behind a Network Address Translation (NAT)
router. In this case, the traffic from the client to the VM is sent
to the external IP address of the NAT router which forwards
the traffic to the VM. Thus, the VM migration is transparent
to the client2. Another option at layer 3 can be a VPN gateway
to which the VM connects after migration.

The same approach with a VPN gateway can be performed
with a layer 2 gateway, or a large scale layer 2 switching fabric
which may span different geographic locations [4].

A major drawback of solutions with an indirection point
(application proxy, NAT, MIP HA, VPN gateway) is that the
indirection point must remain available in the upcoming com-
munication. This problem can be alleviated by giving the DNS
record of a server running within the VM a short TTL (e.g.
60 seconds). After that time, all new incoming connections
to the VM should arrive at the new location of the VM.
Unfortunately, this does not solve the problem for two reasons.
First, there are still clients which are currently connected to
the server at the old location. Second, although the TTL is
configured to be short, the DNS cache can still persist longer
in several locations in the network, at the application, or
the OS. These drawbacks are particularly important in cases
in which the ongoing availability of the indirection point is
not guaranteed. For example, in case of power failure or
natural disaster, not only the hardware of the physical hosting
where the VM was running may be affected, but also the
hardware where the indirection point is running. An additional
drawback, that is valid for MIP as well, is triangular routing,
which introduces additional delay.

2) Network recovery with end-to-end notification: Given
that wide-area migration with an indirection point does not
cover certain resilience requirements, we also investigated
end-to-end notification without indirection point. An existing
approach at layer 3 which supports end-to-end notification is
MIP route optimization. In this case, the communication party
of the MN, called Corresponding Node (CN), i.e. the client
in Fig. 2, is notified about the mobility event. Then, further
communication between the MN and the CN (here: between
the VM and its clients) takes place without involving the HA.

At the application layer, the application can support such
a notification only if the application protocol allows for

2Some applications, like SIP or FTP, unfortunately transport IP addresses
in their payload, making interaction with NAT routers complicated.

vm.a.example.com

proxy.a.example.com

Migration

VM VM

vm.b.example.com

proxy.b.example.com

Client

Traffic

forwarding

 A B

Fig. 2. Network recovery with an indirection point after wide-area migration

asynchronous notifications from the server to the client. This
is the case, e.g., for SIP or XMPP.

In layer 2, N2N [5] can be considered as an end-to-end
mobility mechanism. N2N is a P2P layer 2 VPN which could
be used to propagate the new location of the VM in the
P2P network and re-direct the layer 2 traffic to the VM after
successful migration. In this case, both the VM and the client
must be part of the P2P network.

IV. IMPLEMENTATION

As discussed in Sec. III-C, there are failures which require
wide-area migration as a remediation. In this section, two
variants of network recovery after wide-area migration are
presented. The two approaches differ in the way in which
traffic redirection is achieved. In the first case, traffic redi-
rection is performed on the link layer by building a tunnel
to the target location of the virtual service. The second
approach performs traffic redirection on the application layer
by notifying clients about the new location of the service.
The following experiments were tested on dedicated 2 GHz
machines with 2-4 cores and 2-4 GB RAM, connected via
Gigabit Ethernet.

A. Link Tunneling

If a failure does not affect the access router of a service,
network redirection can be performed by creating a virtual link
– i.e. a tunnel between the original access router of a service
and its new location. In this scenario, the access router has
to actively support wide-area migration by first setting up the
tunnel, and then redirecting all incoming network traffic for
the migrated service to its new location. Given that it is a
layer 2 solution, it has the advantage of being transparent to
the service, without any need for the VM to change its IP.

Fig. 3 shows the network setup we used for this kind of
migration. A VM is to be migrated from Host A to Host B
over an access router. Host A is connected to the access router
via Network A, whereas Host B is connected via Network B. A
client, which is connected to the access router via Network C,
uses the service during migration. To facilitate the migration,
several steps have to be performed. First, an additional virtual
bridge, named sshbr, is created on Host B. Next, a link layer
tunnel is created between vmbr1 on the access router and the



vmbr1 vmbr1vmbr1 vmbr2

vmbr0

Host A Host BAccess router

Network C

Network A

VM VM

sshbr

Network B

Client

Fig. 3. Wide-area migration enabled by tunneling

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

pa
ck

et
 in

te
r-

ar
riv

al
 ti

m
es

 in
 s

ec
on

ds

time in seconds

Downtime due to migration

Fig. 4. Downtime of a virtual service during migration

newly created sshbr (indicated by the dashed line). This causes
the virtual bridge sshbr to be logically in Network A. Finally, a
standard live migration between Host A and Host B is initiated,
where the VM in its new location is connected to sshbr instead
of vmbr1 on Host B. Using this technique, all network traffic
can be transparently redirected to the VM. This is verified by
the client, who accesses the VM during migration.

This scenario has been evaluated to measure the impact
of wide-area migration on service downtime. The results are
shown in Fig. 4. Connectivity of the virtual service is checked
by sending UDP messages from the VM to Host A at a fixed
rate of 20 packets per second. By measuring the inter-arrival
times of packets at Host A we can deduce the downtime of the
VM. Host B is equipped here with a pre-distributed snapshot
of the VM. Migration starts about 4.2s into the experiment.
At about 4.9s into the measurement, the live migration halts
the original VM and network traffic is redirected to the new
location. One can see that the resulting downtime is below
0.6s. We have also measured latency increase due to the
tunneling mechanism – however, the results were neglectible

SIP UA VM@A

VM@B

migration

INVITE

INVITE

200 OK

200 OK

NOTIFY (Server will be at IP:port)

SUBSCRIBE

200 OK

Fig. 5. Message flow: wide-area VM migration with end-to-end notification

in our test-bed. This effect should be studied with a larger
test-bed in order to reach meaningful results.

B. SIP Signalling

The second approach implements VM wide-area migration
with an IP address change. We use SIP-based end-to-end
notification to propagate mobility events. Thus, according to
Table II this is an application layer end-to-end approach. SIP
User Agents (UA) initially connect to the SIP server hosted
within the VM. Each message sent by a UA is sent to the SIP
server and potentially forwarded to other SIP entities, e.g.,
other SIP UAs. SIP UAs initially find the SIP server with a
DNS request according to RFC 3261. At this point comes our
contribution: Upon successful registration, SIP UAs subscribe
to the set of events that are relevant to keep the connectivity
between them and the server. For this purpose, we use SIP
Specific Event Notification (RFC 3265). The SIP server acts
as a publish/subscribe system where server mobility events
are propagated. Each UA which has subscribed to that kind of
event receives a notification when such an event occurs.

For our implementation, we used and extended the publicly
available implementation of the SIP stack in the Python
programming language. It uses the event-based network pro-
gramming framework twisted3. Fig. 5 shows a message flow
between a SIP UA and the SIP server, which results from the
collection of our Wireshark traces (For simplicity, we show
only the relevant SIP messages). As we can see, the SIP UA
can successfully establish a SIP session with a SIP INVITE
message both before and after the VM migration.

Beyond this functional test to validate our implementation,
we launched preliminary performance tests as well to estimate
the service downtime. Despite the IP address and network
configuration change of the VM, the downtime was the same
order of magnitude as the results described in Sec. IV-A.

3http://twistedmatrix.com/



C. Comparison

The two investigated approaches each have their advantages
and disadvantages. The link tunneling approach keeps the
network configuration of the VM unchanged. This is in partic-
ular beneficial for legacy services that can not be changed to
take topological mobility into account. However, the approach
requires access to the access router of the VM at its original
location. This can be a problem if the access router is affected
by the network challenge itself (e.g. in the case of a natural
disaster). In contrast, the SIP signaling approach indicates how
network recovery on the application layer can mask an IP
address change. This is beneficial, as traffic is routed more
directly, and does not require a cooperative access router.
However, the migration is not transparent to the application
anymore. Both approaches achieve a downtime below one
second – which is significantly better than no action and should
be acceptable for most services.

V. RELATED WORK

Live migration has been implemented multiple times already
– see in particular [2] and [6]. However, they only addressed
migration within a data center, not wide-area migration.

Replication of VMs has been previously discussed as a re-
silience mechanism (see [7], [8]). These approaches, however,
focus on the duplication of a service, without discussing the
implications of wide-area network traffic redirection.

Bienkowski et al. [9] discuss service migration in virtual
networks. Their work investigates a simulated mobile scenario,
where services are kept topologically close to their (mobile)
clients. In contrast to the approach presented here, network
recovery is not discussed in their work.

Travostino et al. [10] present a method for wide-area live
migration of virtual machines. Similar to the first approach
presented in this paper, a tunnel is used to redirect network
traffic after the migration. However, their approach requires the
(physical) source host to remain operable even after migration,
in order to forward tunnel traffic.

Bradford et al. [11] present another approach of wide-area
migration. They achieve traffic redirection by a combination of
tunneling and Dynamic DNS updates. In contrast to our work,
they do not consider failure of the source host explicitely. In
their scenario, the source host only can be switched off after
DNS updates have been propagated and all connections that
were opened before the migration, have been closed.

In Section III-C, we mentioned MIP as an alternative for
maintaining connectivity between a VM and its clients after
migration. In fact, this has been implemented and evaluated
by Silvera et al. [12].

An interesting concept is introduced in [13], where the
authors propose live migration of routers. Unlike the paper
presented here, their work focuses exclusively on routing as
the virtual service.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents wide-area migration of VMs as a
resilience mechanism. The constraints imposed by various

network challenges on VM migration have been discussed.
The need for wide-area migration has been stressed. Two
approaches to facilitate network recovery after wide-area mi-
gration have been evaluated and compared. It has been shown
that virtualized services can be migrated across different
subnets with a downtime of less than one second.

The presented approach has been evaluated in a lab environ-
ment with controlled parameters. One step to extend this work
is to use distributed testbeds in order to assess the impact of
limited bandwidth, unreliable links, and similar restrictions.

ACKNOWLEDGMENT

The authors would like to thank Yahya Al-Hazmi for
previous discussions on VM migration and network resilience
and Philip Huppert, Jochen Ritzel, and Andreas Heider for
implementation work.

The research leading to these results has received funding
from the EC’s Seventh Framework Programme ([FP7/2007-
2013] [FP7/2007-2011]) in the context of the ResumeNet and
EuroNF projects (grant agreement no. 224619 and 216366).

REFERENCES

[1] J. P. Sterbenz, D. Hutchison, E. K. Çetinkaya, A. Jabbar, J. P. Rohrer,
M. Schöller, and P. Smith, “Resilience and Survivability in Commu-
nication Networks: Strategies, Principles, and Survey of Disciplines,”
Computer Networks: Special Issue on Resilient and Survivable Networks
(COMNET), vol. 54, pp. 1245–1265, 2010.

[2] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live migration of virtual machines,” in
Proc. 2nd conference on Symposium on Networked Systems Design &
Implementation - Volume 2, 2005, pp. 273–286.

[3] F. Cristian, “Understanding fault-tolerant distributed systems,” Commun.
ACM, vol. 34, pp. 56–78, 1991.

[4] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Rad-
hakrishnan, V. Subramanya, and A. Vahdat, “Portland: a scalable fault-
tolerant layer 2 data center network fabric,” in Proc. ACM SIGCOMM
2009 conference on Data communication, 2009, pp. 39–50.

[5] L. Deri and R. Andrews, “N2N: A Layer Two Peer-to-Peer VPN,” in
Autonomous Infrastr., Management and Security, 2008, pp. 53–64.

[6] M. Nelson, B.-H. Lim, and G. Hutchins, “Fast transparent migration for
virtual machines,” in USENIX Annual Tech. Conf., 2005, pp. 25–25.

[7] H. A. Lagar-Cavilla, J. A. Whitney, R. Bryant, P. Patchin, M. Brudno,
E. de Lara, S. M. Rumble, M. Satyanarayanan, and A. Scannell,
“Snowflock: Virtual machine cloning as a first-class cloud primitive,”
ACM Trans. Comput. Syst., vol. 29, pp. 2:1–2:45, 2011.

[8] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield, “Remus: high availability via asynchronous virtual machine
replication,” in Proc. 5th USENIX Symposium on Networked Systems
Design and Implementation, 2008, pp. 161–174.

[9] M. Bienkowski, A. Feldmann, D. Jurca, W. Kellerer, G. Schaffrath,
S. Schmid, and J. Widmer, “Competitive analysis for service migration
in vnets,” in Proc. 2nd ACM SIGCOMM workshop on Virtualized
infrastructure systems and architectures, 2010, pp. 17–24.

[10] F. Travostino, P. Daspit, L. Gommans, C. Jog, C. de Laat, J. Mambretti,
I. Monga, B. van Oudenaarde, S. Raghunath, and P. Y. Wang, “Seamless
live migration of virtual machines over the man/wan,” Future Gener.
Comput. Syst., vol. 22, pp. 901–907, 2006.

[11] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg, “Live
wide-area migration of virtual machines including local persistent state,”
in VEE ’07: Proc. 3rd international conference on Virtual Execution
Environments, 2007, pp. 169–179.

[12] E. Silvera, G. Sharaby, D. Lorenz, and I. Shapira, “IP mobility to support
live migration of virtual machines across subnets,” in Proc. SYSTOR
2009: The Israeli Experimental Systems Conf., 2009, pp. 13:1–13:10.

[13] Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and J. Rexford,
“Virtual routers on the move: live router migration as a network-
management primitive,” SIGCOMM Comput. Commun. Rev., vol. 38,
pp. 231–242, 2008.


