Department of Computer Science
TU Munchen

2&4 Chair for Network Architectures and Services—Prof. Carle

Ubungsblatt 2

Some of today’s slides/figures borrowed
from:

James Kurose, Keith W. Ross
Oliver Rose
Averill Law, David Kelton

;ﬁ".‘ What's inside a DES? (1/2: data)

0 Simulated time: internal (to simulation program) variable that
keeps track of simulated time
= May progress in huge jumps (e.g., 1Tms, then 20s, then 2ms,...)
= Not related to real time or CPU time in any way!

0 System state: variables maintained by simulation program

define system state, e.g.: number of packets in queue, current
routing table of a router, TCP timeout timers, ...

0 Events: points in time when system changes state
= Each event has an associate event time

* e.g., arrival of packet at a router, departure from the router

» precisely at these points in time, the simulation must take action (i.e.,
change state and maybe come up with new future events)

= Model for time between events (probabilistic) caused by external
environment

o Event list: dynamic list of events (—later slides)
a Statistical counters: used for observing the system

IN2045 - Discrete Event Simulation, SS 2010

;ﬁ".‘ What’s inside a DES? (2/2: program code)

a Timing routine:
= determines the next event and
= moves the simulation clock to the next event time

a Event routine: “process the event’, i.e., change the system
state when an event happens (one subroutine per event type)

o [P]JRNG library routines: generate random numbers

0 Report generators: compute performance parameters from
statistical counters and generate a report. Runs at simulation
end, at interesting events, and/or or at specific pseudo-events

a Main program:
while(simulation_time < end _time) {
next_event = timing_routine();
next _event.process();

IN2045 - Discrete Event Simulation, SS 2010

;ﬁ".‘ Discrete event simulator: What's inside? (2/2)

Control view:

initialize event list

get next (nearest future)
event from event list

time := event time

)

process event
(change state values, add/delete
future events from event list)
If needed:
update statistics / write output / ...

n

done?

}

;g'.‘ Event list: Data structure I

0 Must be sorted by event time
0 Operations:
» Insert_event(): arbitrary time
* get_next event(): newest time
a What kind of data strueLure to use?

0 Answer: Priority queue. — | = extract - min() |

= Array or linked list which we keep sorted? — bad ideal
= Binary heap
= van Emde Boas tree (VEB tree)

= Binomial heap

= ...actually, all kinds of search trees that allow efficient
execution of Insert() and extract_min()

| Neos-DeoreEvemSmuaton, SS2010 s

'4'. Class Event

Variables and methods:
o eventTime, getEventTime()
» What data type?
= Access rights?
a process()
= An abstract method
» Makes the entire class abstract
o compareTo()
= Be able to sort Event objects by their time
» Warning: consistency with .equals() is important

Ny =
gi:. Class EventChain

0 Represents our event queue

0 Variables and methods:
» Some storage data structure (list? tree? ...)

» getNextEvent() - look up Event object with lowest
event time, remove it from storage, and return it

X -
51«'! Class Simulator

a Main class

0 Read simulation end time from command line
parameter (or from a configuration file)

a0 Schedule a SimulationTerminationEvent

0 Start the simulation: schedule an event that kicks off
things, e.g., a customer arrival

o Run the main loop (cf. previous slides), i.e., pop
events from event queue and execute them

IN2045 - Discrete Event Simulation, SS 2010

X - - - -
;i(.‘ Class SimulationTerminationEvent

o process() will terminate the entire simulator and
write some final statistical reports

o N.B. Two variants for ending a simulation:

1. while(simulationTime < endTime) {
. process events ..

}

2. while(true) {
. process events;

termination event will stop ..

IN2045 - Discrete Event Simulation, SS 2010

'y, _
vs¢ Class CustomerArrival
N\

0 Simulates the event that a new customer enters the
system
a Distinguish:
= Customer can be served immediately (service unit
unoccupied)
» Customer needs to be queued (service unit currently
occupied)
0 Regardless of above distinction, schedule the next
CustomerArrival event:

* nextEventTime = now() + random number for
customer interarrival time

= Create new object (or bad hack: re-use current one...)
and insert into event queue

IN2045 - Discrete Event Simulation, SS 2010

10

'4'. Class ServiceDeparture

0 Simulates the event that the service unit has
completed a job

a Distinguish:
= Queue is empty: nothing to do

= Queue non-empty:
e Pop next job

e Schedule new ServiceDeparture event,
nextEventTime = now() + random number for service time

'y
“wWa F
,"4' urther classes

0 Optional: class representing the customer queue
= Waiting jobs, FIFO
= Statistics (e.g., queue length)
» ISEmpty()
0 Optional: class representing the service unit
» Statistics (e.g., utilisation etc.)
» 1sOccupied()
0 A class representing individual jobs?
» Question of design / personal taste

= Overhead in our scenario, but might be helpful for
gathering further statistics

IN2045 - Discrete Event Simulation, SS 2010

12

