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Re-use of Initialization Vector 

 

 Re-use of Initialization Vector (IV) 

 
IV 

k 
1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 1 0 1 

0 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 

xor 

P1 =  

C1 =  1 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 

IV 

k 
1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 1 0 1 

1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 

xor 

P2 =  

C2 =  0 1 1 1 0 0 0 1 0 1 0 0 0 1 1 1 1 1 0 

Then some time later the same IV is used again: 
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Re-use of Initialization Vector 

 Re-use of Initialization Vector (IV) continued 

 

0 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 P1 =  

C1 =  1 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 

1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 P2 =  

C2 =  0 1 1 1 0 0 0 1 0 1 0 0 0 1 1 1 1 1 0 

C1+C2 =  1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 

P1+P2 =  1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 

 P1+P2=C1+C2 

 As we see from the example, the attacker can computer C1+C2 

because he observes C1 and C2, but that means he knows also 

P1+P2.  

 Known Plaintext (e.g. P1)  attacker can compute other plaintext 

 Statistical properties of plaintext can be used if plaintext is not 

random-looking. That means if entropy of P1+P2 is low. 

= = = = = = = = = = = = … 
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Guessing a secret (revisited) 

 Passwords 

 N: size of alphabet (number of different characters) 

 L: length of password in characters 

 Complexity of guessing a randomly-generated password / secret 

 The assumption is, we generate a password and then we test it. 

  𝑂(𝑁𝐿) 

 Complexity of guessing a randomly-generated password character by 

character 

 The assumption is that we can check each character individually 

for correctness. 

 For each character it is N/2 (avg) and N (worst case) 

 So, overall L*N/2 (avg) 

 In the subsequent slides we will show an attack that reduces the 

decryption of a blockcipher in CBC mode to byte-wise decryption 

(under special assumptions). 
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MAC-then-Encrypt Issues 

 Operation 

 P and MAC are encrypted and hidden in the ciphertext. 

 Receiver 

• Decrypts P 

• Decrypts MAC 

• Computes and checks MAC MAC error or success 

 Consequence 

 MAC does not protect the ciphertext. 

 Integrity check can only be done once everything is decrypted. 

 As a consequence, receiver will detect malicious messages at the 

end of the secure channel processing and not earlier. 

 But is that more than a performance issue? Well, yes. 

P MAC 
Ciphertext 
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MAC-then-Encode-then-Encrypt 

 If we use a block cipher, we have to ensure that the message encoding fits to 

the blocksize of the cipher. 

 

 Encode-then-MAC-then-Encrypt: 

 Format P so that with the MAC  

added  the encryption sees  the right size. 

 Needs that we know the size of the MAC and blocksize of cipher when 

generating P | Padding. 

 MAC-then-Encode-then-Encrypt 

 Used in TLS/SSL 

 Here, we add the MAC first  

and then pad the P | MAC to the correct size. 

 How do we know what is padding and what not? Padding in TLS/SSL: 

• If size of padding is 1 byte, the padding is 1. 

• If size of padding is 2 bytes, the padding is 2 2. 

• If size of padding is 3 bytes, the padding is 3 3 3. 

• …. 

 

 

P MAC 
Ciphertext 

Pad 

P MAC 
Ciphertext 

Pad 
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Oracles and Side Channels 

 In ancient times, people asked oracles for guidance. 

 

 In computer science, oracles are functions that give as cheaply access to 

information that would otherwise hard to compute. 

 E.g. O(1) cost to ask specific NP-complete question  polynomial 

hierarchy 

 

 In cryptography, an attacker can trigger some participant O in a protocol or 

communication to leak information that might or might not be useful. 

 Participant O may re-encrypt some message fragment 

 Participant O responds with an error message explaining what went wrong 

 Response time of participant O may indicate where error happened 

 Response time may leak information about key if processing time depends 

(enough) on which bits are set to 1.  

• More obvious for the computationally expensive public key algorithms, but 

implementations of symmetric ciphers have also been attacked. 
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Side Channels and Padding Oracles 

 Side Channel Attacks  

 A general class of attacks where the attacker gains information 

from aspects of the physical implementation of a cryptosystem. 

 Can be based on: Timing, Power Consumption, Radiation, … 

 

 

 

 

 

 Padding Oracle 

 The oracle tells the attacker if the padding in the message was 

correct. 

 This may be due to a message with the information. 

 It can also be due to side channel like the response time. 

 

 

P 
Ciphertext 

Pad 

ok 
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Concept of Padding Oracle Attack (against CBC) 

 Attacker sees unknown ciphertext C = 

that was sent from Alice to Bob  

 

 To decrypt the ciphertext, the attacker modifies C and sends it 

to Bob.  

 

 

 

 

 

 It is unlikely that the MAC and padding are correct. So, Bob will 

send an error back to Alice (and the attacker). 

 In earlier versions of TLS, Bob sent back different error 

messages for padding errors and for MAC errors. 

P MAC 
Ciphertext 

Pad 

P∆ MAC∆ 

Ciphertext∆ 
Pad∆ 
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Padding Oracle Attack – CBC mode decryption 

(revisited) 

 Encryption and Decryption in CBC mode 

Time = 1 Time = 2 Time = n 

Encrypt 

C1 

K 

P2 

Encrypt 

C2 

K 

Pn 

Encrypt 

Cn 

K Encrypt ... 

... 

C1 

Decrypt 

P1 

K 

C2 

Decrypt 

P2 

K 

Cn 

Decrypt 

Pn 

K Decrypt ... 

P1 

+ IV + + Cn-1 

+ IV + + Cn-1 

CBC 
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Padding Oracle Attack against CBC 

 We have n blocks and N bytes per block. The attacker first wants to decrypt 

the last block Cn.   

 In order to do so, he starts with the last byte Cn-1,N of the block Cn-1. If he 

changes this byte (blue bytes are changed bytes) 

Cn-1 

Decrypt 

Pn-1 

K 

Cn 

Decrypt 

Pn 

K 

+ … + 

Cn-1,N 

Pn,N 

 the MAC will most likely be invalid (chance 1 in 2𝑚 for MAC length 𝑚) 

 the padding will be invalid unless Cn-1,N xor Pn,N= 1 (chance 1 in 256) 

After testing the 256 values for Cn-1,N all of them produced padding errors 

except for one that matches Cn-1,N xor Pn,N= 1.  

We know Pn,N . The original P is then OrigPn,N= OrigCn-1,N xor Pn,N.  
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Padding Oracle Attack against CBC (2) 

 Now, the byte Pn,N-1. For that we produce a padding of length 2. 

 Since we know Pn,N we can calculate Cn-1,N so that Cn-1,N xor Pn,N= 2 

 Now, we have to find the Cn-1,N-1 that satisfies Cn-1,N-1 xor Pn,N-1= 2 

 Cn-1 

Decrypt 

Pn-1 

K 

Cn 

Decrypt 

Pn 

K 

+ … + 

Cn-1,N 

Pn,N 

 With the same argument as before, we need to try up to 256 values, all values 

except for the correct one will generate a padding error. The correct one will 

produce a MAC error. 

We know Pn,N-1 .  
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Padding Oracle Attack against CBC (3) 

 To completely decrypt Cn we have to repeat the procedure until 

all bytes of the block are decrypted. In the figure with 8 bytes 

per block, the last padding we generate is 8 8 8 8 8 8 8 8. 

 To decrypt Cn-1 we can cut off Cn and repeat the same 

procedure with Cn-1 as last block. For decrypting C1  we can use 

the IV as ciphertext for the attack modifications. 

Cn-2 

Decrypt 

Pn-2 

K 

Cn-1 

Decrypt 

Pn-1 

K 

+ … + 

Cn-2,N 

Pn-1,N 

C1 

Decrypt 

P1 

K 

+ 
P1,N 

IV 
IVn 
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Final Remarks  

 

 The attack was against CBC mode used in MAC-then-Encode-

then-Encrypt mode. 

 Padding Oracle attack known long in cryptography. 

 Mode still used in SSL / TLS. Hacks have utilized that. 

However, defenses have been added. 

 

 CBC with Encode-then-Encrypt-then-MAC does not have this 

vulnerability. 

 Because MAC check would fail first, process would be 

aborted, and padding problems would then not be leaked. 
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Authenticated Encryption 

 Observations and Thoughts 

 Encryption  go over the data with some encryption mode 

 Integrity and authentication  go over the data with some MAC mode 

 Usually, both is needed.  Two passes over the data. 

 Difficult to do right.  Why not simplify process by providing both with one 

API call. 

 

 Authenticated Encryption (AE) 

 Block Cipher Mode that provides Confidentiality, Integrity, and Authenticity 

• Any combination (e.g. AES-CTR-SHA-1-HMAC) would fall into the category 

 Some modern authenticated encryption modes do not combine an 

encryption mode with a MAC mode, but they provide both in one mode. 

• Needs only one pass over the data.  

 Examples for AE modes are GCM (Galois/Counter Mode),  

OCB (Offset Codebook Mode), CCM (Counter with CBC-MAC). 
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Offset Codebook Mode (OCB) 

 Offset Codebook Mode 

 Authenticated Encryption Mode 

 Proposed 2001 [OCB1] 

 Standardized May 2014 [RFC 7253] 

 

 Encryption 

• Inspired by ECB with block-dependent offsets (avoids ECB problems!) 

 Associated Data A 

• A is not encrypted but authenticated 

• For example: Unencrypted header data 

 MAC 

• Checksum = XOR over plaintext, length- and key-dependent variables 

• MAC = (Encryption of checksum with shared key k) XOR (hash(k,A)) 

 

 Requires only one key K for encryption and authentication 

 Requires a fresh nonce every time 
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Offset Codebook Mode 

 Let double be multiplication by the variable in the OCB Galois Filed 

 Variables depending on the key: L★, L$, L0, L1, L2 …  

 L ★ = EncK (0) 

 L$ = double(L★) 

 L0 = double(L$) 

 Li = double(Li-1) 

 Let ntz be number of trailing zeros (zero bits at the end) 

 Usage of the L’s 

 L$  MAC 

 L ★  Last Block 

 Lntz(i)  intermediate blocks 

 

 Note: Lntz(i) is used 

 Only few Li are needed (for a fixed K) 

 They can be pre-computed and stored in a Lookup table 
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Offset Codebook Mode (OCB) 

Pi 

Ci 

Enc 

Offseti-1 

Lntz(i) 

Offseti + 

+ 

+ 

k 

Checksumi-1 + Checksumi 

… 

Pi+1 

Ci+1 

Enc 

Lntz(i+1) 

Offseti+1 + 

+ 

+ 

k 

+ Checksumi+1 
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OCB Initialization 

 Offset0 depends on the key and the nonce 

 “It is crucial that, as one encrypts, one does not repeat a 

nonce.” 

 [RFC 7253, §5.1] 

 Nonce may not be random, e.g. a counter works fine 

 A new nonce for every authenticated encryption API call is 

needed! 

 

 Details about the initialization: 

http://www.cs.ucdavis.edu/~rogaway/ocb/ocb-faq.htm 
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OCB – Last Block and MAC 

Offsetn-1 

Checksumn-1 

P★ 

C ★ 

Enc 

L ★ 

Offset ★ + 

+ + 

k 

+ Checksum ★ 

Pad

ding 

Enc k 

+ 

L$ 

MAC 

hash A 
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Offset Codebook  Mode 

 

 Question: XOR plaintext and then encrypt, that sounds like the 

weak MAC example from Chapter 2.2. Why is OCB more 

secure than the easy-to-break example? 

 

 

 “OCB enjoys provable security: the mode of operation is secure 

assuming that the underlying blockcipher is secure.  As with 

most modes of operation, security degrades as the number of 

blocks processed gets large” [RFC 7253] 
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Galois/Counter Mode (GCM) 

 Galois/Counter Mode (GCM) 

 Developed by John Viega and David A. McGrew 

 Standardized by NIST in 2007, IETF standards for cipher suites 

with AES-GCM for TLS (SSL) and IPSec exist. 

 Follows the Encrypt-then-MAC concept 

 Combines concept of Counter Mode for encryption with Galois 

Field Multiplication to compute MAC on the ciphertext 

 GF(2^128) based on polynomial x^128 + x^7 + x^2 + x+1 

 

 Definitions 

 H is Enc(k,0) 

 Auth Data is data not to be encrypted. GCM generates check value 

by XOR and GF multiplication with H for each block. 

 For the MAC, this process continues on the ciphertext and a length 

field in the end. 
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Galois/Counter Mode (GCM) 

Image from Wikipedia, Author from NIST. 

MAC 

Starts with IV,  

not with 0. 
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Galois Field Multiplication 

 In a Galois Field we consider the bitstring to represent a polynomial. 

 E.g. 1011 =  x^3 + x +1  

 As a consequence Galois Field Multiplication is based on polynomial 

multiplication modulus the polynomial of the field. 

 

 Example: In GF(2^128) based on polynomial g(x) = x^128 + x^7 + x^2 

+ x+1 

 P(x) = x^127+x^7 

 Q(x) = x^5 + 1 

 P(x)*Q‘(x) = x^132 + x^127 + x^12 + x^7 

 To compute the modulus, we have to compute a polynomial division 

P(x)*Q(x)/g(x). 

 We can see that x^4 * g(x) removes the x^132, so P(x)*Q(x)-x^4*g(x) = 

x^127 + x^12 + x^11 + x^7 + x^6 + x^5 + x^4 

 Since this polynomial fits into the 128 bit, this is the remainder of the 

division, thus the result, in bits: 1000…01100011110000. 
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