

Chair for Network Architectures and Services—Prof. Carle Department of Computer Science TU München

Discrete Event Simulation

IN2045

Dipl.-Inform. Alexander Klein Dr. Nils Kammenhuber Prof. Dr.-Ing Georg Carle

Chair for Network Architectures and Services Department of Computer Science Technische Universität München http://www.net.in.tum.de

□ Lectures

SS:

- Introduction to Computer Networking and Distributed Systems (IN0010)
- Peer-to-Peer-Systems and Security (IN2194)
- Discrete Event Simulation (IN2045)

WS:

- Master Course Computer Networks (IN2097)
- Network Security (IN2101)
- Seminars
 - Seminar Network Architectures and Services: Network Hacking (IN0013)
 - Advanced Seminar Innovative Internet Technologies and Mobile Communications (IN8901)
 - Advanced Seminar Future Internet (IN8901)
 - Advanced Seminar Sensor Networks(IN0014), with Prof. Baumgarten
- Lab Courses
 - Bachelor Practical Course Internet Lab (IN0012)
 - Master Practical Course Computer Networks (IN2106)

Course organization IN2045 Discrete Event Simulation

- □ Lecture
 - Wednesday 14:15–15:45, FMI 03.07.023 (starting Wed 25 May 2010)
 - Block course, ca. 3 days between 20–24 September 2010
- □ Students are requested to subscribe using a Web form at www.net.in.tum.de ⇒ Lehre ⇒ Vorlesungen ⇒ …
 - http://www.net.in.tum.de/de/lehre/ss10/vorlesungen/
 - Will be used for sending up-to-date information (e.g., room changes)
 - Email list for subscribers of course
 - Unrelated to subscription in TUMonline!
- Questions and Answers / Office hours
 - Dipl.-Inform. Alexander Klein, <u>klein@net.in.tum.de</u>, 03.05.061
 Office hours: Mon 13–14
 - Dr. Nils Kammenhuber, <u>kammenhuber@net.in.tum.de</u>, 03.05.043
 Office hours: usually Thu, Fri 14–15, but check via e-mail first
 - Prof. Dr. Georg Carle, <u>carle@net.in.tum.de</u>
 Office hours: Upon appointment (typically Mon 16–17)
- Course Material
 - Slides are available online. Slides may be updated during the course.

□ Course is 4 ECTS

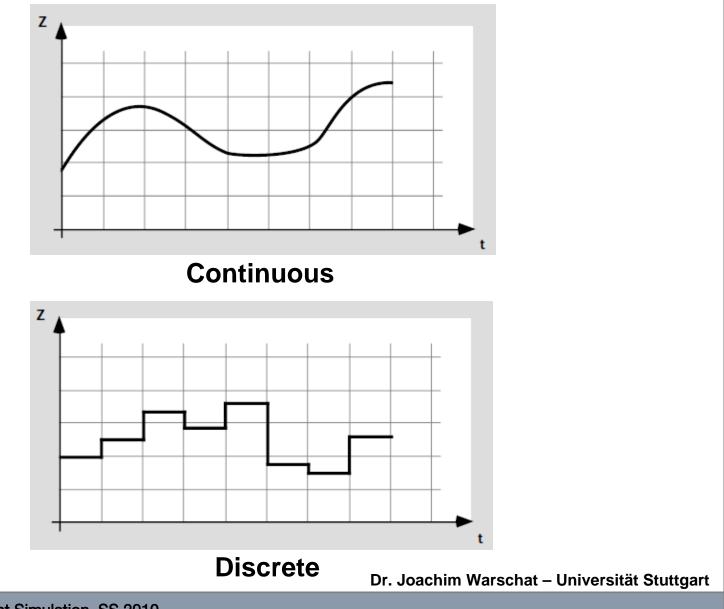
- 2 SWS lectures
- 1 SWS exercises
- □ Exercises
 - Prepare for the oral examination
 - Successfully participating at exercises gives a bonus of 0.3 on the overall grade. [Exercises = same time slot as lecture.]
- Our concept for grading
 - Final examinations will be oral and give an individual grade.
 - You must pass the oral exam for being successful in the course (i.e., 4.3 and 0.3 bonus ≠ 4.0)
- Subscription in TUMonline
 - Warning: Subscription on <u>www.net.in.tum.de</u> does not replace subscription via TUMonline!
 - Deadline: ca. 20 Sep 2010

□ Who studies what?

- Diploma degree?
- Master in Informatics?
- Master in Information Systems [Wirtschaftsinformatik]?
- Other Master courses?
- Bachelor in Informatics?
- Exchange students from other universities?
- □ Which previous relevant courses?
 - Rechnernetze/Computer networks?
 - Masterkurs Rechnernetze/Master course computer networks?
 - Grundlagen Betriebssysteme/Operating Systems?
 - Other courses, e.g., Simulation and Modelling?

- 1. Introduction
 - Motivation: When and why to do simulation
 - □ Types of simulation
 - Event-driven simulation
 - Process-oriented simulation
 - □ Typical Work Flow Elements
 - □ A simple queuing model; some queuing theory

Simulation vs. Analysis


ISO / OSI

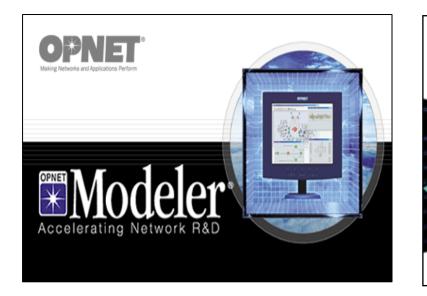
7	Application	VoIP, Video, FTP, HTTP, P2P,	
6	Presentation		
5	Session		
4	Transport	TCP/UDP	
3	Network	Internet Protocol (IP)	
2	Data Link	Medium Access Protokolle Ethernet, WLAN,	
1	Physical	Physikalische Bit Übertragung	802

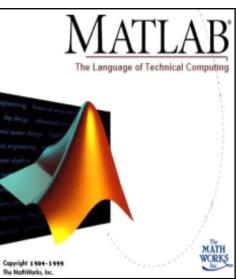
- 2. Statistics fundamentals
 - Contents shall be embedded into practical context
 - Basics and descriptive statistics (mean, variance, moments)
 - Discrete vs. continuous random variables
 - Visualization
 - Probability distributions and their properties

IN2045 - Discrete Event Simulation, SS 2010

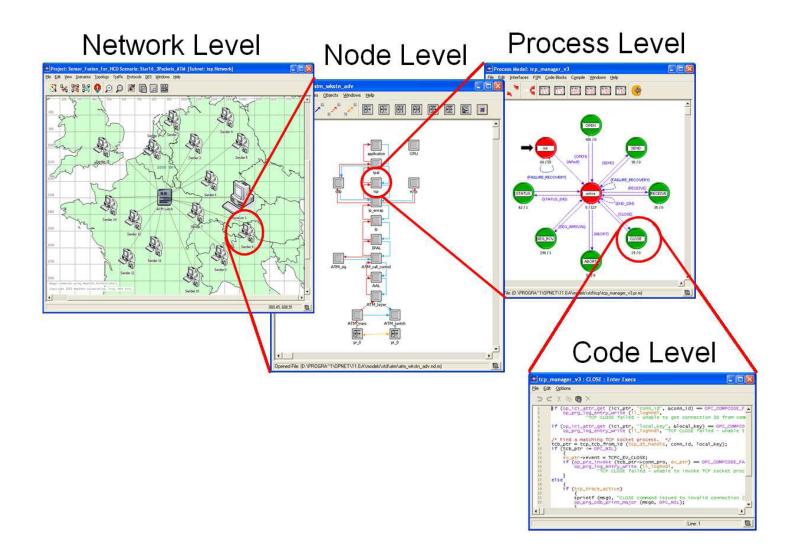
- 3. Random numbers
 - □ How to generate a desired probability distribution
 - □ [pseudo-] Random number generators
 - Evaluation of random number generators

Example:

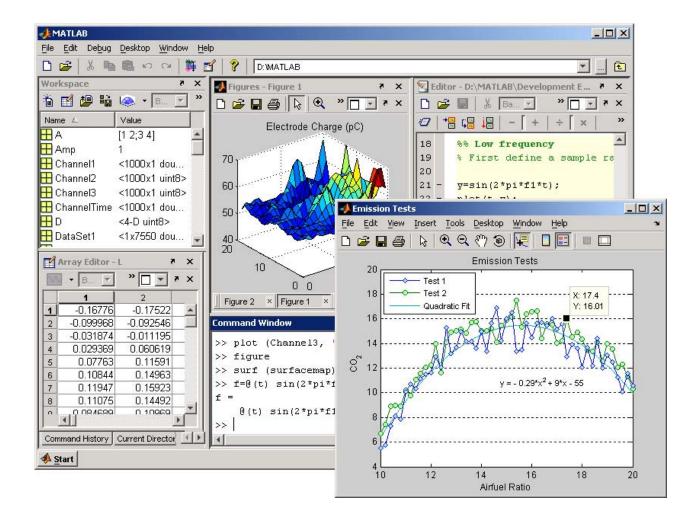




Autocorrelation Lag 4



4. ToolsOPNetMatlab



http://www.mathworks.de/

- 5. Experiment planning□ Factorial design
 - □ Factor analysis, ANOVA

Problem:

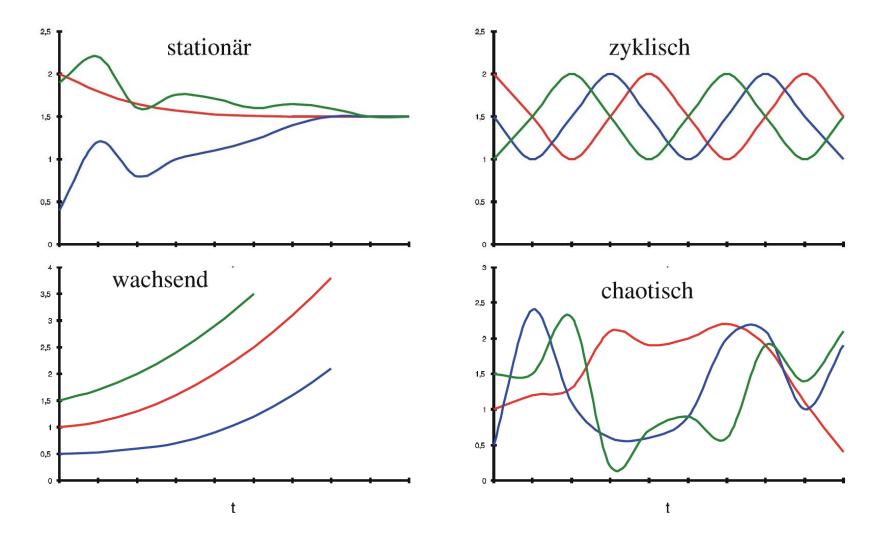
- □ Large number of parameters
- No detailed knowledge of the impact of the parameters

Idea:

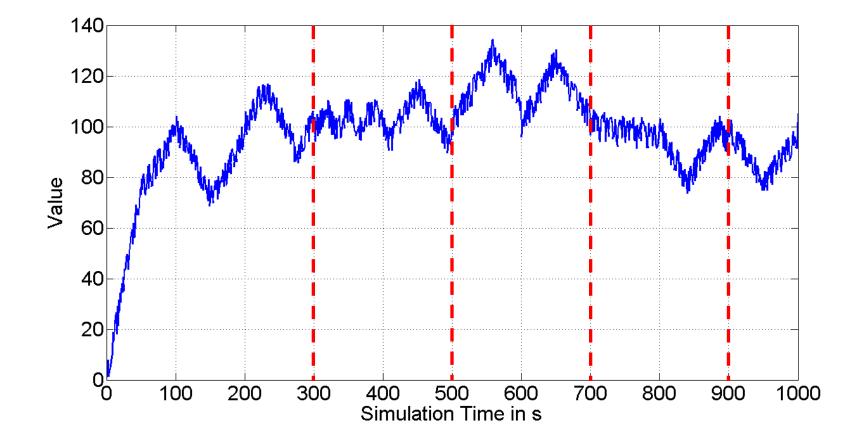
 Variation of simulation parameters (valid configurations)

- Evaluation of the system performance
- Identification of the impact of each parameter on the system performance

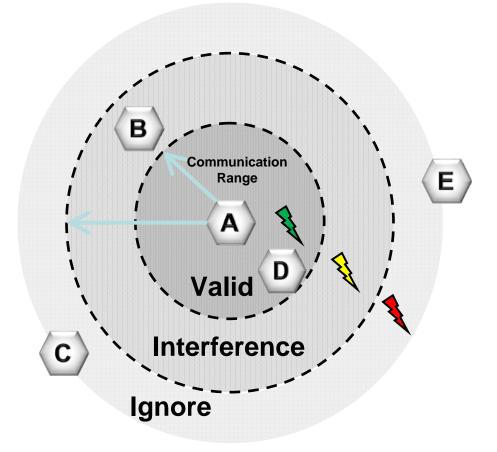
Simulation / Parameter	X1	X2	Х3	X4	Result (X1.X2.X3.X4)
# 1	+	-	_	+	38
# 2	0	+	+	0	12
# 3	I	0	-	+	43
# 4	_	+	+	+	12
# 5	_	_	_	_	15
# 6	0	0	0	0	8


Result Table

- 6. Evaluation of simulation results: More statistics ©
 - □ Variability reduction
 - Confidence intervals
 - Visualization

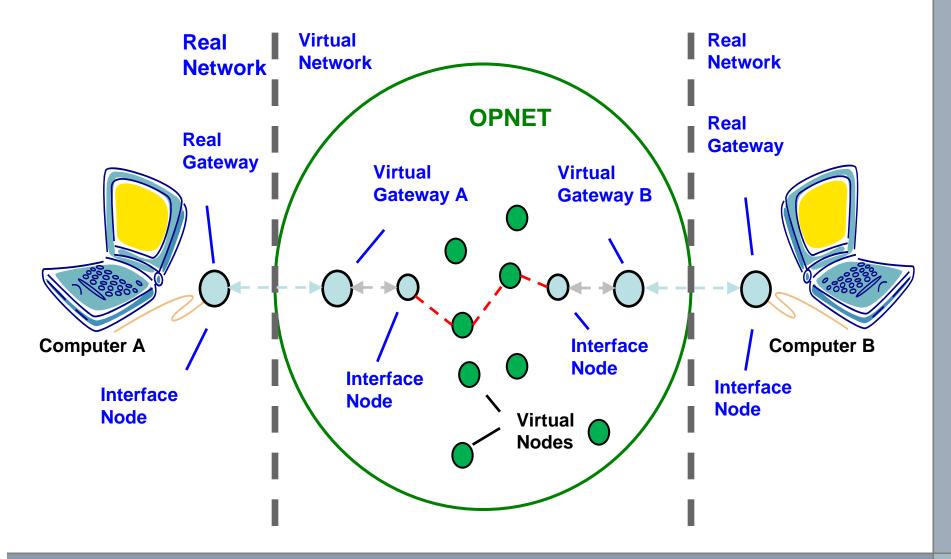

• ...

Modellgestützte Analyse und Optimierung, Prof. Peter Buchholz, Technische Universität Dortmund



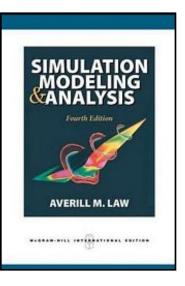
- 8. Tips and tricks from practice
 - What constitutes a good network simulator
 - □ How to set up a good simulation
 - □ How to do a good analysis of simulation output
 - □ How to lie with statistics
 - □ How to speed up your simulation

- □ Example:
 - Wireless Communication (Disc Model)



- 9. Advanced topics
 - □ Mobile networks, mobility models
 - □ Co-Simulation / Parallel simulation
 - □ Hardware-In-The-Loop Simulation

Hardware-In-The-Loop-Simulation



Book:

Simulation Modeling and Analysis Averill M. Law 4th edition McGraw-Hill, 2007

- □ Lecture notes:
 - Parallel and Distributed Simulation Systems
 Richard Fujimoto
 College of Computing, Georgia Institute of Technology
 - Modellgestützte Analyse und Optimierung Peter Buchholz, Informatik IV, TU Dortmund
 - Simulation of computer systems and computer networks: A process-oriented approach J. B. Sinclair, Rice University
 - Einführung in die Simulationstechnik
 Frank Wagner, Joachim Warschat, Universität Stuttgart

