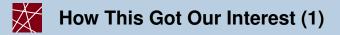


Public Key Infrastructures

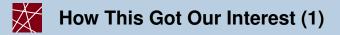
Ralph Holz

Network Architectures and Services Technische Universität München

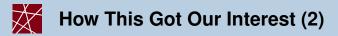
November 2014



Part 2: Recent results – or: the sorry state of X.509

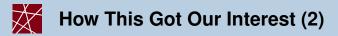

Ralph Holz: Public Key Infrastructures

How This Got Our Interest (1)

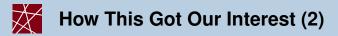

- Early December 2008:
 - 'Error' in Comodo CA: no identity check
 - Reported by Eddy Nigg of StartSSL (a CA)
 - A regional sub-seller just took the credit card number and gave you a certificate
 - No real reaction by Mozilla
 - Late December 2008: whitehat hacks StartSSL CA
 - Technical report: simple flaw in Web front-end
 - Certificate for mozilla.com issued
 - Caught by 2nd line of defence: human checks for high-value domains

- Early December 2008:
 - 'Error' in Comodo CA: no identity check
 - Reported by Eddy Nigg of StartSSL (a CA)
 - A regional sub-seller just took the credit card number and gave you a certificate
 - No real reaction by Mozilla
 - Late December 2008: whitehat hacks StartSSL CA
 - Technical report: simple flaw in Web front-end
 - Certificate for mozilla.com issued
 - Caught by 2nd line of defence: human checks for high-value domains

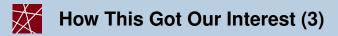
- Early December 2008:
 - 'Error' in Comodo CA: no identity check
 - Reported by Eddy Nigg of StartSSL (a CA)
 - A regional sub-seller just took the credit card number and gave you a certificate
 - No real reaction by Mozilla
- Late December 2008: whitehat hacks StartSSL CA
 - Technical report: simple flaw in Web front-end
 - Certificate for mozilla.com issued
 - Caught by 2nd line of defence: human checks for high-value domains



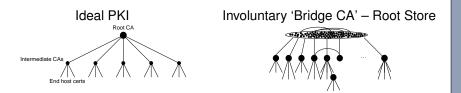
February 2009


- New 'easy' attack on MD5 ('MD5 considered harmful today')
 Demonstrated by issuing valid but fake CA certificate
- 'Fast' reaction by vendors: MD5 to be disabled for signatures by 2012

Spring 2009


- J. Nightingale of Mozilla writes crawler to traverse HTTPs sites
- Goal: determine number of MD5-signed certificates (11%)
- This piece of software was made public, it's our starting point

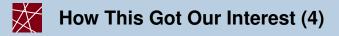
- February 2009
 - New 'easy' attack on MD5 ('MD5 considered harmful today')
 - Demonstrated by issuing valid but fake CA certificate
 - 'Fast' reaction by vendors: MD5 to be disabled for signatures by 2012
- Spring 2009
 - J. Nightingale of Mozilla writes crawler to traverse HTTPs sites
 - Goal: determine number of MD5-signed certificates (11%)
 - This piece of software was made public, it's our starting point



- February 2009
 - New 'easy' attack on MD5 ('MD5 considered harmful today')
 - Demonstrated by issuing valid but fake CA certificate
 - 'Fast' reaction by vendors: MD5 to be disabled for signatures by 2012
- Spring 2009
 - J. Nightingale of Mozilla writes crawler to traverse HTTPs sites
 - Goal: determine number of MD5-signed certificates (11%)
 - This piece of software was made public, it's our starting point

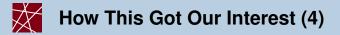
State of Mozilla Root Store

- Mozilla 2009: "Does anyone know who owns this root cert?"
- It turned out there were root certs that no-one could remember
- No-one could remember when they were accepted, or on which grounds


How to hijack a Web mailer in 3 easy steps

- Step 1: register e-mail address: ssladministrator@portugalmail.pt
- Step 2: ask RapidSSL for certificate for portugalmail.pt, giving this address as your contact
- Step 3: Watch 'Domain Validation by e-mail probe' fail

Kurt succeeded. It cost him < 100 USD.


Main failure here:

- Web mailers and CAs have not agreed on 'protected' addresses
- This issue is now in Mozilla's 'Problematic practices'

In 2011, the foundations of X.509 were rocked.

- March 2011: Comodo CA hacked (a sub-seller, again)
 - Attacker claims to come from Iran
 - \blacksquare \approx 10 certificates for high-value domains issued
 - Browser reaction: blacklisting of those certificates in code
 - Neither CRLs nor OCSP trusted enough to work for victims
- July 2011: DigiNotar CA hacked
 - Attacker claims to be the same one as in March
 - 531 fake certificates, high-value domains
 - E.g., Google, Facebook, Mozilla, CIA, Mossad, Skype
 - Some hints pointed at Man-in-the-middle attack in Iran
 - The Netherlands' PKI was operated by DigiNotar...
 - For the first time, a Root CA is removed from a browser for being compromised

In 2011, the foundations of X.509 were rocked.

- March 2011: Comodo CA hacked (a sub-seller, again)
 - Attacker claims to come from Iran
 - \sim 10 certificates for high-value domains issued
 - Browser reaction: blacklisting of those certificates *in code*
 - Neither CRLs nor OCSP trusted enough to work for victims
- July 2011: DigiNotar CA hacked
 - Attacker claims to be the same one as in March
 - 531 fake certificates, high-value domains
 - E.g., Google, Facebook, Mozilla, CIA, Mossad, Skype
 - Some hints pointed at Man-in-the-middle attack in Iran
 - The Netherlands' PKI was operated by DigiNotar..
 - For the first time, a Root CA is removed from a browser for being compromised

How This Got Our Interest (4)

In 2011, the foundations of X.509 were rocked.

- March 2011: Comodo CA hacked (a sub-seller, again)
 - Attacker claims to come from Iran
 - \approx 10 certificates for high-value domains issued
 - Browser reaction: blacklisting of those certificates *in code*
 - Neither CRLs nor OCSP trusted enough to work for victims
- July 2011: DigiNotar CA hacked
 - Attacker claims to be the same one as in March
 - 531 fake certificates, high-value domains
 - E.g., Google, Facebook, Mozilla, CIA, Mossad, Skype
 - Some hints pointed at Man-in-the-middle attack in Iran
 - The Netherlands' PKI was operated by DigiNotar...
 - For the first time, a Root CA is removed from a browser for being compromised

Can We Assess the Quality of this PKI?

A good PKI should

- ... allow HTTPs on all WWW hosts
- ... contain only valid certificates
- ... offer good cryptographic security
 - Long keys, only strong hash algorithms, ...
- … have a sensible setup
 - Short validity periods (1 year)
 - Short certificate chains (but use intermediate certificates)
 - Number of issuers should be reasonable (weakest link!)

Active scans to measure deployed PKI

- Scan hosts on Alexa Top 1 million Web sites
- Nov 2009 Apr 2011: scanned 8 times from Germany
- March 2011: scans from 8 hosts around the globe

Passive monitoring to measure user-encountered PKI

- Munich Research Network, monitored all SSL/TLS traffic
- Two 2-week runs in Sep 2010 and Apr 2011

EFF scan of IPv4 space in 2010

Scan of 2-3 months, no *domain* information

EFF scan presented at 27C3

- Focuses on CA certification structure
- Scan of IP addresses: does not allow to check match of host names
- No temporal distribution
- EFF project: SSL Observatory

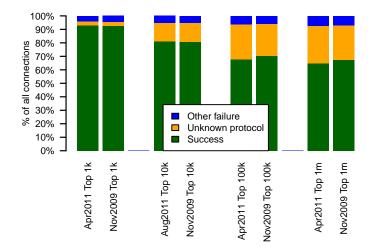
Ivan Ristic of Qualys presents similar scan

- Smaller data basis
- Data set not published as raw data
- No temporal distribution
- Could not include it in our analysis

Location	Time (run)	Туре	Certificates
Tuebingen, DE	November 2009	Active scan	833,661
Tuebingen, DE	December 2009	Active scan	819,488
Tuebingen, DE	January 2010	Active scan	816,517
Tuebingen, DE	April 2010	Active scan	816,605
Munich, DE	September 2010	Active scan	829,232
Munich, DE	November 2010	Active scan	827,366
Munich, DE	April 2011	Active scan	829,707
Munich, DE	April 2011	Active scan with SNI	826,098
Shanghai, CN	April 2011	Active scan	798,976
Munich, DE	September 2010	Passive monitoring	183,208
EFF servers	March–June 2010	Active IPv4 scan	11,349,678

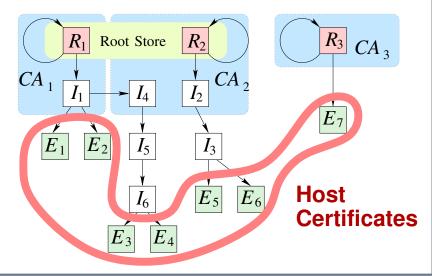
Location	Time (run)	Туре	Certificates
Tuebingen, DE	November 2009	Active scan	833,661
Tuebingen, DE	December 2009	Active scan	819,488
Tuebingen, DE	January 2010	Active scan	816,517
Tuebingen, DE	April 2010	Active scan	816,605
Munich, DE	September 2010	Active scan	829,232
Munich, DE	November 2010	Active scan	827,366
Munich, DE	April 2011	Active scan	829,707
Munich, DE	April 2011	Active scan with SNI	826,098
Shanghai, CN	April 2011	Active scan	798,976
Beijing, CN	April 2011	Active scan	797,046
Melbourne, AU	April 2011	Active scan	833,571
İzmir, TR	April 2011	Active scan	825,555
São Paulo, BR	April 2011	Active scan	833,246
Moscow, RU	April 2011	Active scan	830,765
Santa Barbara, US	April 2011	Active scan	834,173
Boston, US	April 2011	Active scan	834,054
Munich, DE	September 2010	Passive monitoring	183,208
EFF servers	March–June 2010	Active IPv4 scan	11,349,678

Location	Time (run)	Туре	Certificates
Tuebingen, DE	November 2009	Active scan	833,661
Tuebingen, DE	December 2009	Active scan	819,488
Tuebingen, DE	January 2010	Active scan	816,517
Tuebingen, DE	April 2010	Active scan	816,605
Munich, DE	September 2010	Active scan	829,232
Munich, DE	November 2010	Active scan	827,366
Munich, DE	April 2011	Active scan	829,707
Munich, DE	April 2011	Active scan with SNI	826,098
Shanghai, CN	April 2011	Active scan	798,976
Beijing, CN	April 2011	Active scan	797,046
Melbourne, AU	April 2011	Active scan	833,571
İzmir, TR	April 2011	Active scan	825,555
São Paulo, BR	April 2011	Active scan	833,246
Moscow, RU	April 2011	Active scan	830,765
Santa Barbara, US	April 2011	Active scan	834,173
Boston, US	April 2011	Active scan	834,054
Munich, DE	September 2010	Passive monitoring	183,208
Munich, DE	April 2011	Passive monitoring	989,040
EFF servers	March–June 2010	Active IPv4 scan	11.349.678

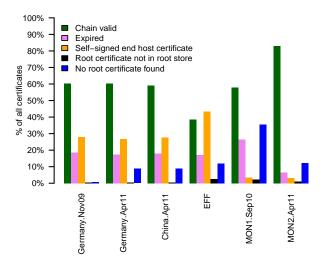

Location	Time (run)	Туре	Certificates
Tuebingen, DE	November 2009	Active scan	833,661
Tuebingen, DE	December 2009	Active scan	819,488
Tuebingen, DE	January 2010	Active scan	816,517
Tuebingen, DE	April 2010	Active scan	816,605
Munich, DE	September 2010	Active scan	829,232
Munich, DE	November 2010	Active scan	827,366
Munich, DE	April 2011	Active scan	829,707
Munich, DE	April 2011	Active scan with SNI	826,098
Shanghai, CN	April 2011	Active scan	798,976
Beijing, CN	April 2011	Active scan	797,046
Melbourne, AU	April 2011	Active scan	833,571
İzmir, TR	April 2011	Active scan	825,555
São Paulo, BR	April 2011	Active scan	833,246
Moscow, RU	April 2011	Active scan	830,765
Santa Barbara, US	April 2011	Active scan	834,173
Boston, US	April 2011	Active scan	834,054
Munich, DE	September 2010	Passive monitoring	183,208
Munich, DE	April 2011	Passive monitoring	989,040
EFF servers	March–June 2010	Active IPv4 scan	11,349,678

	T : ()	-	0
Location	Time (run)	Туре	Certificates
Tuebingen, DE	November 2009	Active scan	833,661
Tuebingen, DE	December 2009	Active scan	819,488
Tuebingen, DE	January 2010	Active scan	816,517
Tuebingen, DE	April 2010	Active scan	816,605
Munich, DE	September 2010	Active scan	829,232
Munich, DE	November 2010	Active scan	827,366
Munich, DE	April 2011	Active scan	829,707
Munich, DE	April 2011	Active scan with SNI	826,098
Shanghai, CN	April 2011	Active scan	798,976
Beijing, CN	April 2011	Active scan	797,046
Melbourne, AU	April 2011	Active scan	833,571
İzmir, TR	April 2011	Active scan	825,555
São Paulo, BR	April 2011	Active scan	833,246
Moscow, RU	April 2011	Active scan	830,765
Santa Barbara, US	April 2011	Active scan	834,173
Boston, US	April 2011	Active scan	834,054
Munich, DE	September 2010	Passive monitoring	183,208
Munich, DE	April 2011	Passive monitoring	989,040
EFF servers	March–June 2010	Active IPv4 scan	11,349,678

Scans from Germany, Nov 2009 and Apr 2011



UNKNOWN PROTOCOL


- Rescanned those hosts and manual sampling
- Always plain HTTP...
- ... and always an index.html with HTML 2 ...
- Hypothesis: old servers, old configurations
- More likely to happen in the lower ranks

Validation of Certificate Chains

Just check chains, not host names

Correct Domain Name in Certificate

Now also check host names

- Look in Common Name (CN) and Subject Alternative Name (SAN)
- Munich, April 2011, only valid chains:
 - 12.2% correct CN
 - 5.9% correct SAN

Only **18%** of certificates are fully verifiable

Positive 'trend': from 14.9% in 2009 to 18% in 2011

CN=plesk or similar

- Found in 7.3% of certificates
- Verified: Plesk/Parallels panels

CN=localhost

- 4.7% of certificates
- Very common: redirection to HTTP after HTTPs

Host Names in Self-signed Certificates

Self-signed means:

- Issuer the same as subject of certificate
- Requires out-of-band distribution of certificate

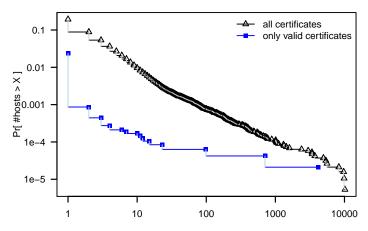
Active scan

- 2.2% correct Common Name (CN)
- 0.5% correct Subject Alternative Name

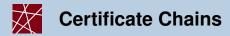
Top 3 most frequent CNs account for > 50%

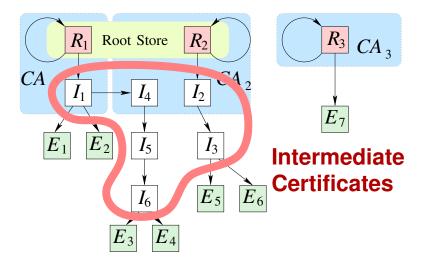
- plesk or similar in 27.3%
- Iocalhost or similar in 25.4% standard installations?

Many certificates valid for more than one domain

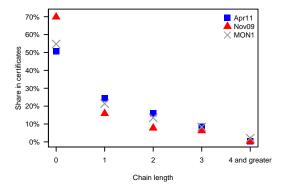

- Domains served by same IP
- Some certificates issued for dozens of domains
- Certificate reuse on multiple machines increases options for attacker

Often found on hosters

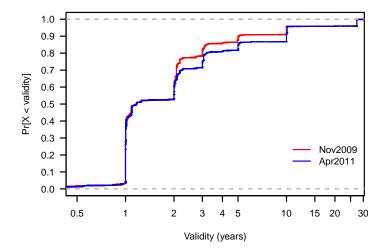

■ E.g. *.blogger.com, *.wordpress.com



How often does a certificate occur on X hosts?

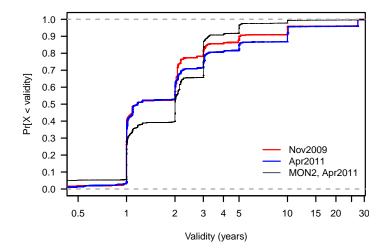


Number of hosts per certificate =: X



Finding more positive than negative:

- Trend to use intermediate certificates more often
- Allows to keep Root Certificates offline
- But chains still reasonably short



CDF of validity periods, active scans

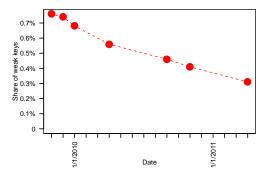
CDF of validity periods, scans and monitoring

Key types

- RSA: 99.98% (rest is DSA)
- About 50% have length 1,024 bit
- About 45% have length 2,048 bit
- Clear trend from 1,024 to 2,048 bit

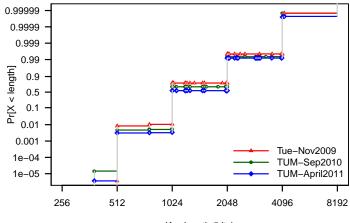
Weird encounters

- 1,504 distinct certificates that share another certificate's key
- Many traced to a handful of hosting companies
- Nadiah Henninger's work: Embedded devices, poor entropy!
- www.factorable.net

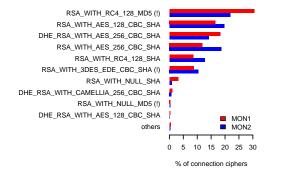


Bug of 2008

- Generation of random numbers weak (bad initialisation)
- Only 2¹⁶ public/private key-pairs generated
- Allows pre-computation of private keys
- Debian ships blacklist of keys

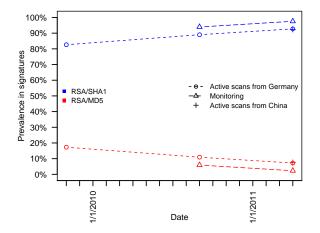


Weak randomness in key generation – serious bug of 2008


CDF for RSA key lengths – double-log Y axis

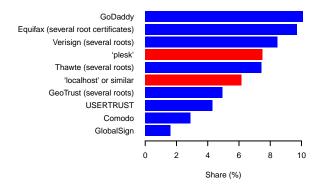
Key length (bits)

Results from monitoring



(Mostly) in line with results from 2007 by Lee et al.

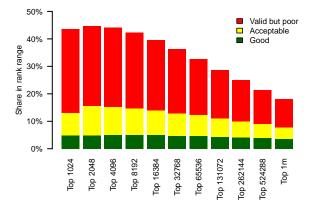
Order of AES and RC4 has shifted, RC4-128 most popular



MD5 is being phased out



Very few CAs account for > 50% of certificates


But there are 150+ Root Certificates in Mozilla.

We defined 3 categories

- 'Good':
 - Correct chains, correct host name
 - $\blacksquare \ Chain \leq 2$
 - No MD5, strong key of > 1024 bit
 - Validity \leq 13 months
- 'Acceptable'
 - Chain \leq 3, validity \leq 25 months
 - Rest as above
- 'Poor': the remainder

Validity correlates with rank

Share of 'poor' certificates higher among high-ranking sites

ШП

In great part, the X.509 PKI is in a sorry state

- Only 18% of the Top 1 Million Web sites show fully valid certificates
- Invalid chains
 - Expired certificates are common
 - Often no recognisable Root Certificate
 - Lack of correct domain information information
- Frequent sharing of certificates between hosts is problematic
- Much carelessness

Certification practices are very poor. But crypto OK.

Some positive developments

- Very slight trend for fully valid certificates
- Chains short, intermediate certificates used
- Key lengths OK
- Weak MD5 algorithm is being phased out