Network Security

Secure Channel Add-On




% Overview

o Partl: The Secure Channel

o Part ll: Attacks against Secure Channel

o Part lll: Authenticated Encryption
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—x— Attacks against Secure Channel with Stream Tum
% Ciphers ¥

a Partl: The Secure Channel
o Partll: Attacks against Secure Channel
0 Attacks against Secure Channel with Stream Cipher

o Part lll: Authenticated Encryption
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% Re-use of Initialization Vector

0 Re-use of Initialization Vector (1V)

IV

—> 1011000101011000101

K-

Xor

P1=0010001010110101010
Cl1=1001001111101101111

Then some time later the same IV is used again:

IV

K-~

—> 1011000101011000101

XOor

P2=1100000000011111011
C2=0111000101000111110

Network Security — IN2101, WS 2015/16



% Re-use of Initialization Vector UM

0 Re-use of Initialization Vector (IV) continued
C1=1001001111101101111

C2=01110001010001121110

Cl1+C2=1110001010101010001
—T=—S=—=—======== __ - P1+P2=C1+C2
P1+P2=1110001010101010001

P1=0010001010110101010
P2=1100000000011111011

a As we see from the example, the attacker can computer C1+C2
because he observes C1 and C2, but that means he knows also
P1+P2.

a Known Plaintext (e.g. P1) =» attacker can compute other plaintext

Q Statistical properties of plaintext can be used if plaintext is not
random-looking. That means if entropy of P1+P2 is low.
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—x— Attacks against Secure Channel with Stream Tum
% Ciphers ¥

a Partl: The Secure Channel
o Partll: Attacks against Secure Channel

0 Padding Oracle Attack against bad combination of
CBC mode and MAC

o Part lll: Authenticated Encryption
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% Guessing a secret (revisited)

Q

Passwords
* N: size of alphabet (number of different characters)
» L:length of password in characters
Complexity of guessing a randomly-generated password / secret
= The assumption is, we generate a password and then we test it.
> O(NDH)
Complexity of guessing a randomly-generated password character by
character

* The assumption is that we can check each character individually
for correctness.

= For each character it is N/2 (avg) and N (worst case)
»= So, overall L*N/2 (avg)

In the subsequent slides we will show an attack that reduces the
decryption of a blockcipher in CBC mode to byte-wise decryption
(under special assumptions).
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% MAC-then-Encrypt Issues 1

P MAC
Ciphertext

a Operation
= P and MAC are encrypted and hidden in the ciphertext.

= Receiver
* Decrypts P
* Decrypts MAC
« Computes and checks MAC ->MAC error or success

o Consequence
= MAC does not protect the ciphertext.
= |ntegrity check can only be done once everything is decrypted.

= As a consequence, receiver will detect malicious messages at the
end of the secure channel processing and not earlier.

= But is that more than a performance issue? Well, yes.
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% MAC-then-Encode-then-Encrypt

TUTI

o If we use a block cipher, we have to ensure that the message encoding fits to

the blocksize of the cipher.

P

Pad

MAC

o Encode-then-MAC-then-Encrypt:

Ciphertext

» Format P so that with the MAC
added the encryption sees the right size.

= Needs that we know the size of the MAC and blocksize of cipher when

generating P | Padding.

o MAC-then-Encode-then-Encrypt P

MAC

Pad

= Usedin TLS/SSL

Ciphertext

= Here, we add the MAC first
and then pad the P | MAC to the correct size.

= How do we know what is padding and what not? Padding in TLS/SSL.:

 If size of padding is 1 byte, the padding is 1.
 If size of padding is 2 bytes, the padding is 2 2.

 If size of padding is 3 bytes, the padding is 3 3 3.
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% Oracles and Side Channels UM

0 In ancient times, people asked oracles for guidance.

O In computer science, oracles are functions that give as cheaply access to
information that would otherwise hard to compute.

= E.g. O(1) cost to ask specific NP-complete question - polynomial
hierarchy

o In cryptography, an attacker can trigger some participant O in a protocol or
communication to leak information that might or might not be useful.

= Participant O may re-encrypt some message fragment
= Participant O responds with an error message explaining what went wrong
» Response time of participant O may indicate where error happened

= Response time may leak information about key if processing time depends
(enough) on which bits are set to 1.

» More obvious for the computationally expensive public key algorithms, but
implementations of symmetric ciphers have also been attacked.
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% Side Channels and Padding Oracles 1

o Side Channel Attacks

= A general class of attacks where the attacker gains information
from aspects of the physical implementation of a cryptosystem.

= Can be based on: Timing, Power Consumption, Radiation, ...

P Pad
Ciphertext

o Padding Oracle

» The oracle tells the attacker if the padding in the message was
correct.

= This may be due to a message with the information.
» |t can also be due to side channel like the response time.
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Qﬁ Concept of Padding Oracle Attack (against CBC)  TLUTI

0 Attacker sees unknown ciphertext C =
that was sent from Alice to Bob

P

MAC

Pad

Ciphertext

a To decrypt the ciphertext, the attacker modifies C and sends it

to Bob.

PA MACA

PadA

o CiphertextA

\ »

A

a Itis unlikely that the MAC and padding are correct. So, Bob will
send an error back to Alice (and the attacker).

o In earlier versions of TLS, Bob sent back different error
messages for padding errors and for MAC errors.
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% Padding Oracle Attack — CBC mode decryption
AL (revisited)

0 Encryption and Decryption in CBC mode

CBC Time =1 Time =2 Time =n
P, P, P,
=t e
Encrypt | K —Encrypt K —Encrypt K — Encrypt
C, C,— C,
C, C, C,
Decrypt | K —Decrypt K —Decrypt K —Decrypt
|V4>%-> :(—% > Cn_laé-j
P, P, P,
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% Padding Oracle Attack against CBC UM

0 We have n blocks and N bytes per block. The attacker first wants to decrypt
the last block C,,.

0 Inorder to do so, he starts with the last byte C, \ of the block C ;. If he
changes this byte (blue bytes are changed bytes)

Ch1 Chan C,
OaTTTn
K — Decrypt K — Decrypt
OTTTTTT7] I:I:I:EEI:I:./
I:)n-l I:)n

= the MAC will most likely be invalid (chance 1 in 2™ for MAC length m)
= the padding will be invalid unless C,, \ xor P, =1 (chance 1 in 256)

=> After testing the 256 values for C, , \ all of them produced padding errors
except for one that matches C,; \ xor P, = 1.

=> We know P, . The original P is then OrigP, = OrigC,,_; \ Xor P, .
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% Padding Oracle Attack against CBC (2) 1

0 Now, the byte P, ;. For that we produce a padding of length 2.
0 Since we know P, we can calculate C_, \ so that C,, \ xor P, =2
0 Now, we have to find the C,, \_, that satisfies C,_; ., Xor P, \.,=2

Cn-1 Cn-liN Cn
O Tn
K — Decrypt K — Decrypt
— PN
11717111 I:I:I:I:I:I:-/
I:)n-l I:)n

o With the same argument as before, we need to try up to 256 values, all values
except for the correct one will generate a padding error. The correct one will
produce a MAC error.

=> We know P, . -
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% Padding Oracle Attack against CBC (3) 1

o To completely decrypt C, we have to repeat the procedure until
all bytes of the block are decrypted. In the figure with 8 bytes
per block, the last padding we generate is 88 8 8 8 8 8 8.

a To decrypt C,; we can cut off C, and repeat the same
procedure with C_ , as last block. For decrypting C, we can use
the IV as ciphertext for the attack modifications.

Cn-2 CH-Z,N Cn-l vV IVﬂ Cl
(] EI:I:D:I:-/ OO Tn
K —Decrypt K —Decrypt K —Decrypt
4%-) ><% Pn-l,N > %} Pin
I:)n 2 I:)n-l Pl
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% Final Remarks

0 The attack was against CBC mode used in MAC-then-Encode-
then-Encrypt mode.

» Padding Oracle attack known long in cryptography.

= Mode still used in SSL / TLS. Hacks have utilized that.
However, defenses have been added.

o CBC with Encode-then-Encrypt-then-MAC does not have this
vulnerability.

= Because MAC check would fall first, process would be
aborted, and padding problems would then not be leaked.
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% Overview

o Partl: The Secure Channel

o Partll: Attacks against Secure Channel

o Part lll: Authenticated Encryption
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% Authenticated Encryption 1

0 Observations and Thoughts
= Encryption - go over the data with some encryption mode
= Integrity and authentication - go over the data with some MAC mode
= Usually, both is needed. - Two passes over the data.

= Difficult to do right. 2> Why not simplify process by providing both with one
API call.

0 Authenticated Encryption (AE)
= Block Cipher Mode that provides Confidentiality, Integrity, and Authenticity
« Any combination (e.g. AES-CTR-SHA-1-HMAC) would fall into the category

= Some modern authenticated encryption modes do not combine an
encryption mode with a MAC mode, but they provide both in one mode.

* Needs only one pass over the data.

= Examples for AE modes are GCM (Galois/Counter Mode),
OCB (Offset Codebook Mode), CCM (Counter with CBC-MAC).
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% Offset Codebook Mode (OCB) UM

o Offset Codebook Mode

Authenticated Encryption Mode
Proposed 2001 [OCB1]
Standardized May 2014 [RFC 7253]

Encryption

 Inspired by ECB with block-dependent offsets (avoids ECB problems!)
Associated Data A

« A is not encrypted but authenticated

» For example: Unencrypted header data

MAC
« Checksum = XOR over plaintext, length- and key-dependent variables
« MAC = (Encryption of checksum with shared key k) XOR (hash(k,A))

Requires only one key K for encryption and authentication
Requires a fresh nonce every time
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% Offset Codebook Mode 1

a0 Let double be multiplication by the variable in the OCB Galois Filed
0 Variables depending on the key: L, Lg, Lo, Ly, Ly ...
= L, =Enc,(0)
= L, =double(Ly)
= |,=double(Ly)
* L, =double(L,)
Q Let ntz be number of trailing zeros (zero bits at the end)
0 Usage of the L’s
0 Lg—> MAC

o L, = LastBlock
a L., = intermediate blocks

a Note: L, Is used
a Only few L, are needed (for a fixed K)

QO They can be pre-computed and stored in a Lookup table
Network Security — IN2101, WS 2015/16 21



Qﬁ Offset Codebook Mode (OCB)

I—ntz(i) I—ntz(i+1)
Offset., + Offset. + Offset,, —>
I:)i I:)i+1
+\/ +\/
k =1 Enc k =1 Enc
+ +
Ci Ci+1

Checksum, %

Network Security — IN2101, WS 2015/16

Checksum, % Checksum,, —>

22



% OCB Initialization

o Offset, depends on the key and the nonce

Q “ltis crucial that, as one encrypts, one does not repeat a
nonce.”

[RFC 7253, §5.1]
o Nonce may not be random, e.g. a counter works fine

o A new nonce for every authenticated encryption API call is

needed!

0 Detalils about the initialization:

http://www.cs.ucdavis.edu/~rogaway/ocb/ocb-fag.htm

Network Security — IN2101, WS 2015/16
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Qﬁ OCB - Last Block and MAC

Offset, , éﬁ Offset 4

Pad
dingJ C %

Checksumn_1@
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% Offset Codebook Mode 1

0 Question: XOR plaintext and then encrypt, that sounds like the
weak MAC example from Chapter 2.2. Why is OCB more
secure than the easy-to-break example?

o “OCB enjoys provable security: the mode of operation is secure
assuming that the underlying blockcipher is secure. As with
most modes of operation, security degrades as the number of
blocks processed gets large” [RFC 7253]
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% Galois/Counter Mode (GCM)

0 Galois/Counter Mode (GCM)

Developed by John Viega and David A. McGrew

Standardized by NIST in 2007, IETF standards for cipher suites
with AES-GCM for TLS (SSL) and IPSec exist.

Follows the Encrypt-then-MAC concept

Combines concept of Counter Mode for encryption with Galois
Field Multiplication to compute MAC on the ciphertext

GF(27128) based on polynomial x*128 + X7 + x"2 + x+1

o Definitions

H is Enc(k,0)

Auth Data is data not to be encrypted. GCM generates check value
by XOR and GF multiplication with H for each block.

For the MAC, this process continues on the ciphertext and a length
field in the end.

Network Security — IN2101, WS 2015/16
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% Galois/Counter Mode (GCM) UM

Starts with 1V,
not with 0. — [ Comtert }»{Tne )+ Comter1 }—»{Tinar }—»{ Comtmz |

)

Image from Wikipedia, Author from NIST.
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% Galois Field Multiplication

a In a Galois Field we consider the bitstring to represent a polynomial.
= E.g.1011= x"3+x+1

a As a conseguence Galois Field Multiplication is based on polynomial
multiplication modulus the polynomial of the field.

o Example: In GF(27128) based on polynomial g(x) = x*128 + x"7 + x"2
+ x+1

a

Q
Q
Q

P(X) = xM127+x™7

Q(X)=x"5+1

P(x)*Q'(x) = xM32 + xM27 + xM2 + x7

To compute the modulus, we have to compute a polynomial division
P(X)*Q(x)/g(X).

We can see that x*4 * g(x) removes the x"132, so P(X)*Q(X)-x**g(x) =
XNM27 + xXM2 + XML + XN+ XM+ xXM5 + xM

Since this polynomial fits into the 128 bit, this is the remainder of the
division, thus the result, in bits: 1000...01100011110000.
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