
Technische Universität München Chair for Network Architectures and Services

Network Security

Secure Channel Add-On

2 Network Security – IN2101, WS 2015/16

 Part I: The Secure Channel

 Part II: Attacks against Secure Channel

 Part III: Authenticated Encryption

Overview

3 Network Security – IN2101, WS 2015/16

 Part I: The Secure Channel

 Part II: Attacks against Secure Channel

 Attacks against Secure Channel with Stream Cipher

 Part III: Authenticated Encryption

Attacks against Secure Channel with Stream

Ciphers

4 Network Security – IN2101, WS 2015/16

Re-use of Initialization Vector

 Re-use of Initialization Vector (IV)

IV

k
1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 1 0 1

0 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0

xor

P1 =

C1 = 1 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1

IV

k
1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 1 0 1

1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1

xor

P2 =

C2 = 0 1 1 1 0 0 0 1 0 1 0 0 0 1 1 1 1 1 0

Then some time later the same IV is used again:

5 Network Security – IN2101, WS 2015/16

Re-use of Initialization Vector

 Re-use of Initialization Vector (IV) continued

0 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 P1 =

C1 = 1 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1

1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 P2 =

C2 = 0 1 1 1 0 0 0 1 0 1 0 0 0 1 1 1 1 1 0

C1+C2 = 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1

P1+P2 = 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1

 P1+P2=C1+C2

 As we see from the example, the attacker can computer C1+C2

because he observes C1 and C2, but that means he knows also

P1+P2.

 Known Plaintext (e.g. P1) attacker can compute other plaintext

 Statistical properties of plaintext can be used if plaintext is not

random-looking. That means if entropy of P1+P2 is low.

= = = = = = = = = = = = …

6 Network Security – IN2101, WS 2015/16

 Part I: The Secure Channel

 Part II: Attacks against Secure Channel

 Padding Oracle Attack against bad combination of

CBC mode and MAC

 Part III: Authenticated Encryption

Attacks against Secure Channel with Stream

Ciphers

7 Network Security – IN2101, WS 2015/16

Guessing a secret (revisited)

 Passwords

 N: size of alphabet (number of different characters)

 L: length of password in characters

 Complexity of guessing a randomly-generated password / secret

 The assumption is, we generate a password and then we test it.

 𝑂(𝑁𝐿)

 Complexity of guessing a randomly-generated password character by

character

 The assumption is that we can check each character individually

for correctness.

 For each character it is N/2 (avg) and N (worst case)

 So, overall L*N/2 (avg)

 In the subsequent slides we will show an attack that reduces the

decryption of a blockcipher in CBC mode to byte-wise decryption

(under special assumptions).

8 Network Security – IN2101, WS 2015/16

MAC-then-Encrypt Issues

 Operation

 P and MAC are encrypted and hidden in the ciphertext.

 Receiver

• Decrypts P

• Decrypts MAC

• Computes and checks MAC MAC error or success

 Consequence

 MAC does not protect the ciphertext.

 Integrity check can only be done once everything is decrypted.

 As a consequence, receiver will detect malicious messages at the

end of the secure channel processing and not earlier.

 But is that more than a performance issue? Well, yes.

P MAC
Ciphertext

9 Network Security – IN2101, WS 2015/16

MAC-then-Encode-then-Encrypt

 If we use a block cipher, we have to ensure that the message encoding fits to

the blocksize of the cipher.

 Encode-then-MAC-then-Encrypt:

 Format P so that with the MAC

added the encryption sees the right size.

 Needs that we know the size of the MAC and blocksize of cipher when

generating P | Padding.

 MAC-then-Encode-then-Encrypt

 Used in TLS/SSL

 Here, we add the MAC first

and then pad the P | MAC to the correct size.

 How do we know what is padding and what not? Padding in TLS/SSL:

• If size of padding is 1 byte, the padding is 1.

• If size of padding is 2 bytes, the padding is 2 2.

• If size of padding is 3 bytes, the padding is 3 3 3.

• ….

P MAC
Ciphertext

Pad

P MAC
Ciphertext

Pad

10 Network Security – IN2101, WS 2015/16

Oracles and Side Channels

 In ancient times, people asked oracles for guidance.

 In computer science, oracles are functions that give as cheaply access to

information that would otherwise hard to compute.

 E.g. O(1) cost to ask specific NP-complete question polynomial

hierarchy

 In cryptography, an attacker can trigger some participant O in a protocol or

communication to leak information that might or might not be useful.

 Participant O may re-encrypt some message fragment

 Participant O responds with an error message explaining what went wrong

 Response time of participant O may indicate where error happened

 Response time may leak information about key if processing time depends

(enough) on which bits are set to 1.

• More obvious for the computationally expensive public key algorithms, but

implementations of symmetric ciphers have also been attacked.

11 Network Security – IN2101, WS 2015/16

Side Channels and Padding Oracles

 Side Channel Attacks

 A general class of attacks where the attacker gains information

from aspects of the physical implementation of a cryptosystem.

 Can be based on: Timing, Power Consumption, Radiation, …

 Padding Oracle

 The oracle tells the attacker if the padding in the message was

correct.

 This may be due to a message with the information.

 It can also be due to side channel like the response time.

P
Ciphertext

Pad

ok

12 Network Security – IN2101, WS 2015/16

Concept of Padding Oracle Attack (against CBC)

 Attacker sees unknown ciphertext C =

that was sent from Alice to Bob

 To decrypt the ciphertext, the attacker modifies C and sends it

to Bob.

 It is unlikely that the MAC and padding are correct. So, Bob will

send an error back to Alice (and the attacker).

 In earlier versions of TLS, Bob sent back different error

messages for padding errors and for MAC errors.

P MAC
Ciphertext

Pad

P∆ MAC∆

Ciphertext∆
Pad∆

13 Network Security – IN2101, WS 2015/16

Padding Oracle Attack – CBC mode decryption

(revisited)

 Encryption and Decryption in CBC mode

Time = 1 Time = 2 Time = n

Encrypt

C1

K

P2

Encrypt

C2

K

Pn

Encrypt

Cn

K Encrypt ...

...

C1

Decrypt

P1

K

C2

Decrypt

P2

K

Cn

Decrypt

Pn

K Decrypt ...

P1

+ IV + + Cn-1

+ IV + + Cn-1

CBC

14 Network Security – IN2101, WS 2015/16

Padding Oracle Attack against CBC

 We have n blocks and N bytes per block. The attacker first wants to decrypt

the last block Cn.

 In order to do so, he starts with the last byte Cn-1,N of the block Cn-1. If he

changes this byte (blue bytes are changed bytes)

Cn-1

Decrypt

Pn-1

K

Cn

Decrypt

Pn

K

+ … +

Cn-1,N

Pn,N

 the MAC will most likely be invalid (chance 1 in 2𝑚 for MAC length 𝑚)

 the padding will be invalid unless Cn-1,N xor Pn,N= 1 (chance 1 in 256)

After testing the 256 values for Cn-1,N all of them produced padding errors

except for one that matches Cn-1,N xor Pn,N= 1.

We know Pn,N . The original P is then OrigPn,N= OrigCn-1,N xor Pn,N.

15 Network Security – IN2101, WS 2015/16

Padding Oracle Attack against CBC (2)

 Now, the byte Pn,N-1. For that we produce a padding of length 2.

 Since we know Pn,N we can calculate Cn-1,N so that Cn-1,N xor Pn,N= 2

 Now, we have to find the Cn-1,N-1 that satisfies Cn-1,N-1 xor Pn,N-1= 2

 Cn-1

Decrypt

Pn-1

K

Cn

Decrypt

Pn

K

+ … +

Cn-1,N

Pn,N

 With the same argument as before, we need to try up to 256 values, all values

except for the correct one will generate a padding error. The correct one will

produce a MAC error.

We know Pn,N-1 .

16 Network Security – IN2101, WS 2015/16

Padding Oracle Attack against CBC (3)

 To completely decrypt Cn we have to repeat the procedure until

all bytes of the block are decrypted. In the figure with 8 bytes

per block, the last padding we generate is 8 8 8 8 8 8 8 8.

 To decrypt Cn-1 we can cut off Cn and repeat the same

procedure with Cn-1 as last block. For decrypting C1 we can use

the IV as ciphertext for the attack modifications.

Cn-2

Decrypt

Pn-2

K

Cn-1

Decrypt

Pn-1

K

+ … +

Cn-2,N

Pn-1,N

C1

Decrypt

P1

K

+
P1,N

IV
IVn

17 Network Security – IN2101, WS 2015/16

Final Remarks

 The attack was against CBC mode used in MAC-then-Encode-

then-Encrypt mode.

 Padding Oracle attack known long in cryptography.

 Mode still used in SSL / TLS. Hacks have utilized that.

However, defenses have been added.

 CBC with Encode-then-Encrypt-then-MAC does not have this

vulnerability.

 Because MAC check would fail first, process would be

aborted, and padding problems would then not be leaked.

18 Network Security – IN2101, WS 2015/16

 Part I: The Secure Channel

 Part II: Attacks against Secure Channel

 Part III: Authenticated Encryption

Overview

19 Network Security – IN2101, WS 2015/16

Authenticated Encryption

 Observations and Thoughts

 Encryption go over the data with some encryption mode

 Integrity and authentication go over the data with some MAC mode

 Usually, both is needed. Two passes over the data.

 Difficult to do right. Why not simplify process by providing both with one

API call.

 Authenticated Encryption (AE)

 Block Cipher Mode that provides Confidentiality, Integrity, and Authenticity

• Any combination (e.g. AES-CTR-SHA-1-HMAC) would fall into the category

 Some modern authenticated encryption modes do not combine an

encryption mode with a MAC mode, but they provide both in one mode.

• Needs only one pass over the data.

 Examples for AE modes are GCM (Galois/Counter Mode),

OCB (Offset Codebook Mode), CCM (Counter with CBC-MAC).

20 Network Security – IN2101, WS 2015/16

Offset Codebook Mode (OCB)

 Offset Codebook Mode

 Authenticated Encryption Mode

 Proposed 2001 [OCB1]

 Standardized May 2014 [RFC 7253]

 Encryption

• Inspired by ECB with block-dependent offsets (avoids ECB problems!)

 Associated Data A

• A is not encrypted but authenticated

• For example: Unencrypted header data

 MAC

• Checksum = XOR over plaintext, length- and key-dependent variables

• MAC = (Encryption of checksum with shared key k) XOR (hash(k,A))

 Requires only one key K for encryption and authentication

 Requires a fresh nonce every time

21 Network Security – IN2101, WS 2015/16

Offset Codebook Mode

 Let double be multiplication by the variable in the OCB Galois Filed

 Variables depending on the key: L★, L$, L0, L1, L2 …

 L ★ = EncK (0)

 L$ = double(L★)

 L0 = double(L$)

 Li = double(Li-1)

 Let ntz be number of trailing zeros (zero bits at the end)

 Usage of the L’s

 L$ MAC

 L ★ Last Block

 Lntz(i) intermediate blocks

 Note: Lntz(i) is used

 Only few Li are needed (for a fixed K)

 They can be pre-computed and stored in a Lookup table

22 Network Security – IN2101, WS 2015/16

Offset Codebook Mode (OCB)

Pi

Ci

Enc

Offseti-1

Lntz(i)

Offseti +

+

+

k

Checksumi-1 + Checksumi

…

Pi+1

Ci+1

Enc

Lntz(i+1)

Offseti+1 +

+

+

k

+ Checksumi+1

23 Network Security – IN2101, WS 2015/16

OCB Initialization

 Offset0 depends on the key and the nonce

 “It is crucial that, as one encrypts, one does not repeat a

nonce.”

 [RFC 7253, §5.1]

 Nonce may not be random, e.g. a counter works fine

 A new nonce for every authenticated encryption API call is

needed!

 Details about the initialization:

http://www.cs.ucdavis.edu/~rogaway/ocb/ocb-faq.htm

24 Network Security – IN2101, WS 2015/16

OCB – Last Block and MAC

Offsetn-1

Checksumn-1

P★

C ★

Enc

L ★

Offset ★ +

+ +

k

+ Checksum ★

Pad

ding

Enc k

+

L$

MAC

hash A

25 Network Security – IN2101, WS 2015/16

Offset Codebook Mode

 Question: XOR plaintext and then encrypt, that sounds like the

weak MAC example from Chapter 2.2. Why is OCB more

secure than the easy-to-break example?

 “OCB enjoys provable security: the mode of operation is secure

assuming that the underlying blockcipher is secure. As with

most modes of operation, security degrades as the number of

blocks processed gets large” [RFC 7253]

26 Network Security – IN2101, WS 2015/16

Galois/Counter Mode (GCM)

 Galois/Counter Mode (GCM)

 Developed by John Viega and David A. McGrew

 Standardized by NIST in 2007, IETF standards for cipher suites

with AES-GCM for TLS (SSL) and IPSec exist.

 Follows the Encrypt-then-MAC concept

 Combines concept of Counter Mode for encryption with Galois

Field Multiplication to compute MAC on the ciphertext

 GF(2^128) based on polynomial x^128 + x^7 + x^2 + x+1

 Definitions

 H is Enc(k,0)

 Auth Data is data not to be encrypted. GCM generates check value

by XOR and GF multiplication with H for each block.

 For the MAC, this process continues on the ciphertext and a length

field in the end.

27 Network Security – IN2101, WS 2015/16

Galois/Counter Mode (GCM)

Image from Wikipedia, Author from NIST.

MAC

Starts with IV,

not with 0.

28 Network Security – IN2101, WS 2015/16

Galois Field Multiplication

 In a Galois Field we consider the bitstring to represent a polynomial.

 E.g. 1011 = x^3 + x +1

 As a consequence Galois Field Multiplication is based on polynomial

multiplication modulus the polynomial of the field.

 Example: In GF(2^128) based on polynomial g(x) = x^128 + x^7 + x^2

+ x+1

 P(x) = x^127+x^7

 Q(x) = x^5 + 1

 P(x)*Q‘(x) = x^132 + x^127 + x^12 + x^7

 To compute the modulus, we have to compute a polynomial division

P(x)*Q(x)/g(x).

 We can see that x^4 * g(x) removes the x^132, so P(x)*Q(x)-x^4*g(x) =

x^127 + x^12 + x^11 + x^7 + x^6 + x^5 + x^4

 Since this polynomial fits into the 128 bit, this is the remainder of the

division, thus the result, in bits: 1000…01100011110000.

29 Network Security – IN2101, WS 2015/16

References

[Bell95] M. Bellare and P. Rogaway, Provably Secure Session Key
Distribution - The Three Party Case, Proc. 27th STOC, 1995, pp
57--64

[Boyd03] Colin Boyd, Anish Mathuria, “Protocols for Authentication and Key
Establishment”, Springer, 2003

[Bry88a] R. Bryant. Designing an Authentication System: A Dialogue in
Four Scenes. Project Athena, Massachusetts Institute of
Technology, Cambridge, USA, 1988.

[Diff92] W. Diffie, P. C. van Oorschot, and M. J. Wiener. Authentication
and authenticated key exchanges. Designs, Codes, and
Cryptography, 1992

[Dol81a] D. Dolev, A.C. Yao. On the security of public key protocols.
Proceedings of IEEE 22nd Annual Symposium on Foundations of
Computer Science, pp. 350-357, 1981.

[Fer00] Niels Ferguson, Bruce Schneier, “A Cryptographic Evaluation of
IPsec”. http://www.counterpane.com/ipsec.pdf 2000

[Fer03] Niels Ferguson, Bruce Schneier, „Practical Cryptography“, John
Wiley & Sons, 2003

[Gar03] Jason Garman, “Kerberos. The Definitive Guide”, O'Reilly Media,
1st Edition, 2003

30 Network Security – IN2101, WS 2015/16

References

[Kau02a] C. Kaufman, R. Perlman, M. Speciner. Network
 Security. Prentice Hall, 2nd edition, 2002.

[Koh94a] J. Kohl, C. Neuman, T. T'so, The Evolution of the
 Kerberos Authentication System. In Distributed Open
 Systems, pages 78-94. IEEE Computer Society Press,
 1994.

[Mao04a] W. Mao. Modern Cryptography: Theory & Practice.
 Hewlett-Packard Books, 2004.

[Nee78] R. Needham, M. Schroeder. Using Encryption for
 Authentication in Large Networks of Computers.
 Communications of the ACM, Vol. 21, No. 12, 1978.

[Woo92a] T.Y.C Woo, S.S. Lam. Authentication for distributed
 systems. Computer, 25(1):39-52, 1992.

[Lowe95] G. Lowe, „An Attack on the Needham-Schroeder
 Public-Key Authentication Protocol”, Information
 Processing Letters, volume 56, number 3, pages
 131- 133, 1995.

31 Network Security – IN2101, WS 2015/16

References

[OCB1] Rogaway, P., Bellare, M., Black, J., and T. Krovetz,

 "OCB: A Block-Cipher Mode of Operation for Efficient

 Authenticated Encryption", ACM Conference on

 Computer and Communications Security 2001 - CCS

[OCB] T.Krovetz, P. Rogaway, „The OCB Authenticated-

 Encryption Algorithm“

 http://tools.ietf.org/html/draft-irtf-cfrg-ocb-03

[RFC 4106] The Use of Galois/Counter Mode (GCM) in IPsec

 Encapsulating Security Payload (ESP)

[RFC 5288] AES Galois Counter Mode (GCM) Cipher Suites for

 TLS.

[RFC 7253] The OCB Authenticated-Encryption Algorithm

32 Network Security – IN2101, WS 2015/16

Additional references from the IETF

[RFC2560] M. Myers, et al., “X.509 Internet Public Key

 Infrastructure Online Certificate Status Protocol –

 OCSP”, June 1999

[RFC3961] K. Raeburn, “Encryption and Checksum Specifications

 for Kerberos 5”, February 2005

[RFC3962] K. Raeburn, “Advanced Encryption Standard (AES)

 Encryption for Kerberos 5”, February 2005

[RFC4757] K. Jaganathan, et al., “The RC4-HMAC Kerberos

 Encryption Types Used by Microsoft Windows ”,

 December 2006

[RFC4120] C. Neuman, et al., “The Kerberos Network

 Authentication Service (V5)”, July 2005

[RFC4537] L. Zhu, et al, “Kerberos Cryptosystem Negotiation

 Extension”, June 2006

[RFC5055] T. Freeman, et al, “Server-Based Certificate Validation

 Protocol (SCVP)”, December 2007

