

Network Architectures and Services Department Computer Science Technische Universität München

Chametimes Pequifeon Sometimes Pequifeon Knowledge requireon Knowledge requireon Knowledge requireon Knowledge requireon Information Session for the Seminar "Future Internet"

Prof. Dr.-Ing. Georg Carle and I8 research staff Organization: Daniel Raumer, Lukas Schwaighofer Contact: seminar@net.in.tum.de

□ Administrative Things for the FI Seminar

- Deadlines
- Responsibilities
- Grading
- □ Topic Selection for Seminar Future Internet (FI)

www.fotoila.de

Lecturer: Prof. Dr.-Ing. Georg Carle

□ Organization: seminar@net.in.tum.de

- Daniel Raumer
- Lukas Schwaighofer

Overview


- Main Language: German
 - □ we will offer an English track
 - (presuming a minimum of 4 participants)
- □ Extent: 2 SWS (4 ECTS)
 - □ 4 ECTS * 30 hours = 120 working hours expected from you

• Course Type:

- □ For M.Sc. Students: Master's Seminar (Master-Seminar)
- □ For B.Sc. Students: Advanced Seminar Course (Seminar)

	Dates
Topic Selection (room 03.07.023)	today
Pick up literature per mail or personal by advisor	Until 21.07.2014
Advisor meeting (discussion of received literature) – be prepared (MUST)	Until 08.08.2014
Detailed structure of paper and talk	Until 22.08.2014
Final slides* discussion with advisor	Until 22.09.2014
* Slides must be presentable, otherwise -0.3 degree in grading.	
Upload paper (1. Version)	21.09.2014
Upload Reviews	05.10.2014
Talks Schedule will be published soon	29/30.9.2014 (& 2.10.2014)
Upload paper (2. Version) and final slides	26.10.2014
Publication in Proceeding	t.b.a.

□ First version of your paper

- Agree on the content with your advisor
- □ Use the supplied paper template from the webpage
- Keep in touch with your advisor
- □ Try to finish well in time so you advisor can give you feedback

□ Write reviews

You will be given two papers of your fellow students

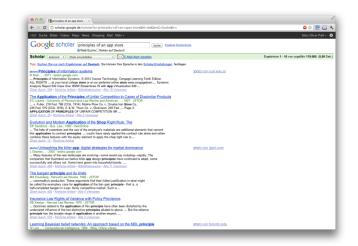
□ Final version of your paper

- Use the received reviews to improve your paper
- You will also receive some feedback from your advisor
- □ If you and your advisor agree → publication in the seminar proceedings

Talks and Papers can be in German or English!

□ Prepare your talk

- □ Finished slides must be discussed with advisor 1 week before the talk
- Advisors usually offer the opportunity of test talks
- □ Give your talk
- Session chair for one talk
 - Introduce the talk
 - Watch the time constraints
 - Try to get the discussion started after the talk (ask at least one question if nobody else does)
- Mandatory attendance on all sessions in your track
 - If you cannot attend for a good reason contact seminar@net.in.tum.de in advance


Talks and Papers can be in German or English!

From your advisor(s) you may receive some literature.
 This is just to get you started

□ Find appropriate (scientific) sources yourself

- □ scholar.google.com
- □ acm.org
- □ ieee.org
- □ You sources' sources
- ...

Just presenting the given literature is NOT enough

□ TUM-Online registration

- □ If you pick a topic today we will register you for the course
- □ You will be able to unregister for 1 week without any consequences
- □ Later dropout will be graded as 5.0

Webpage: http://www.net.in.tum.de/de/lehre/

- □ Slides: How to write a paper
- □ Slides: How to write a review

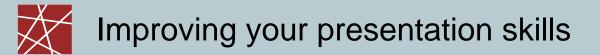
Questions:

- Contact your advisor
- □ For organizational questions: seminar@net.in.tum.de

Grading parts:

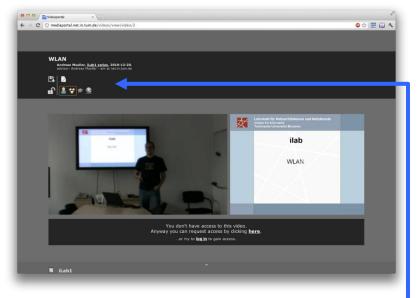
- 1. Both of your paper submissions (6-8 pages in ACM) (50%)
 - 1st version: 37,5%
 - 2nd version: 12,5%
- 2. Your talk (20–25min, following discussion and feedback) (25%)
 - Content is graded
 - Personal presentation style is not
- 3. Your reviews of papers from other seminar participants (25%)

Observe the deadlines


- □ Advisor meetings are compulsory
- Use the upload form on our webpage for your submissions
- 0.3 degrading per day for missed deadlines

No submission

- □ 1st version of paper: Disqualification (Seminar graded as 5.0)
- □ Other submissions: Grade 5.0 for the concerning part


□ Write the paper yourself

- \Box Plagiarism \rightarrow disqualification (and we will check!)
 - Attempted cheating reported to the examination office
- Summary when and why to cite: <u>http://oxford.library.emory.edu/research-learning/citation-plagiarism/citing.html</u>

You have the chance to get your talk recorded

- Have a look at yourself after the talk!
- Your talk was great? Share it and show it to your friends.

You fully control the access! (Initially only you can access it!)

- □ We offer an English only track if...
 - At least one non-German native speaker wants to attend the seminar
 - At least four students (in total) agree to do their paper and talk in English
 - Is this the case today?
- □ The English only track will have separate sessions
 - Probably 1-2 sessions (depending on the number of students)
- □ Attendance not mandatory for talks in the "standard" track
 - Students in the "standard" track also don't have to participate in the English track talks
 - You are still welcome to join the other track's talks ☺
- □ Usually the English track is quite small
 - This means less attendance (if the opportunity to improve your English is not a good enough reason for you...)

Administrative Things for the Fi Seminar

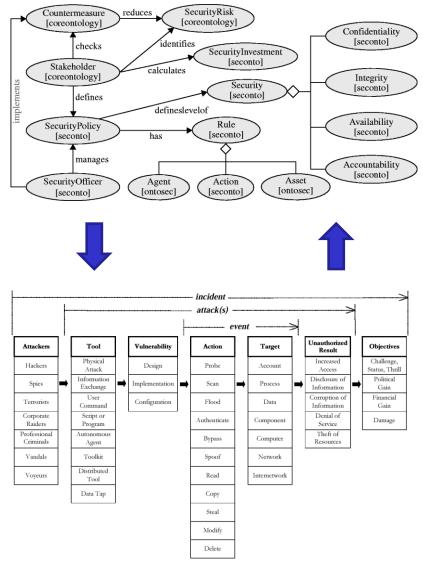
- Deadlines
- Responsibilities
- Grading

D Topic Selection for Seminar Future Internet (FI)

www.fotoila.de

Challenging Topics! Usually some previous knowledge required!

- Attacking critical infrastructures as war strategy?
 - Stuxnet as one example
 - APT (Advanced Persistent Threat) as new buzzword
 - Is it possible to "hack" our power supply system?
 - What is real and what is fiction?
 - Is it the "end of the world"?
- Your Task:
 - Explore the possible threats for critical infrastructures and industrial networks
 - Structure them and explore some in detail
 - Explore the real risk behind those treats and find out what is behind Cyber war



Nadine

Attack Taxonomies and Ontologies

Nadine

- □ Structuring Attacks to:
 - Get an overview of possible attack scenarios and threats
 - To examine categories for IDS Testing
- □ Methods:
 - Taxonomies and Ontologies
- □ Your Task:
 - What is the state of the art?
 - What problems have existing approaches?
 - Is it possible to combine existing Taxonomies and Ontologies?

Hands-On: Attack Frameworks and Tools

- □ Is it easy to implement cyber attacks?
 - Popular tools: LOIC (Low Orbit Ion Canon) for DOS, Metasploit, ...
 - Linux Packages: hunt (spoof addresses), nmap (port scanning), ...
- Your Task:
 - Examine popular tools and explore theire capabilities
 - How easy is it to use these tools?
 - Are they effective?
 - What requirements have to be achieved?
 - > You may need to set up a test environment!

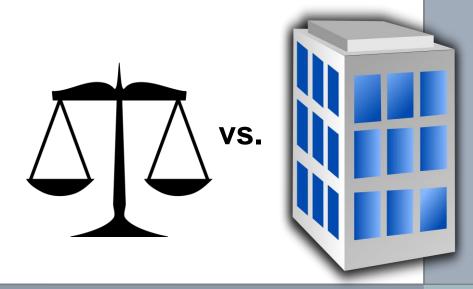
Nadine

Smart Buildings vs. Data Privacy Laws

□Smart Buildings are equipped with sensors, actors and automation systems that, e.g.,

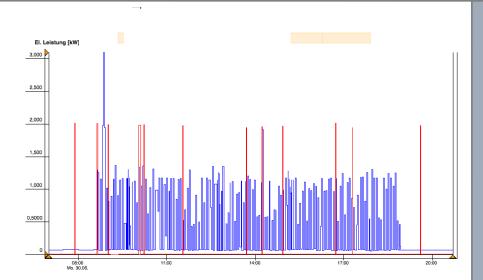
- $\hfill\square$... increase our comfort.
- □ ... optimize a building's energy consumption.

Problem:


Sensor data (power consumption, temperature, luminosity, etc.) might be abused for the surveillance of employees.

□ E.g.: Correlate records of time worked and power consumption.

□ A conflict between technology and law is created.


□Your Task:

- Perform a study on the legal
- □ situation (use law texts, blogs, etc.).
- □ Perform a study on the state
- □ of the art (scientific papers, etc.).
- □ Present your findings.

- □We just learned that energy logs □contain (personal) data.
 - Example: Log of our kitchen
- Idea: Analyze a dataset recordedwith our logging system.
 - □ Electricity
 - □ Temperature logs of one office

❑Goals:

- Research on data mining tools
- □ and apply your new skills to the dataset
- □ Identify patterns, individual devices, maybe even habits of users.
- Document work procedure and findings.

□Caveat:

□ Requires constant cooperation with your supervisors.

□ You need to sign a data confidentiality statement!

Marcel/Holger

□Most of us have an intuition of what privacy means

- □ It is normally about personal data
- □ The aim is to keep some information away from a specified audience

Problem:

- It should be able to rate an IT-system concerning its ability to preserve the privacy of its user
- It's getting really difficult when trying to find a compromise between "show everything" and "show nothing"
- To rate such systems, some metrics for measuring privacy (and its breaches) is necessary

□Your Task:

- □ Research different approaches of measuring privacy
- Compare them and assess the applicability in the context of smart buildings.

□ Problem: International intelligence agencies monitor the Internet ??

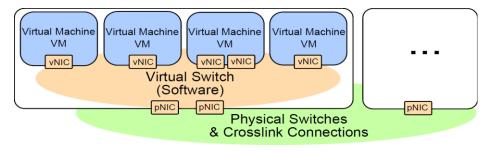
One way how to circumvent supervision are anonymizing proxies
 Gateways to the "good old" internet giving you an anonymous IP.
 Examples: TOR, AN.ON, etc.

□A different approach is used by the Freenet project:

- □ Anonymity is no add-on but a fundamental part of the system design.
 - Distributed infrastructure (P2P network)
 - □ Specific routing protocols
- □ Further features: censorship resistance; darknet

Goals:

- □ Explain motivation and goals of the project.
- □ Explain protocols and system design.
- □ Find and present related work.



Virtual Switches: State of the Art in 2015

Daniel, Florian

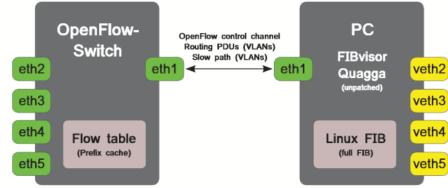
A virtual switch shuffles packets between VMs only in software

- Software is more flexible then hardware
- Can be enriched with middle box functions
- □ can go beyond 10Gbit Ethernet

Your Task:

- Get familiar with concepts and architectures of virtual switches
- □ Survey existing approaches

□ choose meaningful criteria for compare!


- ❑ Academically approaches go beyond the state of the art in productive networks → also discuss these approaches
- ☐ Starting point:

Open vSwitch, Contrail vRouter, DPDK vSwitch, VALE, etc.

Florian, Daniel

- □ Software router and switches...
 - lacksquare ... empower short development cycles for new features
 - □ ... are cost-efficient ☺
 - □ ... but provide comparatively poor (forwarding) performance ⊗
- Hardware routers have long development cycles, lead to vendor-lock-in, and are expensive
- → Idea: combine L3-switches or cheap routers with a server and software

<u>Goal:</u>

- Describe the problems with Routers (e.g. costs, vendor lock-ins, limited capabilities, etc.)
- □ Shortly summarize the benefits of software router/switches and those of hardware router/switches
- □ How can innovative architectures look like?
- Describe approaches (RouteFlow, FIBIUM, and own findings) and compare them.
- Perhaps you will have to describe background that leverages these approaches (e.g. OpenFlow)

(Continuation as Master's or Bachelor's Thesis is possible.)

Possible starting literature:

N.Sarrar, S.Uhlig, A.Feldmann, R.Sherwood, and X.Huang, "Leveraging Zipf's law for traffic offloading" SIGCOMM CCR (2012)
 A.Vidal, F.Verdi, E.Fernandes, C.Rothenberg, and M.Salvador, "Building upon RouteFlow: a SDN development experience.", SBRC'2013 (2013)

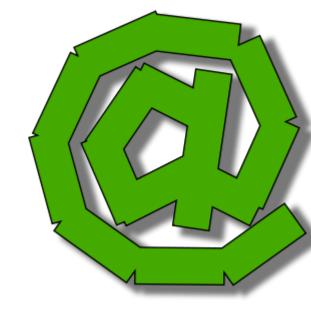
What's New in the Linux Network Stack?

D The Linux network stack consists of many parts

- Protocol Implementations (IP, TCP, UDP, SCTP, ...)
- Firewalls (iptables/netfilter)
- User space networking (virtualization, VPN) support (TUN and TAP)
- Switches and routers (Bridge, IP forwarding, Open vSwitch)
- All of them are under constant development and new features are added regularly

Your Task

- Get familiar with the Linux network stack
- Literature review, changes since Linux 3.7
- Identify new features and improvements
- Point out possible weaknesses and limitations


Basic knowledge of Linux required to dive into Linux code

- □ SMTP is an ancient protocol
 - Used since 1980s
 - Designed before SPAM et al.
- Extensions are introduced to deal with emerging problems

Your Task:

- Research "current" extensions
 - Sender Policy Framework (SPF)
 - Domain Keys Identified Mail (DKIM)
 - Domain-based Message Authentication, Reporting & Conformance (DMARC)
 - Others you find interesting
- What are their respective effects
 - What are they designed to improve / mitigate?
 - Do they cause any problems?
- How do they work together?
- What is used by "big players"

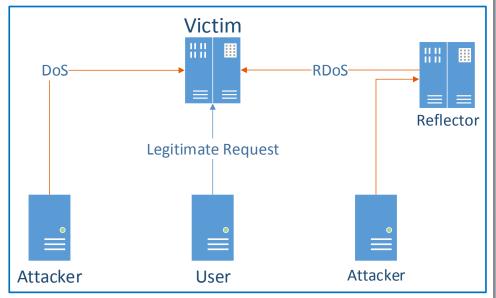
Lukas, Benjamin

Benjamin, Lukas

- Network time protocol (NTP) without proper security
- New proposal:
 "Network time security" (NTS)

Your task:

- Understand NTPv4 and its security properties and weaknesses
- Understand NTS
- Analyze and evaluate NTS security properties
 - Trust model
 - Authentication
 - Transport security
 - DoS

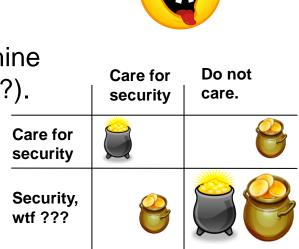

NTP after security evaluation (not to scale). Picture by Todd Kopriva.

Exploring DDoS Defense Mechanisms

- Distributed Denial of Service Attacks
 - Major threat to networks and Internet services
 - DDoS detection has been focus of many studies
 - Detection only first step, mitigation and defense is next
- Your Task:
 - Get familiar with DDoS attacks and their implications
 - Find and compare different DDoS defense mechanisms in literature
 - How do they work? What do they rely on?
 - Point out weaknesses and potential remedies

[1] JCY Chou et.al "Proactive surge protection: a defense mechanism for bandwidth-based attacks", IEEE/ACM Transactions on Networking 2009

[2] J. Snijders "DDoS Damage Control -- Cheap & effective", RIPE68 2014



Internet Science – Behavioural Aspects (Heiko)

- Network or Security Engineers often blaim the stupid user. Now, is this claim correct or are the engineers just missing something important?
- Others claim that Internet is machine-to-machine only. No humans ever involved (even at IETF?).
- Your task:
 - Motivate relation behaviourism and IT
 - Present 1-2 claims presented in related articles.
 - Use other sources to justify and/or question the claims. (e.g. from behavioural sciences)

Potential Sources:

<u>http://weis2014.econinfosec.org/program.html</u> or previous workshops under http://weis2014.econinfosec.org/past.php

Internet Science – Attacking in Cyber Conflicts (Heiko)

- Assume you found a hole ("zero day exploit") in the defense of someone else, maybe a competitor or enemy
- It may be useful now, but maybe more useful later. Yet there is also the danger of

- □ Question: When is it time to attack (and steal the frog)?
- Potential extension: How can you model such scenarios with games?
 How was data for model parameters in the source below obtained?
- □ Sources:
 - Axelrod, Iliev, "Timing of cyber conflict", http://www.pnas.org/content/early/2014/01/08/1322638111
 - More to be given. Also: Find more sources yourself.

Internet Science – Critical Infrastructures (Heiko)

Something is critical when people <u>really</u> miss it once it is gone.

- What is a critical infrastructure? Seek definitions.
- What are players and stakeholders in it?
- How do humans play a role?
- How to make it reliable?
- How to make it secure?
- What makes it fail?

Internet Science – Models for User-Generated Content (Heiko)

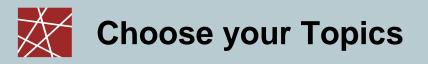
Today, people on the Internet do not primarily watch Hollywood movies anymore, instead they watch:

- There are many models for popularity of movies, businesses, and all kinds of other things and tastes (e.g. Zipf's Law).
- This may hold true also for user-generated content, but for short-lived content like Youtube videos or blog posts, the big question is more,
 - What is popular now?
 - How much of it will be popular the next hour or tomorrow?
 - How long does content live?
 - How can we model and simulate these changes?
- □ Your task:
 - Look at the Shot Noise Model (SNM) for popularity modelling.

Seminar Future Internet

Network Intrusion detection commonly uses signatures of known malicious Traffic

- No detection of unknown attacks
- Use Machine Learning to learn normal behavior
- Raise alerts when encountering anomalies


□ Your Task:

- Get familiar with the concept of network intrusion detection
- How is/can Machine Learning be used for network intrusion detection?
- What are the Challenges of using Machine Learning for network intrusion detection? [1]

[1] R. Sommer, V. Paxson: "Outside the closed world: On using machine learning for network intrusion detection", *IEEE Symposium on Security and Privacy, 2010.*

32

Pic or it didn't happen

- □ We will send you an E-Mail today
 - Contains the list of possible topics in short form (Comment on PDF)
 - All "by default" indicated as your first priority
- □ Sort the topics according to your preferences
 - The actual order of the items is irrelevant, only the number matters
 - 1 is the highest priority
 - You can indicate equal priority by using the same number more often
- There is no advantage in avoiding popular topics! The matching algorithm works roughly as follows
 - 1. Go through the students in a random order
 - 2. Give each student the topic with the highest preference that is still available

You have to send us your preferences by Tuesday (tomorrow)!

