
Chair for Network Architectures and Services—Prof. Carle
Department of Computer Science
TU München

Übungsblatt 2

Some of today’s slides/figures borrowed
from:

James Kurose, Keith W. Ross
Oliver Rose

Averill Law, David Kelton

Network Security, WS 2008/09, Chapter 9 2IN2045 – Discrete Event Simulation, SS 2010 2

What’s inside a DES? (1/2: data)

Simulated time: internal (to simulation program) variable that
keeps track of simulated time

May progress in huge jumps (e.g., 1ms, then 20s, then 2ms,…)

Not related to real time or CPU time in any way!

System state: variables maintained by simulation program
define system state, e.g.: number of packets in queue, current
routing table of a router, TCP timeout timers, …
Events: points in time when system changes state

Each event has an associate event time
• e.g., arrival of packet at a router, departure from the router

• precisely at these points in time, the simulation must take action (i.e.,
change state and maybe come up with new future events)

Model for time between events (probabilistic) caused by external
environment

Event list: dynamic list of events (→later slides)

Statistical counters: used for observing the system

Network Security, WS 2008/09, Chapter 9 3IN2045 – Discrete Event Simulation, SS 2010 3

What’s inside a DES? (2/2: program code)

Timing routine:

determines the next event and

moves the simulation clock to the next event time

Event routine: “process the event”, i.e., change the system
state when an event happens (one subroutine per event type)

[P]RNG library routines: generate random numbers

Report generators: compute performance parameters from
statistical counters and generate a report. Runs at simulation
end, at interesting events, and/or or at specific pseudo-events

Main program:
while(simulation_time < end_time) {

next_event = timing_routine();
next_event.process();

}

Network Security, WS 2008/09, Chapter 9 4IN2045 – Discrete Event Simulation, SS 2010 4

Discrete event simulator: What’s inside? (2/2)

Control view:

initialize event list

get next (nearest future)
event from event list

time := event time

process event
(change state values, add/delete

future events from event list)

If needed:
update statistics / write output / …

done?n

Network Security, WS 2008/09, Chapter 9 5IN2045 – Discrete Event Simulation, SS 2010 5

Event list: Data structure

Must be sorted by event time

Operations:
insert_event(): arbitrary time

get_next_event(): newest time

What kind of data structure to use?

Answer: Priority queue.

Algorithms for this data structure (selection):
Array or linked list which we keep sorted? — bad idea!

Binary heap

van Emde Boas tree (vEB tree)

Binomial heap

…actually, all kinds of search trees that allow efficient
execution of insert() and extract_min()

≡ extract_min()

Network Security, WS 2008/09, Chapter 9 6IN2045 – Discrete Event Simulation, SS 2010 6

Class Event

Variables and methods:

eventTime, getEventTime()

What data type?

Access rights?

process()

An abstract method

Makes the entire class abstract

compareTo()

Be able to sort Event objects by their time

Warning: consistency with .equals() is important

Network Security, WS 2008/09, Chapter 9 7IN2045 – Discrete Event Simulation, SS 2010 7

Class EventChain

Represents our event queue

Variables and methods:

Some storage data structure (list? tree? …)

getNextEvent() – look up Event object with lowest
event time, remove it from storage, and return it

Network Security, WS 2008/09, Chapter 9 8IN2045 – Discrete Event Simulation, SS 2010 8

Class Simulator

Main class

Read simulation end time from command line
parameter (or from a configuration file)

Schedule a SimulationTerminationEvent

Start the simulation: schedule an event that kicks off
things, e.g., a customer arrival

Run the main loop (cf. previous slides), i.e., pop
events from event queue and execute them

Network Security, WS 2008/09, Chapter 9 9IN2045 – Discrete Event Simulation, SS 2010 9

Class SimulationTerminationEvent

process() will terminate the entire simulator and
write some final statistical reports

N.B. Two variants for ending a simulation:

1. while(simulationTime < endTime) {
… process events …

}

2. while(true) {
… process events;

termination event will stop …
}

Network Security, WS 2008/09, Chapter 9 10IN2045 – Discrete Event Simulation, SS 2010 10

Class CustomerArrival

Simulates the event that a new customer enters the
system

Distinguish:

Customer can be served immediately (service unit
unoccupied)

Customer needs to be queued (service unit currently
occupied)

Regardless of above distinction, schedule the next
CustomerArrival event:

nextEventTime = now() + random number for
customer interarrival time

Create new object (or bad hack: re-use current one…)
and insert into event queue

Network Security, WS 2008/09, Chapter 9 11IN2045 – Discrete Event Simulation, SS 2010 11

Class ServiceDeparture

Simulates the event that the service unit has
completed a job

Distinguish:

Queue is empty: nothing to do

Queue non-empty:
• Pop next job

• Schedule new ServiceDeparture event,
nextEventTime = now() + random number for service time

Network Security, WS 2008/09, Chapter 9 12IN2045 – Discrete Event Simulation, SS 2010 12

Further classes

Optional: class representing the customer queue

Waiting jobs, FIFO

Statistics (e.g., queue length)

isEmpty()

Optional: class representing the service unit

Statistics (e.g., utilisation etc.)

isOccupied()

A class representing individual jobs?

Question of design / personal taste

Overhead in our scenario, but might be helpful for
gathering further statistics

