

XMAS Lecture Network Security vs. Network Privacy?

Cornelius Diekmann

Lehrstuhl für Netzarchitekturen und Netzdienste Institut für Informatik Technische Universität München

Version: Merry Christmas

Network Security – Security

So far, when we discussed security, we considered

What were the 6 security goals again?

- Data Integrity
- Confidentiality
- Availability
- Authenticity
- Accountability
- Controlled Access

Network Security – Security

- We learned about several technical security measures.
- For example
 - IPsec ESP (Secure Channel)
 - Confidentiality
 - Integrity
 - Authenticity
 - Certificates and Signatures
 - Authenticity
 - Accountability
 - Firewalls
 - Controlled Access
 - TCP SYN Cookies
 - Availability
 - ▶ ...

Network Security – Security

- ► So far, we are
 - encrypting
 - integrity protecting
 - authenticating
 - ensuring availability
 - controlling access
- Is this enough?
- ► What about privacy?

Privacy

What about the following packet?

```
▶ Frame 9: 75 bytes on wire (600 bits), 75 bytes captured (600 bits) on interface 0
▶ Ethernet II, Src: IntelCor
                                                        ), Dst: SuperMic
▶ Internet Protocol Version 4, Src:
                                                                    . Dst:
▶User Datagram Protocol, Src Port: 18811 (18811), Dst Port: domain (53)
▼Domain Name System (query)
  [Response In: 13]
  Transaction ID: 0xcb70
 ▶ Flags: 0x0100 Standard query
  Ouestions: 1
  Answer RRs: 0
  Authority RRs: 0
  Additional RRs: 0
 ▼Oueries
  ▶www.pornhub.com: type A. class IN
```

- Okay, it's DNS
- DNS is not secure, but we can use DNSSEC
- Now the answer can be integrity protected

Privacy

- Wait, you want confidentiality?
- Okay, send the DNSSEC via an ESP tunnel
- BTW: Who is your DNS provider?

```
>Frame 1: 82 bytes on wire (656 bits), 82 bytes captured (656 bits) on interface 0
>Ethernet II, Src: IntelCor_ ( ), Dst: Sphairon_ ())
Internet Protocol Version 4, Src: 192.168.1.170 (192.168.1.170), Dst: 8.8.8.8 (8.8.8.8)
>User Datagram Protocol, Src Port: 36471 (36471), Dst Port: domain (53)
>User Datagram Protocol, Src Port: 36471 (36471), Dst Port: domain (53)
>Domain Name System (query)
Transaction ID: 0.Vo&Df5
>Flags: 0x0120 Standard query
Questions: 1
Answer RRs: 0
Authority RRs: 0
Additional RRs: 1
>Queries
>pornhub.com: type A, class IN
>Additional records
```


Privacy – Lessons Learned

Your DNS provider knowns what you are doing!

About this Example

- It is widely acknowledged that there are many pages in the web with dubious content
- Among the top 500 sites on the web¹, many serve adult content
- PornHub is among the 100 most popular web sites globally²
- ▶ We used PornHub as example for this lecture

¹http://www.alexa.com/topsites
²Rank 72 on Dec 17 2014, http://www.alexa.com/siteinfo/pornhub.com

Meta Data

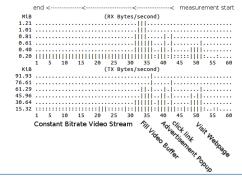
- We can protect your traffic
 - But some information needs to be accessible in plaintext
 - IP source and destination
- Btw: what is this 31.192.117.132 IP address on TCP port 80 you are visiting?

```
> curl -v http://31.192.117.132/
Connected to 31.192.117.132 (31.192.117.132) port 80
> GET / HTTP/1.1
> User-Agent: curl/7.35.0
> Host: 31.192.117.132
> Accept: */*
>
< HTTP/1.1 301 Moved Permanently
< Date: Tue, 09 Dec 2014 17:27:59 GMT
< Location: http://www.pornhub.com/</pre>
```


Meta Data

- Okay, Okay, I set up an IPsec tunnel to a secure server
- The secure server forwards my packets to the Internet
- You will only see the outer IP header
- But at some point, the inner packet needs to be given to the Internet
- Global attacker (e.g., state-level attackers) still know what you are doing

Protest sign, Anti-NSA demonstration "Restore The Fourth", July 2013



Traffic Analysis

- What about traffic analysis?
- Maybe I'm not the NSA and cannot see your unencrypted traffic
- I can still observe
 - The amount of data you are transmitting
 - Timing information

Traffic Analysis – Network Bandwidth (Example)

- 1 7 high spikes in network load
 - As if you were visiting 7 webpages (figure below only shows 3)
- 2 A high burst of traffic
- 3 A constant rate of network load
 - As if a web player is filling its buffers
 - And playing a video afterwards at constant rate
- 4 The constant network load last for about 8 minutes (not shown)

I'll just leave this here

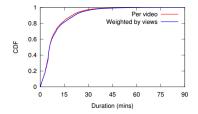
PornHub statistics for Germany

PornHub Insights, *Pornhub & Germany*, May 2014, http://www.pornhub.com/insights/ retrieved Dec 2014

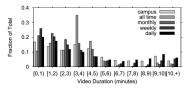
I'll just leave this here

- I's not just Germany...
- Statistics for India

PornHub Insights, Pornhub & India, Nov 2014, http://www.pornhub.com/insights/ retrieved Dec 2014


Such Meta Data, Very Traffic Analysis, Wow

US VS RUSSIA HOW LONG DO THEY LAST?		
	Pages Per Visit	Visit Duration
Washington	8.7 pages	9 min 46 sec
United States	9.0 pages	9 min 53 sec
Moscow	7.9 pages	8 min 37 sec
Russia	7.2 pages	7 min 52 sec
		Porn <mark>hub</mark>


PornHub Insights, *United States vs Russia*, May 2014, http://www.pornhub.com/insights/ retrieved Dec 2014

Content Duration of Available Content

Tyson, Gareth, et al. *Demystifying porn* 2.0: a look into a major adult video streaming website. IMC 2013 – (YouPorn data)

Gill, Phillipa, et al. *Youtube traffic characterization: a view from the edge.* IMC 2007

Best wishes for a wonderful Holiday and a Happy New Year!