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Re-use of Initialization Vector 

 

 Re-use of Initialization Vector (IV) 

 
IV 

k 
1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 1 0 1 

0 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 

xor 

P1 =  

C1 =  1 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 

IV 

k 
1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 1 0 1 

1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 

xor 

P2 =  

C2 =  0 1 1 1 0 0 0 1 0 1 0 0 0 1 1 1 1 1 0 

Then some time later the same IV is used again: 
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Re-use of Initialization Vector 

 Re-use of Initialization Vector (IV) continued 

 

0 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 P1 =  

C1 =  1 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 

1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 P2 =  

C2 =  0 1 1 1 0 0 0 1 0 1 0 0 0 1 1 1 1 1 0 

C1+C2 =  1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 

P1+P2 =  1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 

 P1+P2=C1+C2 

 As we see from the example, the attacker can computer C1+C2 

because he observes C1 and C2, but that means he knows also 

P1+P2.  

 Known Plaintext (e.g. P1)  attacker can compute other plaintext 

 Statistical properties of plaintext can be used if plaintext is not 

random-looking. That means if entropy of P1+P2 is low. 

= = = = = = = = = = = = … 
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Guessing a secret (revisited) 

 Passwords 

 N: size of alphabet (number of different characters) 

 L: length of password in characters 

 Complexity of guessing a randomly-generated password / secret 

 The assumption is, we generate a password and then we test it. 

  𝑂(𝑁𝐿) 

 Complexity of guessing a randomly-generated password character by 

character 

 The assumption is that we can check each character individually 

for correctness. 

 For each character it is N/2 (avg) and N (worst case) 

 So, overall L*N/2 (avg) 

 In the subsequent slides we will show an attack that reduces the 

decryption of a blockcipher in CBC mode to byte-wise decryption 

(under special assumptions). 
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MAC-then-Encrypt Issues 

 Operation 

 P and MAC are encrypted and hidden in the ciphertext. 

 Receiver 

• Decrypts P 

• Decrypts MAC 

• Computes and checks MAC MAC error or success 

 Consequence 

 MAC does not protect the ciphertext. 

 Integrity check can only be done once everything is decrypted. 

 As a consequence, receiver will detect malicious messages at the 

end of the secure channel processing and not earlier. 

 But is that more than a performance issue? Well, yes. 

P MAC 
Ciphertext 
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MAC-then-Encode-then-Encrypt 

 If we use a block cipher, we have to ensure that the message encoding fits to 

the blocksize of the cipher. 

 

 Encode-then-MAC-then-Encrypt: 

 Format P so that with the MAC  

added  the encryption sees  the right size. 

 Needs that we know the size of the MAC and blocksize of cipher when 

generating P | Padding. 

 MAC-then-Encode-then-Encrypt 

 Used in TLS/SSL 

 Here, we add the MAC first  

and then pad the P | MAC to the correct size. 

 How do we know what is padding and what not? Padding in TLS/SSL: 

• If size of padding is 1 byte, the padding is 1. 

• If size of padding is 2 bytes, the padding is 2 2. 

• If size of padding is 3 bytes, the padding is 3 3 3. 

• …. 

 

 

P MAC 
Ciphertext 

Pad 

P MAC 
Ciphertext 

Pad 
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Oracles and Side Channels 

 In ancient times, people asked oracles for guidance. 

 

 In computer science, oracles are functions that give as cheaply access to 

information that would otherwise hard to compute. 

 E.g. O(1) cost to ask specific NP-complete question  polynomial 

hierarchy 

 

 In cryptography, an attacker can trigger some participant O in a protocol or 

communication to leak information that might or might not be useful. 

 Participant O may re-encrypt some message fragment 

 Participant O responds with an error message explaining what went wrong 

 Response time of participant O may indicate where error happened 

 Response time may leak information about key if processing time depends 

(enough) on which bits are set to 1.  

• More obvious for the computationally expensive public key algorithms, but 

implementations of symmetric ciphers have also been attacked. 
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Side Channels and Padding Oracles 

 Side Channel Attacks  

 A general class of attacks where the attacker gains information 

from aspects of the physical implementation of a cryptosystem. 

 Can be based on: Timing, Power Consumption, Radiation, … 

 

 

 

 

 

 Padding Oracle 

 The oracle tells the attacker if the padding in the message was 

correct. 

 This may be due to a message with the information. 

 It can also be due to side channel like the response time. 

 

 

P 
Ciphertext 

Pad 

ok 
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Concept of Padding Oracle Attack (against CBC) 

 Attacker sees unknown ciphertext C = 

that was sent from Alice to Bob  

 

 To decrypt the ciphertext, the attacker modifies C and sends it 

to Bob.  

 

 

 

 

 

 It is unlikely that the MAC and padding are correct. So, Bob will 

send an error back to Alice (and the attacker). 

 In earlier versions of TLS, Bob sent back different error 

messages for padding errors and for MAC errors. 

P MAC 
Ciphertext 

Pad 

P∆ MAC∆ 

Ciphertext∆ 
Pad∆ 
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Padding Oracle Attack – CBC mode decryption 

(revisited) 

 Encryption and Decryption in CBC mode 

Time = 1 Time = 2 Time = n 

Encrypt 

C1 

K 

P2 

Encrypt 

C2 

K 

Pn 

Encrypt 

Cn 

K Encrypt ... 

... 

C1 

Decrypt 

P1 

K 

C2 

Decrypt 

P2 

K 

Cn 

Decrypt 

Pn 

K Decrypt ... 

P1 

+ IV + + Cn-1 

+ IV + + Cn-1 

CBC 
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Padding Oracle Attack against CBC 

 We have n blocks and N bytes per block. The attacker first wants to decrypt 

the last block Cn.   

 In order to do so, he starts with the last byte Cn-1,N of the block Cn-1. If he 

changes this byte (blue bytes are changed bytes) 

Cn-1 

Decrypt 

Pn-1 

K 

Cn 

Decrypt 

Pn 

K 

+ … + 

Cn-1,N 

Pn,N 

 the MAC will most likely be invalid (chance 1 in 2𝑚 for MAC length 𝑚) 

 the padding will be invalid unless Cn-1,N xor Pn,N= 1 (chance 1 in 256) 

After testing the 256 values for Cn-1,N all of them produced padding errors 

except for one that matches Cn-1,N xor Pn,N= 1.  

We know Pn,N . The original P is then OrigPn,N= OrigCn-1,N xor Pn,N.  
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Padding Oracle Attack against CBC (2) 

 Now, the byte Pn,N-1. For that we produce a padding of length 2. 

 Since we know Pn,N we can calculate Cn-1,N so that Cn-1,N xor Pn,N= 2 

 Now, we have to find the Cn-1,N-1 that satisfies Cn-1,N-1 xor Pn,N-1= 2 

 Cn-1 

Decrypt 

Pn-1 

K 

Cn 

Decrypt 

Pn 

K 

+ … + 

Cn-1,N 

Pn,N 

 With the same argument as before, we need to try up to 256 values, all values 

except for the correct one will generate a padding error. The correct one will 

produce a MAC error. 

We know Pn,N-1 .  
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Padding Oracle Attack against CBC (3) 

 To completely decrypt Cn we have to repeat the procedure until 

all bytes of the block are decrypted. In the figure with 8 bytes 

per block, the last padding we generate is 8 8 8 8 8 8 8 8. 

 To decrypt Cn-1 we can cut off Cn and repeat the same 

procedure with Cn-1 as last block. For decrypting C1  we can use 

the IV as ciphertext for the attack modifications. 

Cn-2 

Decrypt 

Pn-2 

K 

Cn-1 

Decrypt 

Pn-1 

K 

+ … + 

Cn-2,N 

Pn-1,N 

C1 

Decrypt 

P1 

K 

+ 
P1,N 

IV 
IVn 
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Final Remarks  

 

 The attack was against CBC mode used in MAC-then-Encode-

then-Encrypt mode. 

 Padding Oracle attack known long in cryptography. 

 Mode still used in SSL / TLS. Hacks have utilized that. 

However, defenses have been added. 

 

 CBC with Encode-then-Encrypt-then-MAC does not have this 

vulnerability. 

 Because MAC check would fail first, process would be 

aborted, and padding problems would then not be leaked. 
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 Part II:   Attacks against Secure Channel 

 Part III:  Authenticated Encryption 

Overview 
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Authenticated Encryption 

 Observations and Thoughts 

 Encryption  go over the data with some encryption mode 

 Integrity and authentication  go over the data with some MAC mode 

 Usually, both is needed.  Two passes over the data. 

 Difficult to do right.  Why not simplify process by providing both with one 

API call. 

 

 Authenticated Encryption (AE) 

 Block Cipher Mode that provides Confidentiality, Integrity, and Authenticity 

• Any combination (e.g. AES-CTR-SHA-1-HMAC) would fall into the category 

 Some modern authenticated encryption modes do not combine an 

encryption mode with a MAC mode, but they provide both in one mode. 

• Needs only one pass over the data.  

 Examples for AE modes are GCM (Galois/Counter Mode),  

OCB (Offset Codebook Mode), CCM (Counter with CBC-MAC). 
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Offset Codebook Mode (OCB) 

 Offset Codebook Mode 

 Authenticated Encryption Mode 

 Proposed 2001 [OCB1] 

 Standardized May 2014 [RFC 7253] 

 

 Encryption 

• Inspired by ECB with block-dependent offsets (avoids ECB problems!) 

 Associated Data A 

• A is not encrypted but authenticated 

• For example: Unencrypted header data 

 MAC 

• Checksum = XOR over plaintext, length- and key-dependent variables 

• MAC = (Encryption of checksum with shared key k) XOR (hash(k,A)) 

 

 Requires only one key K for encryption and authentication 

 Requires a fresh nonce every time 
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Offset Codebook Mode 

 Let double be multiplication by the variable in the OCB Galois Filed 

 Variables depending on the key: L★, L$, L0, L1, L2 …  

 L ★ = EncK (0) 

 L$ = double(L★) 

 L0 = double(L$) 

 Li = double(Li-1) 

 Let ntz be number of trailing zeros (zero bits at the end) 

 Usage of the L’s 

 L$  MAC 

 L ★  Last Block 

 Lntz(i)  intermediate blocks 

 

 Note: Lntz(i) is used 

 Only few Li are needed (for a fixed K) 

 They can be pre-computed and stored in a Lookup table 
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Offset Codebook Mode (OCB) 

Pi 

Ci 

Enc 

Offseti-1 

Lntz(i) 

Offseti + 

+ 

+ 

k 

Checksumi-1 + Checksumi 

… 

Pi+1 

Ci+1 

Enc 

Lntz(i+1) 

Offseti+1 + 

+ 

+ 

k 

+ Checksumi+1 
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OCB Initialization 

 Offset0 depends on the key and the nonce 

 “It is crucial that, as one encrypts, one does not repeat a 

nonce.” 

 [RFC 7253, §5.1] 

 Nonce may not be random, e.g. a counter works fine 

 A new nonce for every authenticated encryption API call is 

needed! 

 

 Details about the initialization: 

http://www.cs.ucdavis.edu/~rogaway/ocb/ocb-faq.htm 
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OCB – Last Block and MAC 

Offsetn-1 

Checksumn-1 

P★ 

C ★ 

Enc 

L ★ 

Offset ★ + 

+ + 

k 

+ Checksum ★ 

Pad

ding 

Enc k 

+ 

L$ 

MAC 

hash A 
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Offset Codebook  Mode 

 

 Question: XOR plaintext and then encrypt, that sounds like the 

weak MAC example from Chapter 2.2. Why is OCB more 

secure than the easy-to-break example? 

 

 

 “OCB enjoys provable security: the mode of operation is secure 

assuming that the underlying blockcipher is secure.  As with 

most modes of operation, security degrades as the number of 

blocks processed gets large” [RFC 7253] 
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Galois/Counter Mode (GCM) 

 Galois/Counter Mode (GCM) 

 Developed by John Viega and David A. McGrew 

 Standardized by NIST in 2007, IETF standards for cipher suites 

with AES-GCM for TLS (SSL) and IPSec exist. 

 Follows the Encrypt-then-MAC concept 

 Combines concept of Counter Mode for encryption with Galois 

Field Multiplication to compute MAC on the ciphertext 

 GF(2^128) based on polynomial x^128 + x^7 + x^2 + x+1 

 

 Definitions 

 H is Enc(k,0) 

 Auth Data is data not to be encrypted. GCM generates check value 

by XOR and GF multiplication with H for each block. 

 For the MAC, this process continues on the ciphertext and a length 

field in the end. 
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Galois/Counter Mode (GCM) 

Image from Wikipedia, Author from NIST. 

MAC 

Starts with IV,  

not with 0. 
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Galois Field Multiplication 

 In a Galois Field we consider the bitstring to represent a polynomial. 

 E.g. 1011 =  x^3 + x +1  

 As a consequence Galois Field Multiplication is based on polynomial 

multiplication modulus the polynomial of the field. 

 

 Example: In GF(2^128) based on polynomial g(x) = x^128 + x^7 + x^2 

+ x+1 

 P(x) = x^127+x^7 

 Q(x) = x^5 + 1 

 P(x)*Q‘(x) = x^132 + x^127 + x^12 + x^7 

 To compute the modulus, we have to compute a polynomial division 

P(x)*Q(x)/g(x). 

 We can see that x^4 * g(x) removes the x^132, so P(x)*Q(x)-x^4*g(x) = 

x^127 + x^12 + x^11 + x^7 + x^6 + x^5 + x^4 

 Since this polynomial fits into the 128 bit, this is the remainder of the 

division, thus the result, in bits: 1000…01100011110000. 
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