
Technische Universität München Chair for Network Architectures and Services

Network Security

Secure Channel Add-On

2 Network Security – IN2101, WS 2015/16

 Part I: The Secure Channel

 Part II: Attacks against Secure Channel

 Part III: Authenticated Encryption

Overview

3 Network Security – IN2101, WS 2015/16

 Part I: The Secure Channel

 Part II: Attacks against Secure Channel

 Attacks against Secure Channel with Stream Cipher

 Part III: Authenticated Encryption

Attacks against Secure Channel with Stream

Ciphers

4 Network Security – IN2101, WS 2015/16

Re-use of Initialization Vector

 Re-use of Initialization Vector (IV)

IV

k
1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 1 0 1

0 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0

xor

P1 =

C1 = 1 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1

IV

k
1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 1 0 1

1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1

xor

P2 =

C2 = 0 1 1 1 0 0 0 1 0 1 0 0 0 1 1 1 1 1 0

Then some time later the same IV is used again:

5 Network Security – IN2101, WS 2015/16

Re-use of Initialization Vector

 Re-use of Initialization Vector (IV) continued

0 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 P1 =

C1 = 1 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1

1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 P2 =

C2 = 0 1 1 1 0 0 0 1 0 1 0 0 0 1 1 1 1 1 0

C1+C2 = 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1

P1+P2 = 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1

 P1+P2=C1+C2

 As we see from the example, the attacker can computer C1+C2

because he observes C1 and C2, but that means he knows also

P1+P2.

 Known Plaintext (e.g. P1)  attacker can compute other plaintext

 Statistical properties of plaintext can be used if plaintext is not

random-looking. That means if entropy of P1+P2 is low.

= = = = = = = = = = = = …

6 Network Security – IN2101, WS 2015/16

 Part I: The Secure Channel

 Part II: Attacks against Secure Channel

 Padding Oracle Attack against bad combination of

CBC mode and MAC

 Part III: Authenticated Encryption

Attacks against Secure Channel with Stream

Ciphers

7 Network Security – IN2101, WS 2015/16

Guessing a secret (revisited)

 Passwords

 N: size of alphabet (number of different characters)

 L: length of password in characters

 Complexity of guessing a randomly-generated password / secret

 The assumption is, we generate a password and then we test it.

 𝑂(𝑁𝐿)

 Complexity of guessing a randomly-generated password character by

character

 The assumption is that we can check each character individually

for correctness.

 For each character it is N/2 (avg) and N (worst case)

 So, overall L*N/2 (avg)

 In the subsequent slides we will show an attack that reduces the

decryption of a blockcipher in CBC mode to byte-wise decryption

(under special assumptions).

8 Network Security – IN2101, WS 2015/16

MAC-then-Encrypt Issues

 Operation

 P and MAC are encrypted and hidden in the ciphertext.

 Receiver

• Decrypts P

• Decrypts MAC

• Computes and checks MAC MAC error or success

 Consequence

 MAC does not protect the ciphertext.

 Integrity check can only be done once everything is decrypted.

 As a consequence, receiver will detect malicious messages at the

end of the secure channel processing and not earlier.

 But is that more than a performance issue? Well, yes.

P MAC
Ciphertext

9 Network Security – IN2101, WS 2015/16

MAC-then-Encode-then-Encrypt

 If we use a block cipher, we have to ensure that the message encoding fits to

the blocksize of the cipher.

 Encode-then-MAC-then-Encrypt:

 Format P so that with the MAC

added the encryption sees the right size.

 Needs that we know the size of the MAC and blocksize of cipher when

generating P | Padding.

 MAC-then-Encode-then-Encrypt

 Used in TLS/SSL

 Here, we add the MAC first

and then pad the P | MAC to the correct size.

 How do we know what is padding and what not? Padding in TLS/SSL:

• If size of padding is 1 byte, the padding is 1.

• If size of padding is 2 bytes, the padding is 2 2.

• If size of padding is 3 bytes, the padding is 3 3 3.

• ….

P MAC
Ciphertext

Pad

P MAC
Ciphertext

Pad

10 Network Security – IN2101, WS 2015/16

Oracles and Side Channels

 In ancient times, people asked oracles for guidance.

 In computer science, oracles are functions that give as cheaply access to

information that would otherwise hard to compute.

 E.g. O(1) cost to ask specific NP-complete question  polynomial

hierarchy

 In cryptography, an attacker can trigger some participant O in a protocol or

communication to leak information that might or might not be useful.

 Participant O may re-encrypt some message fragment

 Participant O responds with an error message explaining what went wrong

 Response time of participant O may indicate where error happened

 Response time may leak information about key if processing time depends

(enough) on which bits are set to 1.

• More obvious for the computationally expensive public key algorithms, but

implementations of symmetric ciphers have also been attacked.

11 Network Security – IN2101, WS 2015/16

Side Channels and Padding Oracles

 Side Channel Attacks

 A general class of attacks where the attacker gains information

from aspects of the physical implementation of a cryptosystem.

 Can be based on: Timing, Power Consumption, Radiation, …

 Padding Oracle

 The oracle tells the attacker if the padding in the message was

correct.

 This may be due to a message with the information.

 It can also be due to side channel like the response time.

P
Ciphertext

Pad

ok

12 Network Security – IN2101, WS 2015/16

Concept of Padding Oracle Attack (against CBC)

 Attacker sees unknown ciphertext C =

that was sent from Alice to Bob

 To decrypt the ciphertext, the attacker modifies C and sends it

to Bob.

 It is unlikely that the MAC and padding are correct. So, Bob will

send an error back to Alice (and the attacker).

 In earlier versions of TLS, Bob sent back different error

messages for padding errors and for MAC errors.

P MAC
Ciphertext

Pad

P∆ MAC∆

Ciphertext∆
Pad∆

13 Network Security – IN2101, WS 2015/16

Padding Oracle Attack – CBC mode decryption

(revisited)

 Encryption and Decryption in CBC mode

Time = 1 Time = 2 Time = n

Encrypt

C1

K

P2

Encrypt

C2

K

Pn

Encrypt

Cn

K Encrypt ...

...

C1

Decrypt

P1

K

C2

Decrypt

P2

K

Cn

Decrypt

Pn

K Decrypt ...

P1

+ IV + + Cn-1

+ IV + + Cn-1

CBC

14 Network Security – IN2101, WS 2015/16

Padding Oracle Attack against CBC

 We have n blocks and N bytes per block. The attacker first wants to decrypt

the last block Cn.

 In order to do so, he starts with the last byte Cn-1,N of the block Cn-1. If he

changes this byte (blue bytes are changed bytes)

Cn-1

Decrypt

Pn-1

K

Cn

Decrypt

Pn

K

+ … +

Cn-1,N

Pn,N

 the MAC will most likely be invalid (chance 1 in 2𝑚 for MAC length 𝑚)

 the padding will be invalid unless Cn-1,N xor Pn,N= 1 (chance 1 in 256)

After testing the 256 values for Cn-1,N all of them produced padding errors

except for one that matches Cn-1,N xor Pn,N= 1.

We know Pn,N . The original P is then OrigPn,N= OrigCn-1,N xor Pn,N.

15 Network Security – IN2101, WS 2015/16

Padding Oracle Attack against CBC (2)

 Now, the byte Pn,N-1. For that we produce a padding of length 2.

 Since we know Pn,N we can calculate Cn-1,N so that Cn-1,N xor Pn,N= 2

 Now, we have to find the Cn-1,N-1 that satisfies Cn-1,N-1 xor Pn,N-1= 2

 Cn-1

Decrypt

Pn-1

K

Cn

Decrypt

Pn

K

+ … +

Cn-1,N

Pn,N

 With the same argument as before, we need to try up to 256 values, all values

except for the correct one will generate a padding error. The correct one will

produce a MAC error.

We know Pn,N-1 .

16 Network Security – IN2101, WS 2015/16

Padding Oracle Attack against CBC (3)

 To completely decrypt Cn we have to repeat the procedure until

all bytes of the block are decrypted. In the figure with 8 bytes

per block, the last padding we generate is 8 8 8 8 8 8 8 8.

 To decrypt Cn-1 we can cut off Cn and repeat the same

procedure with Cn-1 as last block. For decrypting C1 we can use

the IV as ciphertext for the attack modifications.

Cn-2

Decrypt

Pn-2

K

Cn-1

Decrypt

Pn-1

K

+ … +

Cn-2,N

Pn-1,N

C1

Decrypt

P1

K

+
P1,N

IV
IVn

17 Network Security – IN2101, WS 2015/16

Final Remarks

 The attack was against CBC mode used in MAC-then-Encode-

then-Encrypt mode.

 Padding Oracle attack known long in cryptography.

 Mode still used in SSL / TLS. Hacks have utilized that.

However, defenses have been added.

 CBC with Encode-then-Encrypt-then-MAC does not have this

vulnerability.

 Because MAC check would fail first, process would be

aborted, and padding problems would then not be leaked.

18 Network Security – IN2101, WS 2015/16

 Part I: The Secure Channel

 Part II: Attacks against Secure Channel

 Part III: Authenticated Encryption

Overview

19 Network Security – IN2101, WS 2015/16

Authenticated Encryption

 Observations and Thoughts

 Encryption  go over the data with some encryption mode

 Integrity and authentication  go over the data with some MAC mode

 Usually, both is needed.  Two passes over the data.

 Difficult to do right.  Why not simplify process by providing both with one

API call.

 Authenticated Encryption (AE)

 Block Cipher Mode that provides Confidentiality, Integrity, and Authenticity

• Any combination (e.g. AES-CTR-SHA-1-HMAC) would fall into the category

 Some modern authenticated encryption modes do not combine an

encryption mode with a MAC mode, but they provide both in one mode.

• Needs only one pass over the data.

 Examples for AE modes are GCM (Galois/Counter Mode),

OCB (Offset Codebook Mode), CCM (Counter with CBC-MAC).

20 Network Security – IN2101, WS 2015/16

Offset Codebook Mode (OCB)

 Offset Codebook Mode

 Authenticated Encryption Mode

 Proposed 2001 [OCB1]

 Standardized May 2014 [RFC 7253]

 Encryption

• Inspired by ECB with block-dependent offsets (avoids ECB problems!)

 Associated Data A

• A is not encrypted but authenticated

• For example: Unencrypted header data

 MAC

• Checksum = XOR over plaintext, length- and key-dependent variables

• MAC = (Encryption of checksum with shared key k) XOR (hash(k,A))

 Requires only one key K for encryption and authentication

 Requires a fresh nonce every time

21 Network Security – IN2101, WS 2015/16

Offset Codebook Mode

 Let double be multiplication by the variable in the OCB Galois Filed

 Variables depending on the key: L★, L$, L0, L1, L2 …

 L ★ = EncK (0)

 L$ = double(L★)

 L0 = double(L$)

 Li = double(Li-1)

 Let ntz be number of trailing zeros (zero bits at the end)

 Usage of the L’s

 L$  MAC

 L ★  Last Block

 Lntz(i)  intermediate blocks

 Note: Lntz(i) is used

 Only few Li are needed (for a fixed K)

 They can be pre-computed and stored in a Lookup table

22 Network Security – IN2101, WS 2015/16

Offset Codebook Mode (OCB)

Pi

Ci

Enc

Offseti-1

Lntz(i)

Offseti +

+

+

k

Checksumi-1 + Checksumi

…

Pi+1

Ci+1

Enc

Lntz(i+1)

Offseti+1 +

+

+

k

+ Checksumi+1

23 Network Security – IN2101, WS 2015/16

OCB Initialization

 Offset0 depends on the key and the nonce

 “It is crucial that, as one encrypts, one does not repeat a

nonce.”

 [RFC 7253, §5.1]

 Nonce may not be random, e.g. a counter works fine

 A new nonce for every authenticated encryption API call is

needed!

 Details about the initialization:

http://www.cs.ucdavis.edu/~rogaway/ocb/ocb-faq.htm

24 Network Security – IN2101, WS 2015/16

OCB – Last Block and MAC

Offsetn-1

Checksumn-1

P★

C ★

Enc

L ★

Offset ★ +

+ +

k

+ Checksum ★

Pad

ding

Enc k

+

L$

MAC

hash A

25 Network Security – IN2101, WS 2015/16

Offset Codebook Mode

 Question: XOR plaintext and then encrypt, that sounds like the

weak MAC example from Chapter 2.2. Why is OCB more

secure than the easy-to-break example?

 “OCB enjoys provable security: the mode of operation is secure

assuming that the underlying blockcipher is secure. As with

most modes of operation, security degrades as the number of

blocks processed gets large” [RFC 7253]

26 Network Security – IN2101, WS 2015/16

Galois/Counter Mode (GCM)

 Galois/Counter Mode (GCM)

 Developed by John Viega and David A. McGrew

 Standardized by NIST in 2007, IETF standards for cipher suites

with AES-GCM for TLS (SSL) and IPSec exist.

 Follows the Encrypt-then-MAC concept

 Combines concept of Counter Mode for encryption with Galois

Field Multiplication to compute MAC on the ciphertext

 GF(2^128) based on polynomial x^128 + x^7 + x^2 + x+1

 Definitions

 H is Enc(k,0)

 Auth Data is data not to be encrypted. GCM generates check value

by XOR and GF multiplication with H for each block.

 For the MAC, this process continues on the ciphertext and a length

field in the end.

27 Network Security – IN2101, WS 2015/16

Galois/Counter Mode (GCM)

Image from Wikipedia, Author from NIST.

MAC

Starts with IV,

not with 0.

28 Network Security – IN2101, WS 2015/16

Galois Field Multiplication

 In a Galois Field we consider the bitstring to represent a polynomial.

 E.g. 1011 = x^3 + x +1

 As a consequence Galois Field Multiplication is based on polynomial

multiplication modulus the polynomial of the field.

 Example: In GF(2^128) based on polynomial g(x) = x^128 + x^7 + x^2

+ x+1

 P(x) = x^127+x^7

 Q(x) = x^5 + 1

 P(x)*Q‘(x) = x^132 + x^127 + x^12 + x^7

 To compute the modulus, we have to compute a polynomial division

P(x)*Q(x)/g(x).

 We can see that x^4 * g(x) removes the x^132, so P(x)*Q(x)-x^4*g(x) =

x^127 + x^12 + x^11 + x^7 + x^6 + x^5 + x^4

 Since this polynomial fits into the 128 bit, this is the remainder of the

division, thus the result, in bits: 1000…01100011110000.

29 Network Security – IN2101, WS 2015/16

References

[Bell95] M. Bellare and P. Rogaway, Provably Secure Session Key
Distribution - The Three Party Case, Proc. 27th STOC, 1995, pp
57--64

[Boyd03] Colin Boyd, Anish Mathuria, “Protocols for Authentication and Key
Establishment”, Springer, 2003

[Bry88a] R. Bryant. Designing an Authentication System: A Dialogue in
Four Scenes. Project Athena, Massachusetts Institute of
Technology, Cambridge, USA, 1988.

[Diff92] W. Diffie, P. C. van Oorschot, and M. J. Wiener. Authentication
and authenticated key exchanges. Designs, Codes, and
Cryptography, 1992

[Dol81a] D. Dolev, A.C. Yao. On the security of public key protocols.
Proceedings of IEEE 22nd Annual Symposium on Foundations of
Computer Science, pp. 350-357, 1981.

[Fer00] Niels Ferguson, Bruce Schneier, “A Cryptographic Evaluation of
IPsec”. http://www.counterpane.com/ipsec.pdf 2000

[Fer03] Niels Ferguson, Bruce Schneier, „Practical Cryptography“, John
Wiley & Sons, 2003

[Gar03] Jason Garman, “Kerberos. The Definitive Guide”, O'Reilly Media,
1st Edition, 2003

30 Network Security – IN2101, WS 2015/16

References

[Kau02a] C. Kaufman, R. Perlman, M. Speciner. Network
 Security. Prentice Hall, 2nd edition, 2002.

[Koh94a] J. Kohl, C. Neuman, T. T'so, The Evolution of the
 Kerberos Authentication System. In Distributed Open
 Systems, pages 78-94. IEEE Computer Society Press,
 1994.

[Mao04a] W. Mao. Modern Cryptography: Theory & Practice.
 Hewlett-Packard Books, 2004.

[Nee78] R. Needham, M. Schroeder. Using Encryption for
 Authentication in Large Networks of Computers.
 Communications of the ACM, Vol. 21, No. 12, 1978.

[Woo92a] T.Y.C Woo, S.S. Lam. Authentication for distributed
 systems. Computer, 25(1):39-52, 1992.

[Lowe95] G. Lowe, „An Attack on the Needham-Schroeder
 Public-Key Authentication Protocol”, Information
 Processing Letters, volume 56, number 3, pages
 131- 133, 1995.

31 Network Security – IN2101, WS 2015/16

References

[OCB1] Rogaway, P., Bellare, M., Black, J., and T. Krovetz,

 "OCB: A Block-Cipher Mode of Operation for Efficient

 Authenticated Encryption", ACM Conference on

 Computer and Communications Security 2001 - CCS

[OCB] T.Krovetz, P. Rogaway, „The OCB Authenticated-

 Encryption Algorithm“

 http://tools.ietf.org/html/draft-irtf-cfrg-ocb-03

[RFC 4106] The Use of Galois/Counter Mode (GCM) in IPsec

 Encapsulating Security Payload (ESP)

[RFC 5288] AES Galois Counter Mode (GCM) Cipher Suites for

 TLS.

[RFC 7253] The OCB Authenticated-Encryption Algorithm

32 Network Security – IN2101, WS 2015/16

Additional references from the IETF

[RFC2560] M. Myers, et al., “X.509 Internet Public Key

 Infrastructure Online Certificate Status Protocol –

 OCSP”, June 1999

[RFC3961] K. Raeburn, “Encryption and Checksum Specifications

 for Kerberos 5”, February 2005

[RFC3962] K. Raeburn, “Advanced Encryption Standard (AES)

 Encryption for Kerberos 5”, February 2005

[RFC4757] K. Jaganathan, et al., “The RC4-HMAC Kerberos

 Encryption Types Used by Microsoft Windows ”,

 December 2006

[RFC4120] C. Neuman, et al., “The Kerberos Network

 Authentication Service (V5)”, July 2005

[RFC4537] L. Zhu, et al, “Kerberos Cryptosystem Negotiation

 Extension”, June 2006

[RFC5055] T. Freeman, et al, “Server-Based Certificate Validation

 Protocol (SCVP)”, December 2007

