

Chair for Network Architectures and Services—Prof. Carle Department of Computer Science TU München

Chapter 0

Introduction and Motivation: What are we talking about—and what is it good for?

Some of today's slides/figures borrowed from: Richard Fujimoto James Kurose, Keith W. Ross Michael Menth, Dirk Staehle, Phuoc Tran-Gia

Model: A representation of a system (or: entity, process, ...)

Simulation: The process of exercising a model to characterize the behaviour of the modelled system / entity / process over time

Computer simulation: A simulation where the system doing the emulating is a computer program

What is a system?

- □ Actually, a very vague notion—pretty much anything can be a system!
 - 'A system is what is distinguished as a system.' (Brian Gaines)
- A system is something that we want to see separated from its environment through an (arbitrarily chosen) boundary:
 - Inside the system:

- A system has a purpose
 - Nobody defines something as a system without some purpose in mind

System, environment, observer

□ Input

- Controllable
- Uncontrollable ("random", "noise",...)
 - Observable
 - Unobservable
- Output
 - Observable
 - Non-observable

A model ...

- □ is a system, too!
- mimics behaviour/characteristics of another system
- is material or immaterial
 - Material model: architecture models, or e.g.,:
 - Models we'll be talking about: normally immaterial
- allows experimental manipulation
- □ Purpose:
 - Simplification of original model: Reduction of complexity
 - Retaining those characteristics of original model that are important to the observer

Simulation is exercising a model (actually: two!)

IN2045 – Discrete Event Simulation, SS 2011

System, environment, observer in simulation

- □ Input: Fully controllable
- Output: Fully observable
- Internals of system
 - Fully observable
 - Fully controllable
- If not, then you made a mistake when you programmed the simulation...

There are alternatives to simulation (1/2)

The evaluation spectrum:

- Purely mathematical model using closed-form expressions
- Numerical models
 - Iess detailed
- Simulation
- more detailed
- Emulation
- Prototype
- Operational system

Level of detail

Cost

Complexity

Details of a simulation; alternatives to simulation (2/2)

In addition to last week's evaluation spectrum:

- It may be too difficult, hazardous, or expensive to observe a real, operational system.
 Examples:
 - Virus epidemy
 - New routing protocol in the Internet
- There is only one real system, but we want to quickly evaluate alternatives and what-if scenarios. Examples:
 - Different router configurations
 - Different types of network traffic (realistic, low rate, full rate,...)

When to use simulations (2/2)

- Parts of the system may be unavailable / not be observable.
 Examples:
 - Internals of a biological system
 - Internals of a switch chip
- The original system runs on a very slow timescale, and/or we want to make predictions.

Examples:

- Climate predictions (10s to 1000s of years)
- Milky way eating Sagittarius dwarf (100 mio years and more)
- It may be too difficult or intractable to model a system in detail using only closed-form expressions ("formulae").
 Examples:
 - Physical processes in atmosphere (weather, climate,...)
 - n-bodies problem, n≥3
 - Complex network with many TCP hosts

- □ Save lives
- □ Save money
- □ Save time (?)
 - Buying hardware, connecting and configuring a huge test network takes longer than setting up a simulation (...usually)
- □ Find bugs (in design) in advance
 - The earlier a bug is detected, the less its removal will cost
- More generally applicable than analytic/numerical techniques
- Detail: can simulate system details at arbitrary level

- Caution: Does model reflect reality? Or is it too oversimplified?
- Large scale systems = Lots of resources to simulate, especially if accurate simulation is required
- □ Large scale systems = Lots of resources for simulator:
 - May be slow (computationally expensive: 1 min real time could be hours of simulated time!)
 - May eat huge amounts of RAM
 - May write out gigabytes of output (...which needs to be analyzed after!)
- □ It's an art: determining right level of model complexity
- Statistical uncertainty in results:
 - Was the simulation accurate/detailed enough?
 - Are the observed effects just artefacts/statistical outliers? Remember: Some input comes from a (pseudo-)random generator!

Uses and applications for simulations

- Analyze systems before they are built
 - Reduce number of design mistakes
 - Optimize design
- Analyze operational systems
 - What-if scenarios
 - Find reasons for aberrant behaviour
- □ Create virtual environments for training, entertainment
 - Flight simulators, battlefield simulators
 - ...in fact, almost all computer games are simulations!

Applications (1): System Analysis (focus of lecture!)

- "Classical" application of simulation; here, focus is on "discrete event" simulation
- □ **Telecommunication networks** (focus of lecture!)
- Transportation systems
- Electronic systems (e.g., microelectronics, computer systems)
- Battlefield simulations (blue army vs. red army)
- Ecological systems
- Manufacturing systems
- □ Logistics
- Focus is typically on planning, system design Simulations may take a long time to run

Applications (2): On-Line Decision Aids

Simulation tool is used for fast analysis of alternate courses of action in time-critical situations

- Initialize simulation from situation database
- Faster-than-real-time execution to evaluate effect of decisions

Applications: air traffic control, battle management

Simulation results may be needed in only seconds

Applications (3): Virtual Environments

- Uses: training (e.g., military, medicine, emergency planning), entertainment, social interaction?
- Simulations are often used in virtual environments (human-in-the-loop) to create dynamic computer generated entities
- Adversaries and helpers in video games
- Defense: Computer generated forces (CGF)
 - Automated forces
 - Semi-automated forces
- Physical phenomena
 - Trajectory of projectiles
 - Buildings "blowing up"
 - Environmental effects on environment (e.g., rain washing out terrain)

1. Formulate problem and plan the study

Is it that simple?

Useful simulation requires a lot of work

□ Otherwise:

trash in \Rightarrow trash out

How simulation is used—typical workflow (2/6)

What do I want to show?

- Feasibility study
- Performance study
- Occurrence of specific phenomenon

How can I show it?

- What are the inputs of the system?
- What are the outputs?
- What can I measure; what is inaccessible?
- What may change, what will remain constant?

How simulation is used—typical workflow (3/6)

- Gain insight: How does the system behave?
- What is relevant for the model? In what detail?
- What can be left out?
- Collect measurement data for validation

How simulation is used—typical workflow (4/6)

A model needs to be validated.

- Usual approach: Compare real data vs. simulation output
- □ Otherwise:
 - trash in \Rightarrow trash out
- Validation loops:
 - Theoretical validation: Does it make sense? (steps 2 and 3)
 - Debugging: Is it correctly implemented? (steps 4–6)
 - Practical validation: Does it do the right things? (steps 2–6)
- Validation consumes a lot of time!

How simulation is used—typical workflow (5/6)

Remember the questions from step 1:

What do I want to show?

□ How can I show it?

- What output do I need?
- What input do I want to try out?
 - Usually infeasibly many possible input patterns
 - Selection is required
 - Experiment planning, factorial design

Often an iterative process

How simulation is used—typical workflow (6/6)

Analysis of simulation output

- Numbers
- Graphs

Can the simulation be trusted?

- Simplification could lead to unnatural effects
- Random input could have induced anomal situations
- Confidence intervals etc.

Convincing presentation:

- Describe model validation
- Error estimation, confidence intervals
- Don't hide limitations