
Chair for Network Architectures and Services—Prof. Carle

Department of Computer Science

TU München

Chapter 1:

What‘s inside a simulator?

Some of today‘s slides/figures borrowed from:

Richard Fujimoto
James Kurose, Keith W. Ross

Joachim Warschat
Oliver Rose

Averill Law, David Kelton
Manfred Jobmann

Network Security, WS 2008/09, Chapter 9 2IN2045 – Discrete Event Simulation, SS 2011 2

Simulation Fundamentals

A computer simulation is a computer program that

models the behaviour of a physical system over time.

 Program variables (state variables) represent the

current state of the physical system.

 Simulation program modifies state variables

 …to model the evolution of the physical system over

time

 …and/or to incrementally enhance the level of detail of

the physical system‘s state

Network Security, WS 2008/09, Chapter 9 3IN2045 – Discrete Event Simulation, SS 2011 3

Model taxonomy

 Static vs. dynamic

 Static: Simulate state at one point in time / without time

 Dynamic: State changes over time (focus of lecture!)

 Deterministic vs. stochastic

 Deterministic: The same input always effects the same

output

 Stochastic: Under same conditions, same input may

yield different outputs
Usual reason: Environment modeled as pseudo-random input

 Continuous vs. discrete

 cf. next slides …

Network Security, WS 2008/09, Chapter 9 4IN2045 – Discrete Event Simulation, SS 2011 4

Continuous vs. discrete simulation

Continuous values

Discrete values

Network Security, WS 2008/09, Chapter 9 5IN2045 – Discrete Event Simulation, SS 2011 5

Simulation Taxonomy (1)

Continuous time simulation

 State changes occur continuously across time

 Typically, behavior described by differential equations

 Example: Flight simulator (time and space are not quantised – at

least not at macroscopic dimensions…)

computer

simulation

discrete

models

continuous

models

event

driven

time-

stepped

Network Security, WS 2008/09, Chapter 9 6IN2045 – Discrete Event Simulation, SS 2011 6

Simulation Taxonomy (2)

Discrete time simulation [zeitdiskrete Simulation]:

 State changes only occur at discrete time instants
 Example: Simulating packets in a computer network

 Time stepped: time advances by fixed time increments

 Event stepped: time advances occur with irregular increments,
i.e., to the next point ―when something happens‖
(cf. next slide)

computer

simulation

discrete

models

continuous

models

event

driven

time-

stepped

Network Security, WS 2008/09, Chapter 9 7IN2045 – Discrete Event Simulation, SS 2011 7

Time-stepped vs. event-stepped simulation

Goal: compute state of system over simulation time

st
a

te
 v

a
ri

a
b

le
s

simulation time

event driven execution

st
a

te
 v

a
ri

a
b

le
s

simulation time

time stepped execution

Network Security, WS 2008/09, Chapter 9 8IN2045 – Discrete Event Simulation, SS 2011 8

Discrete-event simulation (DES)

 A discrete-event simulation (DES) is the reproduction

of the behaviour of a system

 over time

 by means of a model where the state variables of the

models change immediately at discrete points in time.

 These points in time are the ones in which an event

occurs.

 Remark: There are (pseudo-)events that do not lead to changes

in the state variables of the model, e.g.:

 Data collection for statistics / writing to a log file

 End of simulation

 Manual garbage collection

Network Security, WS 2008/09, Chapter 9 10IN2045 – Discrete Event Simulation, SS 2011 10

What‘s inside a DES? (1/2: data)

 Simulated time: internal (to simulation program) variable that
keeps track of simulated time

 May progress in huge jumps (e.g., 1ms, then 20s, then 2ms,…)

 Not related to real time or CPU time in any way!

 System state: variables maintained by simulation program
define system state, e.g.: number of packets in queue, current
routing table of a router, TCP timeout timers, …

 Events: points in time when system changes state

 Each event has an associate event time

• e.g., arrival of packet at a router, departure from the router

• precisely at these points in time, the simulation must take action (i.e.,
change state and maybe come up with new future events)

 Model for time between events (probabilistic) caused by external
environment

 Event list: dynamic list of events (→later slides)

 Statistical counters: used for observing the system

Network Security, WS 2008/09, Chapter 9 11IN2045 – Discrete Event Simulation, SS 2011 11

What‘s inside a DES? (2/2: program code)

 Timing routine:

 determines the next event and

 moves the simulation clock to the next event time

 Event routine: ―process the event‖, i.e., change the system state

when an event happens

 One subroutine per event type

 [P]RNG library routines: generate random numbers

 Report generators: compute performance parameters from

statistical counters and generate a report. Runs at simulation

end, at interesting events, and/or or at specific pseudo-events

 Main program:

while(simulation_time < end_time) {
next_event = timing_routine();
next_event.process();

}

Network Security, WS 2008/09, Chapter 9 12IN2045 – Discrete Event Simulation, SS 2011 12

An event changes the state of the model

Event
packet queue

packet

same queue

Network Security, WS 2008/09, Chapter 9 13IN2045 – Discrete Event Simulation, SS 2011 13

Creating new events

 Not all events are ―planned‖

 One event may introduce new events in the

future:

receiver queuesender queue

long cable with 10 ms propagation delayE1 E2

Network Security, WS 2008/09, Chapter 9 14IN2045 – Discrete Event Simulation, SS 2011 14

Discrete event simulator: What‘s inside? (1/2)

Data view:

 Simulation program

maintains and updates list of

future events: event list

(sorted!)

 ⇒ Need well-defined set of

events

 For each event:

simulated system action,

updating of event list

 Global variable: Current time

(simulated time, not real time

or elapsed CPU time!)

Time Event

10.0 Take packet P1 out of

sender queue and put on

link

20.0 Take packet P2 out of

sender queue and put on

link

27.3 Deliver packet P1 from

link to receiver

30.0 Take packet P3 out of

sender queue and put on

link

37.3 Deliver packet P2 from

link to receiver

… …

Network Security, WS 2008/09, Chapter 9 15IN2045 – Discrete Event Simulation, SS 2011 15

Discrete event simulator: What‘s inside? (2/2)

Control view:

initialize event list

get next (nearest future)

event from event list

time := event time

process event

(change state values, add/delete

future events from event list)

If needed:

update statistics / write output / …

done?
n

Network Security, WS 2008/09, Chapter 9 16IN2045 – Discrete Event Simulation, SS 2011 16

Event list revisited

I just lied!

 Example event list

was inconsistent:

Processing an event

may create new

events!

 In the example:

 Transmission delay

= 10 time units

 Propagation delay

= 17.3 time units

Take packet P1 out of

sender queue and put on

link

10.0

Take packet P2 out of

sender queue and put on

link

20.0

Deliver packet P1 from

link to receiver

27.3

Take packet P3 out of

sender queue and put on

link

30.0

Deliver packet P2 from

link to receiver

37.3

……

…

EventTime

receiver

sender queue

17.3

10.0

Network Security, WS 2008/09, Chapter 9 17IN2045 – Discrete Event Simulation, SS 2011 17

Event list: Data structure

 Must be sorted by event time

 Operations:

 insert_event(): arbitrary time

 get_next_event(): newest time

 What kind of data structure to use?

 Answer: Priority queue.

 Algorithms for this data structure (selection):

 Array or linked list which we keep sorted? — bad idea!

 Binary heap

 van Emde Boas tree (vEB tree)

 Binomial heap

 …actually, all kinds of search trees that allow efficient
execution of insert() and extract_min()

≡ extract_min()

Network Security, WS 2008/09, Chapter 9 18IN2045 – Discrete Event Simulation, SS 2011 18

Pure event oriented simulation is difficult

 One event can be a composed of a

complicated sequence of many actions:

 Web client sends HTTP request

 HTTP request encapsulated into TCP frame

 TCP frame encapsulated into IP frame

 IP frame encapsulated into Ethernet frame

 Put frame into queue of outgoing interface

 Even more complicated: Many complicated events

(receiving request, sending back answer etc.) that are

correlated

one

single

event!
(if we neglect

simulating

CPU time)

Network Security, WS 2008/09, Chapter 9 19IN2045 – Discrete Event Simulation, SS 2011 19

Simulation Taxonomy (3)

Event scheduling approach:

 Event-driven: Simulation as described before

 Focus: on events

 For simple systems

computer

simulation

discrete

models

continuous

models

event

driven

time-

stepped

event

oriented

process

oriented

Network Security, WS 2008/09, Chapter 9 20IN2045 – Discrete Event Simulation, SS 2011 20

Pure event oriented simulation is difficult

 One event can be a composed of a

complicated sequence of many actions:

 Web client sends HTTP request

 HTTP request encapsulated into TCP frame

 TCP frame encapsulated into IP frame

 IP frame encapsulated into Ethernet frame

 Put frame into queue of outgoing interface

 Even more complicated: Many complicated events

(receiving request, sending back answer etc.) that are

correlated

 Problem #1: Event-based programming doesn‘t look

like normal programming at all!

 Problem #2: Prone to create spaghetti code!?

one

single

event!
(if we neglect

simulating

CPU time)

Network Security, WS 2008/09, Chapter 9 21IN2045 – Discrete Event Simulation, SS 2011 21

Solution: Process-oriented simulation

 What is a process? (…in the context of simulation)

 A body of code

 Variables allocated to that code

 Current point of execution in the code

 ⇒ Not much different from a process in an OS

 How is it used?

 A process groups sets of related events together

 A process can execute and then be suspended.
Important use cases:

• Simulation time elapses (e.g., simulate propagation delays)

• Interactions with other processes that temporarily block
(e.g., blocking system calls)

 Internally, all this is translated into series of events
without the programmer noticing it

Network Security, WS 2008/09, Chapter 9 22IN2045 – Discrete Event Simulation, SS 2011 22

Applying processes

One resource = one process

 Examples: One process for

each simulated…:

 CPU

 Hard disk

 Network interface

 User

 Jobs using these services

(e.g., simulated WWW client

program)…

 are data structures

 are passed from process to

process

One job = one process

 Examples: One process for

each simulated…:

 WWW client program

 WWW server program

 Peer-to-peer client program

 Resources used by these

jobs (e.g., simulated network

interface)…

 are global variables / data

structures

Two alternative approaches:

Which approach is better? — It depends!

Network Security, WS 2008/09, Chapter 9 23IN2045 – Discrete Event Simulation, SS 2011 23

Simulation Taxonomy (4)

Process orientation:

 Focus: on simulated objects

 For more complex systems

 Programming closer to real-
world programming
 Example: Write into socket;

operation blocks

 Usually own simulation
language (e.g., OPNet)

 Internally translated into
sequence of events

computer

simulation

discrete

models

continuous

models

event

driven

time-

stepped

event

oriented

process

oriented

Network Security, WS 2008/09, Chapter 9 24IN2045 – Discrete Event Simulation, SS 2011 24

Overview: Event orientation↔process orientation

 Event-oriented simulation:

 Modeler considers one event after the other

 Simulation clock is stopped during event execution

 Rather straightforward to implement

 Often used in non-commercial simulators

 Process-oriented simulation:

 A process is a ordered series of events related to a
certain model object (e.g., customer, job, product)

 Simulation clock moves on during process execution

 Commercial simulators use this approach because of
simplified model descriptions

 A process may have several entry points

 In the simulator kernel, the processes are split into
events (may be tricky to implement)

Network Security, WS 2008/09, Chapter 9 25IN2045 – Discrete Event Simulation, SS 2011 25

Event list for processes: Usually simpler

Event-oriented simulation Process-oriented simulation

(still event-driven!)

Time Event

10.0 Take packet P1 out of

sender queue and put on

link

20.0 Take packet P2 out of

sender queue and put on

link

27.3 Deliver packet P1 from

link to receiver

30.0 Take packet P3 out of

sender queue and put on

link

37.3 Deliver packet P2 from

link to receiver

Time Event

10.0 Run queuing

process

20.0 Run queuing

process

27.3 Run receiver

process

30.0 Run queuing

process

37.3 Run receiver

process

Network Security, WS 2008/09, Chapter 9 26IN2045 – Discrete Event Simulation, SS 2011 26

Problem: Simulating blocking behaviour

 Normal programming:
result = read(tcp_socket);

// Blocked until tcp_socket has received some data.

use(result);

 But how should we simulate the blocking character of

read() in a process-oriented simulator!?

 Blocking call: consume simulation time

 Other events will take place during the time that

read() is blocked

 In particular: The event that a new packet has arrived,

which in turn triggers the return of the read() call!

 Obviously, these events must not be blocked

 ⇒Resuming from returning read() is a new event

Network Security, WS 2008/09, Chapter 9 27IN2045 – Discrete Event Simulation, SS 2011 27

Solutions

 Solution #1: Use threads (??)

 One thread for process that calls read()

 One thread for process that moves packet in network

 One thread for …

 Problem: Integration with event concept is difficult

 Problem: Synchronisation of threads

• All threads need to access the event list

• Events must be ordered by time

• Once some thread has processed an event at time t, then no

other thread must generate any event at a time t‘ < t

• [N.B.: Parallel simulation on multiple CPUs is a complex task.]

 Solution #2a: Using continuations

 Solution #2b: Using coroutines

Network Security, WS 2008/09, Chapter 9 28IN2045 – Discrete Event Simulation, SS 2011 28

Continuations

 Normal programming:
result = f(parameters);
use(result);

 Continuation-passing style:

f(parameters, &callback);
// &callback means in C-like syntax:

// pointer or reference to function callback
do_other_stuff(…);

callback(result) {
// This is just a normal function.

use(result);
}

Network Security, WS 2008/09, Chapter 9 29IN2045 – Discrete Event Simulation, SS 2011 29

What is it good for?

 Normal programming:
result = f(parameters);
// We‘re blocked until f() returns
use(result);

 Continuation-passing style:
f(parameters, &callback); //& : pointer
// Will return quickly without blocking.
// Note that f() does not return any results.
maybe_do_other_stuff(…);

f(p, cb) {
/* Do some calculations; set internal state flags so that
callback(..) is invoked as soon as the state of the
current process has been changed by one or more
events such that we simulate that “f() returns” */

}

callback(result) {
// A normal function; called to simulate that “f() returns”
use(result);

}

Network Security, WS 2008/09, Chapter 9 30IN2045 – Discrete Event Simulation, SS 2011 30

Simulating blocking calls with continuations

 Normal programming:
result = read(tcp_socket);
// Blocked until tcp_socket has received some data.

answer = parse(result);
write(tcp_socket, answer);

 Simulator:
simulate_read(tcp_socket, &cont);

cont(result) {
answer = parse(result);
simulate_write(tcp_socket, answer, &cont2);

}

Network Security, WS 2008/09, Chapter 9 31IN2045 – Discrete Event Simulation, SS 2011 31

What happens inside of simulate_read()?

 simulate_read(tcp_socket, &cont);

 Does simulate_read() schedule a new event for
wakeup with a pointer to cont()?

 No, not quite!

 When does the data arrive?—We don‘t know yet!

 Solution: During the processing of this event,…

 simulate_read() passes control to other entities
(processes); e.g., reader → IP stack → network card →
physical link

 Each of these entities sets state variables which
indicate that new data arriving should wake them up.

 At some point, the event ‗packet received‘ is processed.
The packet gets handled by the various entities
(physical link → network card → IP stack → …), and at
some point, cont gets called, and ―read() returns‖

Network Security, WS 2008/09, Chapter 9 32IN2045 – Discrete Event Simulation, SS 2011 32

Problem: Source code difficult to read (1/3)

Normal source code:

result = read(socket);
answer = parse(result);
success = write(socket, answer);
if (success == WRITE_OK) {

blah;
} else if (success == WRITE_FAIL) {

blubb;
}

Network Security, WS 2008/09, Chapter 9 33IN2045 – Discrete Event Simulation, SS 2011 33

Problem: Source code difficult to read (2/3)

Simulator code using continuations is one mess of spaghetti code:

read(socket, &cont);

cont(result) {
answer = parse(result);
write(socket, answer, &cont2);

}

cont2(result) {
if (result == WRITE_OK) { …

… &cont3 …
} else { …

… &cont4 …
}

}

cont3() {
blah;

}

cont4() {
blubb;

}

Network Security, WS 2008/09, Chapter 9 34IN2045 – Discrete Event Simulation, SS 2011 34

Problem: Source code difficult to read (3/3)

References/pointers to anonymous subroutines/methods help a bit…:

read(socket, function(result) { //pointer to anonymous subroutine

// cont
answer = parse(result);
write(socket, answer, function(result2) {

// cont2
if (result2 == WRITE_OK) { …

function(result3) {
// cont3
blah;

}
} else { …

function(result4) {
// cont4
blubb;

} // end cont4
} // end if

} // end cont2
); // end write()

} //end cont
); //end read()

… but you‘ll quickly reach awful levels of indentation!

Network Security, WS 2008/09, Chapter 9 35IN2045 – Discrete Event Simulation, SS 2011 35

Coroutines: Generalisation of subroutines

 Subroutine

 Stateless: local variables always

 Execution always starts at beginning

 Execution always ends at last line or return statement

 Returning from subroutine = jump back to calling program context

 Coroutine

 Can keep state

 Execution resumes from the place where you left

(or at the beginning when called for the 1st time)

 Execution is suspended at yield statement (…depends on

programming language, of course!) and will resume thereafter

 Depending on definition/language, yield can specify a target to

jump to (i.e., not necessarily the caller of the coroutine!)

 Multiple coroutines calling and yielding to each other

≈ cooperative multitasking

Network Security, WS 2008/09, Chapter 9 36IN2045 – Discrete Event Simulation, SS 2011 36

Comparison subroutine—coroutine (1/3)

subroutine f() {
// When called, execution always starts here

do_stuff;

return result;
//Execution always ends at this return statement

do_more_stuff;
return something_else;
//Superfluous lines: these can never be reached!

//(In Java: ―Code unreachable‖ error)
}

Network Security, WS 2008/09, Chapter 9 37IN2045 – Discrete Event Simulation, SS 2011 37

Comparison subroutine—coroutine (2/3)

coroutine f() {
// When called for 1st time, execution starts here

do_stuff;

yield result; //Execution suspends here
// A subsequent call to f() will resume from here!

do_more_stuff;

yield something_else;
// ⇒ f() can return (i.e., yield) a different
// value upon second call, even if called with same
// set of parameters and global variables!

}

Network Security, WS 2008/09, Chapter 9 38IN2045 – Discrete Event Simulation, SS 2011 38

Comparison subroutine—coroutine (3/3)

coroutine f() {

do_stuff;

yield result to somewhere;
// Suspend execution here and jump to somewhere
// A subsequent call to f() or yield … to f
// will resume from here.

do_more_stuff;

yield something_else to somewhere_else;
// ⇒ f() can return (i.e., yield) to a different place.
// Neither somewhere nor somewhere_else
// have to be original callers of f()
// ⇒ A bit like controlled cooperative multitasking

}

Network Security, WS 2008/09, Chapter 9 39IN2045 – Discrete Event Simulation, SS 2011 39

Coroutine support in popular languages

 Native/near-native support for coroutines

 Simula (cf. next slide)

 Python, JavaScript 1.7, Ruby

• Couroutines are called ―generators‖ (Python, JavaScript)

• Simply use yield instead of return

 Perl 6: native support, but rather resembles pipes than subroutines

 Smalltalk: facilities for fumbling execution stack

To be fair: Drawing a border line at this point is subjective …

 Some support for coroutines, but not native:

 C#: some libraries exist; iterators can yield

 Perl 5: a module exists

 C++: an (unfinished?) library exists

 Java: emulate with continuations (ugly); library on Sourceforge

 C: elusive code atrocities required for coroutines, cf. Simon Tatham

Network Security, WS 2008/09, Chapter 9 40IN2045 – Discrete Event Simulation, SS 2011 40

Simula—A forgotten curiosity

 Developed in the 1960s (standards: Simula-I, S.-67, S.-87)

by Ole-Johan Dahl and Kristen Nygaard (both †2002)

 ≈ Superset of Algol-60

 Purpose: Process-oriented discrete-event simulation

 An underrated pioneering language:

 The 1st language that introduced coroutines

 The 1st language that introduced object-oriented
programming!

• Classes

• Objects

• Virtual method calls (dynamic binding)

• Inheritance

• Some Simula keywords still used today: class, new, this

 Garbage collection (idea taken from Lisp, 1950s)

Network Security, WS 2008/09, Chapter 9 41IN2045 – Discrete Event Simulation, SS 2011 41

Summary of Introduction (Chapters 0 and 1)

 System, model, observer, simulation

 Why and why not to simulate

 Typical workflow / important aspects in a simulation study

 Verify that your model makes sense

 Verify the output of your simulation is not just random noise

 Remember: trash in ⇒ trash out!

 Simulation taxonomy

 Continuous ↔ discrete

 Time-based ↔ event-based

 Event-driven ↔ process-driven

 What‘s inside a discrete event simulator

 Event list, sorted by time

 Simulation time counter

 State variables

 Event processing: changes state, but consumes no time

 Continuations and Coroutines

