

Network Security Chapter 3

Cornelius Diekmann

Lehrstuhl für Netzarchitekturen und Netzdienste Institut für Informatik Technische Universität München

Version: October 21, 2015

Security Policies and Firewalls

Introduction: What does secure mean?

Definition: Security Policy

"A security policy, a specific statement of what is and is not allowed, defines the system's security." [Bishop03]

Definition: Security Mechanisms

"Security Mechanisms enforce the policies; their goal is to ensure that the system never enters a disallowed state." [Bishop03]

- Examples of Security Mechanisms:
 - IPsec gateways, firewalls, SSL, ...
- A system is secure if, started in an allowed state, always stays in states that are allowed.
- ► The policy *defines* security, the security mechanisms *enforce* it.

- Requirements
 - Define security goals
 - ▶ ,,,,,
 - "What do we want?"
- Policy
 - Rules to implement the requirements
 - "How to get there?"
- Mechanisms
 - Enforce the policy

- Requirements
 - Define security goals What were those again?
 - ▶ , , , , ,
 - "What do we want?"
- Policy
 - Rules to implement the requirements
 - "How to get there?"
- Mechanisms
 - Enforce the policy

- Requirements
 - Define security goals What were those again?
 - Data Integrity, , , , ,
 - "What do we want?"
- Policy
 - Rules to implement the requirements
 - "How to get there?"
- Mechanisms
 - Enforce the policy

- Requirements
 - Define security goals What were those again?
 - Data Integrity, Confidentiality, , , ,
 - "What do we want?"
- Policy
 - Rules to implement the requirements
 - "How to get there?"
- Mechanisms
 - Enforce the policy

- Requirements
 - Define security goals What were those again?
 - Data Integrity, Confidentiality, Availability, , ,
 - "What do we want?"
- Policy
 - Rules to implement the requirements
 - "How to get there?"
- Mechanisms
 - Enforce the policy

- Requirements
 - Define security goals What were those again?
 - Data Integrity, Confidentiality, Availability, Authenticity, ,
 - "What do we want?"
- Policy
 - Rules to implement the requirements
 - "How to get there?"
- Mechanisms
 - Enforce the policy

- Requirements
 - Define security goals What were those again?
 - Data Integrity, Confidentiality, Availability, Authenticity, Accountability,
 - "What do we want?"
- Policy
 - Rules to implement the requirements
 - "How to get there?"
- Mechanisms
 - Enforce the policy

- Requirements
 - Define security goals
 - Data Integrity, Confidentiality, Availability, Authenticity, Accountability, Controlled Access
 - "What do we want?"
- Policy
 - Rules to implement the requirements
 - "How to get there?"
- Mechanisms
 - Enforce the policy

A network admin reports:

- Security Requirements:
- Security Policy:
- Security Mechanisms:

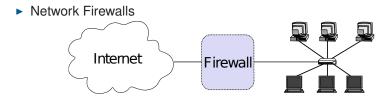
A network admin reports:

- Security Requirements: Sender accountability of all internal eMails
- Security Policy:
- Security Mechanisms:

A network admin reports:

- Security Requirements: Sender accountability of all internal eMails
- Security Policy: All eMails must be cryptographically signed
- Security Mechanisms:

A network admin reports:


- Security Requirements: Sender accountability of all internal eMails
- Security Policy: All eMails must be cryptographically signed
- Security Mechanisms: X.509 certificates + signatures, dropping of unsigned eMails by mailserver

A closer look at policy-heavy security mechanisms Network Firewalls

Network Firewalls

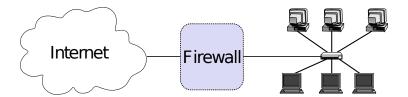
Do not confuse with host-based firewalls!

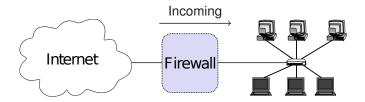
- Building construction
 - Keep a fire from spreading from one part of the building to another

- Building construction
 - Keep a fire from spreading from one part of the building to another

Network:

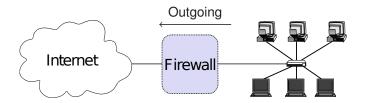
- Building construction
 - Keep a fire from spreading from one part of the building to another
- Network: Better compared to a moat of a medieval castle


- Building construction
 - Keep a fire from spreading from one part of the building to another
- Network: Better compared to a moat of a medieval castle
 - Restricts people to enter at one carefully controlled point
 - Prevents attackers from getting close to other defenses
 - Restricts people to leave at one carefully controlled point

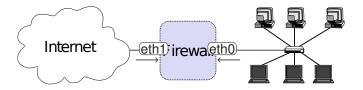


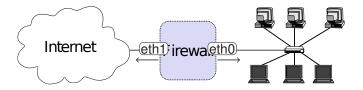
Placing Firewalls

- Controlled Access at the network level
- Install where a protected subnetwork is connected to a less trusted network
- If not specified otherwise, we assume
 - Firewall is placed between Internet and local network

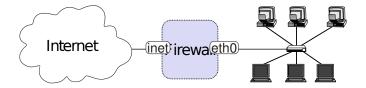


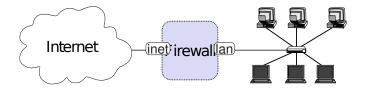
- Different views
- View 1 (e.g. by admin of the LAN)
 - Incoming: from the Internet to the local network
 - Outgoing: from the local network to the Internet


- Different views
- View 1 (e.g. by admin of the LAN)
 - Incoming: from the Internet to the local network
 - Outgoing: from the local network to the Internet


- Different views
- View 1 (e.g. by admin of the LAN)
 - Incoming: from the Internet to the local network
 - Outgoing: from the local network to the Internet
- View 2 (e.g. by firewall man page)
 - On each interface, there are incoming and outgoing packets

- Different views
- View 1 (e.g. by admin of the LAN)
 - Incoming: from the Internet to the local network
 - Outgoing: from the local network to the Internet
- View 2 (e.g. by firewall man page)
 - On each interface, there are incoming and outgoing packets


- Different views
- View 1 (e.g. by admin of the LAN)
 - Incoming: from the Internet to the local network
 - Outgoing: from the local network to the Internet
- View 2 (e.g. by firewall man page)
 - On each interface, there are incoming and outgoing packets


► For convenience:

- ► For convenience:
- # ip link set eth1 name inet

- ► For convenience:
- # ip link set eth1 name inet
- # ip link set eth0 name lan

What does a firewall do?

By default: nothing!

What does a firewall do?

- By default: nothing!
- Needs to be configured.

Strategies

- Whitelisting
 - Default deny strategy: Everything not explicitly permitted is denied
- Blacklisting
 - Default permit strategy: Everything not explicitly forbidden is permitted

Strategies

- Whitelisting
 - Default deny strategy: Everything not explicitly permitted is denied
 - Increased security
- Blacklisting
 - Default permit strategy: Everything not explicitly forbidden is permitted
 - Less hassle with users

Strategies

- Whitelisting
 - Default deny strategy: Everything not explicitly permitted is denied
 - Increased security
- Blacklisting
 - Default permit strategy: Everything not explicitly forbidden is permitted
 - Less hassle with users
- Best Practice: Whitelisting

Example: Strict Whitelisting

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
A	lan	192.168.0.0/16	0.0.0.0/0	TCP	> 1023	80	New,Est.	Accept
B	inet	0.0.0.0/0	192.168.0.0/16	TCP	80	> 1023	Est.	Accept
C	*	0.0.0.0/0	0.0.0.0/0	*	*	*	*	Drop

- Policy: Allow outgoing HTTP (TCP port 80), deny the rest
- LAN can initiate outgoing HTTP connections
 - Example: SYN
- The Internet may respond to established connections
 - Example: SYN,ACK
- LAN may use established connections
 - Example: ACK, HTTP GET / HTTP/1.0
- Everything else is prohibited
 - Example: DNS

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
B C	lan inet *	192.168.0.0/16 0.0.0.0/0 0.0.0.0/0	0.0.0.0/0 192.168.0.0/16 0.0.0.0/0	TCP TCP *	> 1023 80 *	80 > 1023 *	New,Est. Est. *	Accept Accept Drop

- Policy: Allow outgoing HTTP (TCP port 80), deny the rest
- LAN can initiate outgoing HTTP connections
 - Example: SYN
- The Internet may respond to established connections
 - Example: SYN,ACK
- LAN may use established connections
 - Example: ACK, HTTP GET / HTTP/1.0
- Everything else is prohibited
 - Example: DNS

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
A	lan	192.168.0.0/16	0.0.0.0/0	TCP	> 1023	80	New,Est.	Accept
⇒B	inet	0.0.0/0	192.168.0.0/16	TCP	80	> 1023	Est.	Accept
C	*	0.0.0.0/0	0.0.0.0/0	*	*	*	*	Drop

- Policy: Allow outgoing HTTP (TCP port 80), deny the rest
- LAN can initiate outgoing HTTP connections
 - Example: SYN
- The Internet may respond to established connections
 - Example: SYN,ACK
- LAN may use established connections
 - Example: ACK, HTTP GET / HTTP/1.0
- Everything else is prohibited
 - Example: DNS

Rule Ifac	e Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
⇒AIarBineC*	192.168.0.0/16	0.0.0.0/0	TCP	> 1023	80	New, <mark>Est.</mark>	Accept
	0.0.0.0/0	192.168.0.0/16	TCP	80	> 1023	Est.	Accept
	0.0.0.0/0	0.0.0.0/0	*	*	*	*	Drop

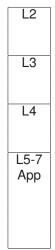
- Policy: Allow outgoing HTTP (TCP port 80), deny the rest
- LAN can initiate outgoing HTTP connections
 - Example: SYN
- The Internet may respond to established connections
 - Example: SYN,ACK
- LAN may use established connections
 - Example: ACK, HTTP GET / HTTP/1.0
- Everything else is prohibited
 - Example: DNS

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
A	lan	192.168.0.0/16	0.0.0.0/0	TCP	> 1023	80	New,Est.	Accept
B	inet	0.0.0.0/0	192.168.0.0/16	TCP	80	> 1023	Est.	Accept
⇒C	*	0.0.0.0/0	0.0.0.0/0	*	*	*	*	Drop

- Policy: Allow outgoing HTTP (TCP port 80), deny the rest
- LAN can initiate outgoing HTTP connections
 - Example: SYN
- The Internet may respond to established connections
 - Example: SYN,ACK
- LAN may use established connections
 - Example: ACK, HTTP GET / HTTP/1.0
- Everything else is prohibited
 - Example: DNS

Configuring Firewalls

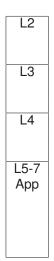
- A firewall is configured by a ruleset
 - Actually: rulelist
- For every packet, the ruleset is processed sequentially until a matching rule is found
- A rule consists of
 - Match condition
 - Action


Rules

- Actions
 - Accept
 - Drop, Reject
 - Log
 - ► ...
- Match Conditions
 - Incoming interface
 - All I2-I4 packet fields
 - MAC addresses, IP addresses, protocol, ports, flags, ...
 - Stateful matches
 - The firewall tracks connections for you
 - e.g. with the IP-5-tuple
 - Further advanced conditions
 - rate limiting, locally tagged packets, ...

Details on Packet Fields

- Link Layer (I2) Ethernet
 - EtherType
 - Usually: 0x0800 (IPv4)
 - Handle other EtherTypes: e.g. Drop 0x86DD (IPv6)
 - Ethernet MAC Address
 - Easily spoofable!
 - # ifconfig eth0 hw ether de:ad:be:ef:de:ad
- Network Layer (I3) IPv4
 - IP addresses
 - Transport protocol
 - TCP, UDP, ICMP, ...
 - Flags: IP fragment
 - Options: E.g. source routing
 - Please drop source routing!



Details on Packet Fields

L2 Transport Layer (I4) – TCP/UDP Ports Determine the sending / receiving application. L3 Limited degree of confidence Well-Known Ports (0-1023): E.g. HTTP (80), DNS (53), HTTPS (443). 14 Registered Ports (1024-49151) E.g. IRC (6667), BitTorrent tracker (6969), ... Ephemeral Ports (49151-65535): L5-7 ports meant to be used temporarily by clients. App Flags ACK: set in every segment of a connection but the very first SYN: only set in the first two segments RST: ungraceful close of a connection

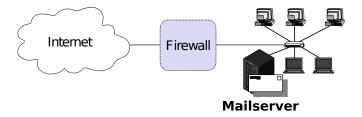
Details on Packet Fields

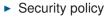
- Application Protocol (I5-7)
 - Deep Packet Inspection
 - usually not done by firewalls
 - easier to realize in proxy systems

- Arriving packets may generate state in the firewall.
- Connection tracking with the IP-5-tuple
 - (Src IP, Dst IP, Proto, Src Port, Dst Port)

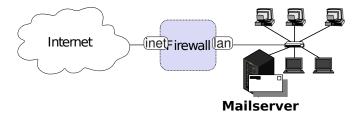
- Arriving packets may generate state in the firewall.
- Connection tracking with the IP-5-tuple
 - (Src IP, Dst IP, Proto, Src Port, Dst Port)
- States of a connection
 - NEW: First packet of a connection
 - ESTABLISHED: All following packets

- Arriving packets may generate state in the firewall.
- Connection tracking with the IP-5-tuple
 - (Src IP, Dst IP, Proto, Src Port, Dst Port)
- States of a connection
 - NEW: First packet of a connection
 - ESTABLISHED: All following packets
- Optional State tracking (depending on your firewall)
 - TCP sequence and ack numbers, and flags
 - ICMP sequence numbers and request/response tracking


- Arriving packets may generate state in the firewall.
- Connection tracking with the IP-5-tuple
 - (Src IP, Dst IP, Proto, Src Port, Dst Port)
- States of a connection
 - NEW: First packet of a connection
 - ESTABLISHED: All following packets
- Optional State tracking (depending on your firewall)
 - TCP sequence and ack numbers, and flags
 - ICMP sequence numbers and request/response tracking
- Note: UDP connection tracking as always an approximation!



- Arriving packets may generate state in the firewall.
- Connection tracking with the IP-5-tuple
 - (Src IP, Dst IP, Proto, Src Port, Dst Port)
- States of a connection
 - NEW: First packet of a connection
 - ESTABLISHED: All following packets
- Optional State tracking (depending on your firewall)
 - TCP sequence and ack numbers, and flags
 - ICMP sequence numbers and request/response tracking
- Note: UDP connection tracking as always an approximation!
 - Example: Attacker sends spoofed DNS replies in the hope that victim might accept one as an answer to a previous DNS query.



- Incoming and outgoing email should be the only allowed traffic into and out of a protected network
- Email is SMTP, TCP port 25
- Anyone in the internal network can send out emails to arbitrary mailservers in the Internet
- Incoming emails must only arrive at the Mailserver

- Security policy
 - Incoming and outgoing email should be the only allowed traffic into and out of a protected network
 - Email is SMTP, TCP port 25
 - Anyone in the internal network can send out emails to arbitrary mailservers in the Internet
 - Incoming emails must only arrive at the Mailserver

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
A	inet	external	mailserver	TCP	*	25	New	Accept
В	lan	internal	external	TCP	*	25	New	Accept
C	*	*	*	TCP	*	*	Est.	Accept
D	*	*	*	*	*	*	*	Drop

- Rule A allows new incoming SMTP (TCP port 25) connections to establish a connection with the internal Mailserver
- Rule B allows establishing SMTP connection from the internal network to the Internet
- Rule C allows all established connections. Only with rule A and B, a connection can be in the ESTABLISHED state.
- Rule D denies the rest (whitelisting)

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
⇒A	inet	external	mailserver	TCP	*	25	New	Accept
В	lan	internal	external	TCP	*	25	New	Accept
C	*	*	*	TCP	*	*	Est.	Accept
D	*	*	*	*	*	*	*	Drop

- Rule A allows new incoming SMTP (TCP port 25) connections to establish a connection with the internal Mailserver
- Rule B allows establishing SMTP connection from the internal network to the Internet
- Rule C allows all established connections. Only with rule A and B, a connection can be in the ESTABLISHED state.
- Rule D denies the rest (whitelisting)

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
A	inet	external	mailserver	TCP	*	25	New	Accept
⇒B	lan	internal	external	TCP	*	25	New	Accept
C	*	*	*	TCP	*	*	Est.	Accept
D	*	*	*	*	*	*	*	Drop

- Rule A allows new incoming SMTP (TCP port 25) connections to establish a connection with the internal Mailserver
- Rule B allows establishing SMTP connection from the internal network to the Internet
- Rule C allows all established connections. Only with rule A and B, a connection can be in the ESTABLISHED state.
- Rule D denies the rest (whitelisting)

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
A	inet	external	mailserver	TCP	*	25	New	Accept
В	lan	internal	external	TCP	*	25	New	Accept
⇒C	*	*	*	TCP	*	*	Est.	Accept
D	*	*	*	*	*	*	*	Drop

- Rule A allows new incoming SMTP (TCP port 25) connections to establish a connection with the internal Mailserver
- Rule B allows establishing SMTP connection from the internal network to the Internet
- Rule C allows all established connections. Only with rule A and B, a connection can be in the ESTABLISHED state.
- Rule D denies the rest (whitelisting)

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
A	inet	external	mailserver	TCP	*	25	New	Accept
В	lan	internal	external	TCP	*	25	New	Accept
C	*	*	*	TCP	*	*	Est.	Accept
⇒D	*	*	*	*	*	*	*	Drop

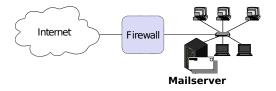
- Rule A allows new incoming SMTP (TCP port 25) connections to establish a connection with the internal Mailserver
- Rule B allows establishing SMTP connection from the internal network to the Internet
- Rule C allows all established connections. Only with rule A and B, a connection can be in the ESTABLISHED state.
- Rule D denies the rest (whitelisting)

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
A	inet	external	mailserver	TCP	*	25	New	Accept
В	lan	internal	external	TCP	*	25	New	Accept
C	*	*	*	TCP	*	*	Est.	Accept
D	*	*	*	*	*	*	*	Drop

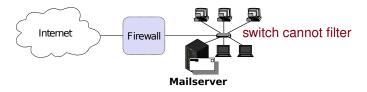
- Rule A allows new incoming SMTP (TCP port 25) connections to establish a connection with the internal Mailserver
- Rule B allows establishing SMTP connection from the internal network to the Internet
- Rule C allows all established connections. Only with rule A and B, a connection can be in the ESTABLISHED state.
- Rule D denies the rest (whitelisting)

Rule	lface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
A	inet	external	mailserver	TCP	*	25	New	Accept
В	lan	internal	external	TCP	*	25	New	Accept
C	*	*	*	*	*	*	Est.	Accept
D	*	*	*	*	*	*	*	Drop

- Rule A allows new incoming SMTP (TCP port 25) connections to establish a connection with the internal Mailserver
- Rule B allows establishing SMTP connection from the internal network to the Internet
- Rule C allows all established connections. Only with rule A and B, a connection can be in the ESTABLISHED state.
- Rule D denies the rest (whitelisting)
- Any difference?

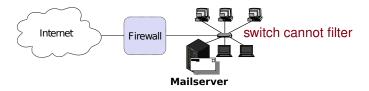

Rule	lface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
A	inet	external	mailserver	TCP	*	25	New	Accept
В	lan	internal	external	TCP	*	25	New	Accept
C	*	*	*	*	*	*	Est.	Accept
D	*	*	*	*	*	*	*	Drop

- Rule A allows new incoming SMTP (TCP port 25) connections to establish a connection with the internal Mailserver
- Rule B allows establishing SMTP connection from the internal network to the Internet
- Rule C allows all established connections. Only with rule A and B, a connection can be in the ESTABLISHED state.
- Rule D denies the rest (whitelisting)
- Any difference? No, only TCP can get get into Est. state!


Example: LAN with Mail Server – Discussion

- Can we do better?
 - Internal hosts can establish connections to the Mailserver
- Can we prevent his?

Example: LAN with Mail Server – Discussion


- Can we do better?
 - Internal hosts can establish connections to the Mailserver
- Can we prevent his?
 - No! The firewall cannot intercept these connections, attributable to the network topology.

This subverts the security policy

Example: LAN with Mail Server – Discussion

- Can we do better?
 - Internal hosts can establish connections to the Mailserver
- Can we prevent his?
 - No! The firewall cannot intercept these connections, attributable to the network topology.

- This subverts the security policy
- Simple fix 1: Check the security requirements, update the policy
- Simple fix 2: Replace the internal switch by a second firewall

- In the range of the well-known ports, is Mailserver on TCP dest. port 25 (incoming) the only entity which can exchange traffic with the Internet?
- Assume we are tcpdumping on the firewall.

- In the range of the well-known ports, is Mailserver on TCP dest. port 25 (incoming) the only entity which can exchange traffic with the Internet?
- Assume we are tcpdumping on the firewall.
 - No!

- In the range of the well-known ports, is Mailserver on TCP dest. port 25 (incoming) the only entity which can exchange traffic with the Internet?
- Assume we are tcpdumping on the firewall.
 - ► No!
 - Assume an internal host sends out a TCP packet with source and destination port 25 to shadymail.example

- In the range of the well-known ports, is Mailserver on TCP dest. port 25 (incoming) the only entity which can exchange traffic with the Internet?
- Assume we are tcpdumping on the firewall.
 - ► No!
 - Assume an internal host sends out a TCP packet with source and destination port 25 to shadymail.example
 - Rule B establishes a new state in the firewall.

- In the range of the well-known ports, is Mailserver on TCP dest. port 25 (incoming) the only entity which can exchange traffic with the Internet?
- Assume we are tcpdumping on the firewall.
 - ► No!
 - Assume an internal host sends out a TCP packet with source and destination port 25 to shadymail.example
 - Rule B establishes a new state in the firewall.
 - ► Now, for shadymail.example, using source port 25, the internal host is reachable on the well-known port 25!

- In the range of the well-known ports, is Mailserver on TCP dest. port 25 (incoming) the only entity which can exchange traffic with the Internet?
- Assume we are tcpdumping on the firewall.
 - No!
 - Assume an internal host sends out a TCP packet with source and destination port 25 to shadymail.example
 - Rule B establishes a new state in the firewall.
 - ► Now, for shadymail.example, using source port 25, the internal host is reachable on the well-known port 25!
 - Fix: make sure that only source ports > 1023 are allowed to establish a connection

Rule	lface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
A	inet	external	mailserver	TCP	*	25	New	Accept
В	lan	internal	external	TCP	*	25	New	Accept
C	*	*	*	*	*	*	Est.	Accept
D	*	*	*	*	*	*	*	Drop

Rule	lface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
A	inet	external	mailserver	TCP	> 1023	25	New	Accept
В	lan	internal	external	TCP	> 1023	25	New	Accept
C	*	*	*	*	*	*	Est.	Accept
D	*	*	*	*	*	*	*	Drop

Example: LAN with Mail Server – Tuning

- Firewall rules are matched sequentially
- Few packets will establish a new connection
- Many packets will use an established connection
- Move rule C to the front
- A connection can only be in ESTABLISHED state by rule A and B, the transformation preserves the semantics

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
С	*	*	*	*	*	*	Est.	Accept
A	inet	external	mailserver	TCP	> 1023	25	New	Accept
B	lan	internal	external	TCP	> 1023	25	New	Accept
D	*	*	*	*	*	*	*	Drop

Best Practice: Put the ESTABLISHED rule first

- Performance
 - Our firewall (September 2014)
 - > 15 billion packets, 19+ Terabyte data since the last reboot
 - > 95% of all packets match the ESTABLISHED rule
- Management
 - First rule: "enable stateful matching"
 - All following rules: Access control list

Stateless Filtering

- Only operates on the rules and each individual packet.
- ► No state information is generated when processing a packet.

- Only operates on the rules and each individual packet.
- ► No state information is generated when processing a packet.
- Keeping state is expensive and needs fast memory.

- Only operates on the rules and each individual packet.
- ► No state information is generated when processing a packet.
- Keeping state is expensive and needs fast memory.
- Only few rules: stateless filtering may be faster
 - *O*(# rules)

- Only operates on the rules and each individual packet.
- ► No state information is generated when processing a packet.
- Keeping state is expensive and needs fast memory.
- Only few rules: stateless filtering may be faster
 - *O*(# rules)
- Many rules: statefull filtering may be faster
 - ► Majority matches first rule, *O*(1) lookup

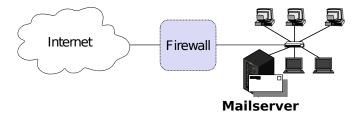
- Only operates on the rules and each individual packet.
- ► No state information is generated when processing a packet.
- Keeping state is expensive and needs fast memory.
- Only few rules: stateless filtering may be faster
 - *O*(# rules)
- Many rules: statefull filtering may be faster
 - Majority matches first rule, O(1) lookup
 - Possible DOS attacks
 - ► sending packets which need O(# rules) processing
 - Filling the state table

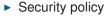
- Only operates on the rules and each individual packet.
- ► No state information is generated when processing a packet.
- Keeping state is expensive and needs fast memory.
- Only few rules: stateless filtering may be faster
 - *O*(# rules)
- Many rules: statefull filtering may be faster
 - Majority matches first rule, O(1) lookup
 - Possible DOS attacks
 - ▶ sending packets which need O(# rules) processing
 - Filling the state table
- Many network boxes have stateless firewall features embedded
 - Router access lists
 - Some switches

► ...

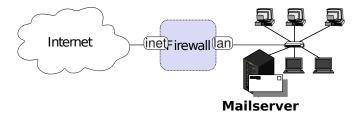
Rule of thumb

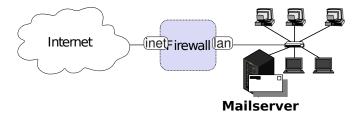
- Rule of thumb
- Stateless firewalls are more complex to configure


- Rule of thumb
- Stateless firewalls are more complex to configure
- Which makes configuration errors more likely


- Rule of thumb
- Stateless firewalls are more complex to configure
- Which makes configuration errors more likely
- Whenever possible, go for the statefull firewall!

- Rule of thumb
- Stateless firewalls are more complex to configure
- Which makes configuration errors more likely
- Whenever possible, go for the statefull firewall!
- Hardware is cheap




- Incoming and outgoing email should be the only allowed traffic into and out of a protected network
- Email is SMTP, TCP port 25
- Anyone in the internal network can send out emails to arbitrary mailservers in the Internet
- Incoming emails must only arrive at the Mailserver

- Security policy
 - Incoming and outgoing email should be the only allowed traffic into and out of a protected network
 - Email is SMTP, TCP port 25
 - Anyone in the internal network can send out emails to arbitrary mailservers in the Internet
 - Incoming emails must only arrive at the Mailserver

- Security policy
 - Incoming and outgoing email should be the only allowed traffic into and out of a protected network
 - Email is SMTP, TCP port 25
 - Anyone in the internal network can send out emails to arbitrary mailservers in the internet.
 - Incoming emails must only arrive at the Mailserver

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	Ack Action
A ₁	inet	external	mailserver	TCP	*	25	Accept
A ₂	lan	mailserver	external	TCP	*	> 1023	Accept
B ₁	lan	internal	external	TCP	*	25	Accept
B ₂	inet	external	internal	TCP	*	> 1023	Accept
С	*	*	*	*	*	*	Drop

- Rule A₁ allows incoming email to enter the network.
 Rule A₂ allows the mailserver's answers to exit the network.
- Rules B₂ and B₂ are analogous for outgoing email.
- Rule C denies all other traffic.

Rule	Iface	Src IP	Src Port	Dst Port	Ack Action		
$\Rightarrow A_1$	inet	external	mailserver	TCP	*	25	Accept
$\Rightarrow A_2$	lan	mailserver	external	TCP	*	> 1023	Accept
B ₁	lan	internal	external	TCP	*	25	Accept
B ₂	inet	external	internal	TCP	*	> 1023	Accept
C	*	*	*	*	*	*	Drop

- Rule A₁ allows incoming email to enter the network.
 Rule A₂ allows the mailserver's answers to exit the network.
- Rules B₂ and B₂ are analogous for outgoing email.
- Rule C denies all other traffic.

Rule	Rule Iface Src IP Dst IP Protocol Src Port Dst Port Ack Action									
A ₁	inet	external	mailserver	TCP	*	25	Accept			
A ₂	lan	mailserver	external	TCP	*	> 1023	Accept			
$\Rightarrow B_1$	lan	internal	external	TCP	*	25	Accept			
$\Rightarrow B_2$	inet	external	internal	TCP	*	> 1023	Accept			
C	*	*	*	*	*	*	Drop			

- Rule A₁ allows incoming email to enter the network.
 Rule A₂ allows the mailserver's answers to exit the network.
- Rules B₂ and B₂ are analogous for outgoing email.
- Rule C denies all other traffic.

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	Ack Action
A ₁	inet	external	mailserver	TCP	*	25	Accept
A ₂	lan	mailserver	external	TCP	*	> 1023	Accept
B ₁	lan	internal	external	TCP	*	25	Accept
B ₂	inet	external	internal	TCP	*	> 1023	Accept
⇒C	*	*	*	*	*	*	Drop

- Rule A₁ allows incoming email to enter the network.
 Rule A₂ allows the mailserver's answers to exit the network.
- Rules B₂ and B₂ are analogous for outgoing email.
- Rule C denies all other traffic.

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	Ack Action
A ₁	inet	external	mailserver	TCP	*	25	Accept
A ₂	lan	mailserver	external	TCP	*	> 1023	Accept
B ₁	lan	internal	external	TCP	*	25	Accept
B ₂	inet	external	internal	TCP	*	> 1023	Accept
С	*	*	*	*	*	*	Drop

- Rule A₁ allows incoming email to enter the network.
 Rule A₂ allows the mailserver's answers to exit the network.
- Rules B₂ and B₂ are analogous for outgoing email.
- Rule C denies all other traffic.

Discussion

- Packets with spoofed IP addresses
 - Inbound packets must have an external source address Rules A₁ and B₂
 - \longrightarrow successfully blocked
 - Same for outbound packets; Rules A₂ and B₁
- Telnet traffic
 - telnet server: TCP port 23

 - Same for outgoing telnet connections

Discussion – A possible attack

- Ruleset does not block the X11-protocol for the Mailserver
 - X11-server listens at port 6000, clients use port numbers > 1023
 - X11-protocol allows reading/manipulating the display and keystrokes
 - Incoming X11-request is not blocked (Rule B₂)
 - neither is any answer (Rule A₂)

Example: LAN with Mail Server – Fix # 1

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	Ack Action
A ₁	inet	external	mailserver	TCP	> 1023	25	Accept
A ₂	lan	mailserver	external	TCP	25	> 1023	Accept
B ₁	lan	internal	external	TCP	> 1023	25	Accept
B ₂	inet	external	internal	TCP	25	> 1023	Accept
С	*	*	*	*	*	*	Drop

- Fixing the flaw: include source ports
 - Outbound traffic to ports > 1023 only allowed if the source port is 25 (Rule A₂) —> traffic from internal X-clients or -servers blocked
 - Same for inbound traffic to ports > 1023 (Rule B₂)
- Fix the attack: use non-standard port 25 for attacking X-client
 - Firewall will let this traffic pass

Example: LAN with Mail Server – Fix # 2

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	Ack	Action
A ₁	inet	external	mailserver	TCP	> 1023	25	*	Accept
A ₂	lan	mailserver	external	TCP	25	> 1023	Yes	Accept
B ₁	lan	internal	external	TCP	> 1023	25	*	Accept
B ₂	inet	external	internal	TCP	25	> 1023	Yes	Accept
С	*	*	*	*	*	*	*	Drop

- Checking whether the TCP ACK flag is set
- ACK flag not set is required for establishing new connection
 - C.f. TCP 3-way handshake
- Rule of thumb: ACK \approx not NEW

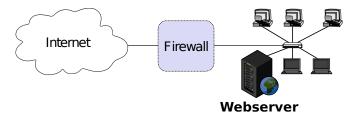
Stateless filtering – The ACK flag

- ACK flag: approximate the state of TCP connections
- Assumes that information in packets can be trusted
 - Attacker could send SYN/ACK as initial packet
 - Passes the firewall.
 - Hosts will ignore it .

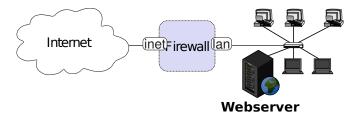
Stateless filtering – The ACK flag

- ACK flag: approximate the state of TCP connections
- Assumes that information in packets can be trusted
 - Attacker could send SYN/ACK as initial packet
 - Passes the firewall.
 - ► Hosts will ignore it if they don't have a flaw int their network stack.

Stateless filtering – The ACK flag


- ACK flag: approximate the state of TCP connections
- Assumes that information in packets can be trusted
 - Attacker could send SYN/ACK as initial packet
 - Passes the firewall.
 - Hosts will ignore it if they don't have a flaw int their network stack.
- Protocols such as UDP don't have state information
 - Not possible to differentiate between initiator and responder.
 - UDP has no ACK field: Always set ACK to *

Example: LAN with Web Server


Example: LAN with Web Server

- Security policy
 - Allow HTTP traffic initiated by external hosts to webserver
 - Allow internal hosts to initiate HTTP and DNS
 - HTTP: TCP port 80
 - DNS: UDP port 53
 - Do not allow other communication, in particular no communication initiated by external hosts to the local hosts other than the webserver.

Example: LAN with Web Server

- Security policy
 - Allow HTTP traffic initiated by external hosts to webserver
 - Allow internal hosts to initiate HTTP and DNS
 - HTTP: TCP port 80
 - DNS: UDP port 53
 - Do not allow other communication, in particular no communication initiated by external hosts to the local hosts other than the webserver.

Example: LAN with Web Server – Stafefull

Rule Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action

► First rule?

Example: LAN with Web Server – Stafefull

Rule Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
A *	*	*	*	*	*	Est.	Accept

► First rule?

Example: LAN with Web Server – Stafefull

Rule Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
A *	*	*	*	*	*	Est.	Accept

► First rule?

Allow HTTP traffic initiated by external hosts to webserver?

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
A B	inet	* external	* webserver	* TCP	* > 1023	* 80		Accept Accept

► First rule?

Allow HTTP traffic initiated by external hosts to webserver?

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
A	*	*	*	*	*	*		Accept
B	inet	external	webserver	TCP	> 1023	80		Accept

► First rule?

- Allow HTTP traffic initiated by external hosts to webserver?
- Allow internal hosts to initiate HTTP?

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
A B C	inet lan	* external internal	* webserver external	* TCP TCP	* > 1023 > 1023	* 80 80	Est. New New	Accept Accept Accept

- ► First rule?
- Allow HTTP traffic initiated by external hosts to webserver?
- Allow internal hosts to initiate HTTP?

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
A	*	*	*	*	*	*	Est.	Accept
B	inet	external	webserver	TCP	> 1023	80	New	Accept
C	Ian	internal	external	TCP	> 1023	80	New	Accept

- ► First rule?
- Allow HTTP traffic initiated by external hosts to webserver?
- Allow internal hosts to initiate HTTP? and DNS?

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
A	*	*	*	*	*	*	Est.	Accept
B	inet	external	webserver	TCP	> 1023	80	New	Accept
С	lan	internal	external	TCP	> 1023	80	New	Accept
D	lan	internal	external	UDP	> 1023	53	New	Accept

- First rule?
- Allow HTTP traffic initiated by external hosts to webserver?
- Allow internal hosts to initiate HTTP? and DNS?

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
A	*	*	*	*	*	*	Est.	Accept
B	inet	external	webserver	TCP	> 1023	80	New	Accept
С	lan	internal	external	TCP	> 1023	80	New	Accept
D	lan	internal	external	UDP	> 1023	53	New	Accept

- First rule?
- Allow HTTP traffic initiated by external hosts to webserver?
- Allow internal hosts to initiate HTTP? and DNS?
- ► Do not allow other communication ... ?

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	State	Action
A	*	*	*	*	*	*	Est.	Accept
В	inet	external	webserver	TCP	> 1023	80	New	Accept
С	lan	internal	external	TCP	> 1023	80	New	Accept
D	lan	internal	external	UDP	> 1023	53	New	Accept
E	*	*	*	*	*	*	*	Drop

First rule?

- Allow HTTP traffic initiated by external hosts to webserver?
- Allow internal hosts to initiate HTTP? and DNS?
- Do not allow other communication ... ?

Rule Iface	Src IP	Dst IP Prote	ocol Src	Port Dst F	Port Ack	Action

A first rule comparable to the stateful case?

Rule Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	Ack	Action

• A first rule comparable to the stateful case? No.

Rule Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	Ack	Action

A first rule comparable to the stateful case? No.

Allow HTTP traffic initiated by external hosts to webserver?

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	Ack	Action
B ₁	inet	external	webserver	TCP	> 1023	80		Accept
B ₂	Ian	webserver	external	TCP	80	> 1023		Accept

- A first rule comparable to the stateful case? No.
- Allow HTTP traffic initiated by external hosts to webserver?

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	Ack	Action
B ₁ B ₂		external webserver		TCP TCP		80 > 1023		

- A first rule comparable to the stateful case? No.
- Allow HTTP traffic initiated by external hosts to webserver?
- Allow internal hosts to initiate HTTP?

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	Ack	Action
$\begin{array}{ c c } B_1 \\ B_2 \\ C_1 \\ C_2 \end{array}$	inet Ian Ian inet	external webserver internal external	webserver external external internal	TCP TCP TCP TCP	> 1023 80 > 1023 80	80 > 1023 80 > 1023	Yes * Yes	Accept Accept Accept Accept

- A first rule comparable to the stateful case? No.
- Allow HTTP traffic initiated by external hosts to webserver?
- Allow internal hosts to initiate HTTP?

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	Ack	Action
$\begin{array}{ c c } B_1 \\ B_2 \\ C_1 \\ C_2 \end{array}$	inet Ian Ian inet	external webserver internal external	webserver external external internal	TCP TCP TCP TCP	> 1023 80 > 1023 80	80 > 1023 80 > 1023	Yes * Yes	Accept Accept Accept Accept

- A first rule comparable to the stateful case? No.
- Allow HTTP traffic initiated by external hosts to webserver?
- Allow internal hosts to initiate HTTP? and DNS?

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	Ack	Action
B ₁	inet	external	webserver	TCP	> 1023	80	*	Accept
B ₂	lan	webserver	external	TCP	80	> 1023	Yes	Accept
C ₁	lan	internal	external	TCP	> 1023	80	*	Accept
C ₂	inet	external	internal	TCP	80	> 1023	Yes	Accept
D ₁	lan	internal	external	UDP	> 1023	53	-	Accept
D ₂	inet	external	internal	UDP	53	> 1023	-	Accept

- A first rule comparable to the stateful case? No.
- Allow HTTP traffic initiated by external hosts to webserver?
- Allow internal hosts to initiate HTTP? and DNS?

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	Ack	Action
B ₁	inet	external	webserver	TCP	> 1023	80	*	Accept
B ₂	lan	webserver	external	TCP	80	> 1023	Yes	Accept
C ₁	lan	internal	external	TCP	> 1023	80	*	Accept
C ₂	inet	external	internal	TCP	80	> 1023	Yes	Accept
D ₁	lan	internal	external	UDP	> 1023	53	-	Accept
D ₂	inet	external	internal	UDP	53	> 1023	-	Accept

- A first rule comparable to the stateful case? No.
- Allow HTTP traffic initiated by external hosts to webserver?
- Allow internal hosts to initiate HTTP? and DNS?
- Do not allow other communication ... ?

Rule	Iface	Src IP	Dst IP	Protocol	Src Port	Dst Port	Ack	Action
B ₁	inet	external	webserver	TCP	> 1023	80	*	Accept
B ₂	lan	webserver	external	TCP	80	> 1023	Yes	Accept
C ₁	lan	internal	external	TCP	> 1023	80	*	Accept
C ₂	inet	external	internal	TCP	80	> 1023	Yes	Accept
D ₁	lan	internal	external	UDP	> 1023	53	-	Accept
D ₂	inet	external	internal	UDP	53	> 1023	-	Accept
E	*	*	*	*	*	*	*	Drop

- A first rule comparable to the stateful case? No.
- Allow HTTP traffic initiated by external hosts to webserver?
- Allow internal hosts to initiate HTTP? and DNS?
- Do not allow other communication ... ?

- Outgoing (to the Internet)
 - Only allow source IPs which belong to you

- Outgoing (to the Internet)
 - Only allow source IPs which belong to you
 - Don't be an operator who facilitates spoofed DOS attacks to the Internet!

- Outgoing (to the Internet)
 - Only allow source IPs which belong to you
 - Don't be an operator who facilitates spoofed DOS attacks to the Internet!
- Incoming (from the Internet)
 - Only allow 'valid' source IPs

- Outgoing (to the Internet)
 - Only allow source IPs which belong to you
 - Don't be an operator who facilitates spoofed DOS attacks to the Internet!
- Incoming (from the Internet)
 - Only allow 'valid' source IPs
 - For a varying definition of 'valid'

- Outgoing (to the Internet)
 - Only allow source IPs which belong to you
 - Don't be an operator who facilitates spoofed DOS attacks to the Internet!
- Incoming (from the Internet)
 - Only allow 'valid' source IPs
 - For a varying definition of 'valid'
 - IPs which belong to you are not valid

- Outgoing (to the Internet)
 - Only allow source IPs which belong to you
 - Don't be an operator who facilitates spoofed DOS attacks to the Internet!
- Incoming (from the Internet)
 - Only allow 'valid' source IPs
 - For a varying definition of 'valid'
 - IPs which belong to you are not valid
 - Local and special purpose IPs are not valid

- Outgoing (to the Internet)
 - Only allow source IPs which belong to you
 - Don't be an operator who facilitates spoofed DOS attacks to the Internet!
- Incoming (from the Internet)
 - Only allow 'valid' source IPs
 - For a varying definition of 'valid'
 - IPs which belong to you are not valid
 - Local and special purpose IPs are not valid
 - Rule of thumb: UNIV \setminus (Your IPs \cup Special Purpose IPs)

- Outgoing (to the Internet)
 - Only allow source IPs which belong to you
 - Don't be an operator who facilitates spoofed DOS attacks to the Internet!
- Incoming (from the Internet)
 - Only allow 'valid' source IPs
 - For a varying definition of 'valid'
 - IPs which belong to you are not valid
 - Local and special purpose IPs are not valid
 - Rule of thumb: UNIV \setminus (Your IPs \cup Special Purpose IPs)
- Spoofing must always be filtered close to the source. Why?

Example: Spoofing Protection

Assume your institutions owns 131.159.20.0/24

Rule	lface	Src IP	Dst IP	Action
Α	lan	! 131.159.20.0/24	*	Drop
В	inet	131.159.20.0/24	*	Drop
В	inet	192.168.0.0/16	*	Drop
В	inet	10.0.0/8	*	Drop
В	inet	172.16.0.0/12	*	Drop
В	*	*	*	Accept

There are more addresses you might want to drop [RFC6890]

Automatic Spoofing Protection

- The Linux kernel offers some spoofing protection for free
- /proc/sys/net/ipv4/conf/all/rp_filter
- ▶ If a packet arrives at interface *i*, the kernel checks
 - Is the source IP of the packet reachable through i
 - If not, drop the packet
- Only considers local routing and interface configuration

Common Errors

Common Errors

- How is your firewall management interface reachable?
 - From the Internet? From the complete internal network?
 - Via telenet? Via UPnP?
- What is allowed over the Internet?
 - NetBIOS? NFS? RPC? Telnet?
 - Other ICMP than Unreachable, Fragmentation Needed, TTL Exceeded, Ping?
 - IP header options?
- IPv4 and IPv6?
 - Are the rule sets compliant?
- Outbound rule ANY? (c.f. spoofing)
 - Even private IP ranges or IP ranges that don't belong to you?
- Policy's vs. Firewalls understanding of Inbound and Outbound?
 - If eth0 is your internal interface and the firewall says inbound on eth0, policy might say outbound.

Shadowing

"refers to the case where all the packets one rule intends to deny (accept) have been accepted (denied) by preceding rules" [fireman06]

Rule	Iface	Src IP	Dst IP	Action
A	*	*	192.168.0.0/16	Accept
В	*	*	192.168.42.0/24	Drop

Rule B will never match!

Another Example

- No spoofing for the following networks:
 - eth0 \leftrightarrow 10.0.0/16
 - eth1 \leftrightarrow 10.1.0.0/16
 - ▶ eth2 ↔ 10.2.0.0/16
- Accessible by all three networks: 10.1.1.1

Rule	Iface	Src IP	Dst IP	Action
A	eth0	! 10.0.0.0/16	*	Drop
В	eth1	! 10.1.0.0/16	*	Drop
С	*	*	10.1.1.1	Accept
D	eth2	! 10.2.0.0/16	*	Drop
E	*	*	*	Drop

Correct?

Another Example

- No spoofing for the following networks:
 - eth0 \leftrightarrow 10.0.0/16
 - ▶ eth1 ↔ 10.1.0.0/16
 - eth2 \leftrightarrow 10.2.0.0/16
- Accessible by all three networks: 10.1.1.1

Rule	Iface	Src IP	Dst IP	Action
A	eth0	! 10.0.0.0/16	*	Drop
В	eth1	! 10.1.0.0/16	*	Drop
С	*	*	10.1.1.1	Accept
D	eth2	! 10.2.0.0/16	*	Drop
E	*	*	*	Drop

- Correct?
- Anyone at eth2 can send spoofed packets to 10.1.1.1

Another Example

- No spoofing for the following networks:
 - eth0 \leftrightarrow 10.0.0/16
 - ▶ eth1 ↔ 10.1.0.0/16
 - eth2 \leftrightarrow 10.2.0.0/16
- Accessible by all three networks: 10.1.1.1

Rule	Iface	Src IP	Dst IP	Action
A	eth0	! 10.0.0.0/16	*	Drop
В	eth1	! 10.1.0.0/16	*	Drop
С	*	*	10.1.1.1	Accept
D	eth2	! 10.2.0.0/16	*	Drop
E	*	*	*	Drop

- Correct?
- Anyone at eth2 can send spoofed packets to 10.1.1.1
- Rule D is partly shadowed

What Firewalls can not do

A firewall

can't protect against malicious insiders

What Firewalls can not do

- A firewall
 - can't protect against malicious insiders
 - can't protect against connections that don't go through it

- can't protect against malicious insiders
- can't protect against connections that don't go through it
- can't protect against completely new threats

- can't protect against malicious insiders
- can't protect against connections that don't go through it
- can't protect against completely new threats
- can't fully protect against viruses

- can't protect against malicious insiders
- can't protect against connections that don't go through it
- can't protect against completely new threats
- can't fully protect against viruses
- does not perform cryptographic operations, e.g. message authentication

- can't protect against malicious insiders
- can't protect against connections that don't go through it
- can't protect against completely new threats
- can't fully protect against viruses
- does not perform cryptographic operations, e.g. message authentication
- can't set itself up correctly

Bastion Hosts

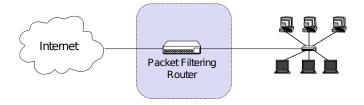
Bastion Hosts

Definition:

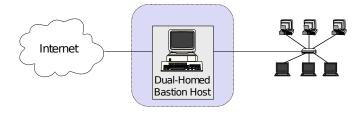
"A bastion host is a host that is more exposed to the hosts of an external network than the other hosts of the network it protects."

- A bastion host may serve for different purposes:
 - Packet filtering
 - Providing proxy services
 - A combination of both

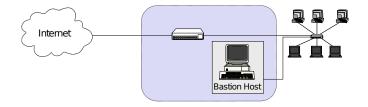
Securing Bastion Hosts


- Keep it simple
- Prepare for the bastion host to be compromised
- Connect in such a way that it cannot sniff internal traffic
- Extensive and tamper-resistant logging
- Reliable hardware configuration and physically secure location
- Disable ssh password login (only public key login)
- Disable user accounts
- Monitor the machine closely (reboots, usage / load patterns, etc.)
- Regular backups

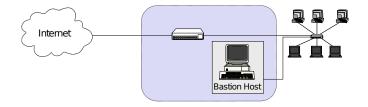
Firewall Architectures


Simple Packet Filter Architecture

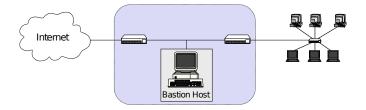
A packet filtering router or firewall with two interfaces


Dual-Homed Host Architecture

- Dual-Homed: Host is part of two networks (has two NICs)
- Bastion Host is Firewall + Application Proxy
- Drawbacks
 - Bastion Host is bottleneck
 - Compromised Bastion Host is worst-case scenario


Screened Host Architecture

- Packet filter protects network an Bastion Host
- Bastion Host is Proxy (may be accessible from the Internet)
 - Compromised Bastion Host compromises the internal network


Screened Host Architecture

- Packet filter protects network an Bastion Host
- Bastion Host is Proxy (may be accessible from the Internet)
 - Compromised Bastion Host compromises the internal network
- If you have a home server and configured port-forwarding on your router, this is probably your architecture

Screened Subnet Architecture – DMZ

- Demilitarized Zone (DMZ): perimeter network
- Hosts Bastion Host (Proxy) and publicly accessible servers
- Second packet filter in case they are compromised

 —> Protection for the internal network
- Requires two firewalls or one firewall with at least 3 NICs

Literature

- M. Bishop. What is computer security? Security and Privacy, 2003
- L. Yuan, H. Chen, J. Mai, C. Chuah, Z. Su, P. Mohapatra. FIREMAN: a toolkit for firewall modeling and analysis. Security and Privacy, 2006
- A. Wool. A quantitative study of firewall configuration errors. Computer, IEEE 37(6), 2004, pp. 62 – 67
- man iptables
- man iptables-extensions
- ► J. Engelhardt, *Towards the perfect ruleset*. May 2011. http://inai.de/documents/Perfect_Ruleset.pdf
- M. Cotton, L. Vegoda, R. Bonica, and B. Haberman, SpecialPurpose IP Address Registries. RFC 6890
- BCP38, http://www.bcp38.info/