

 Chair for Network Architectures and Services

Department of Informatics

TU München – Prof. Carle

Network Security

Chapter 2 Cryptography

2.2 Cryptographic

Hash Functions

• Motivation

• Cryptographic Hash Functions

• SHA-1, SHA-3, Skein

• Message Authentication Codes (MACs)

Network Security, WS 2013/14, Chapter 2.2 2

Acknowledgments

This course is based to a significant extend on slides provided by

Günter Schäfer, author of the book "Netzsicherheit - Algorithmische

Grundlagen und Protokolle", available in German from dpunkt Verlag.

The English version of the book is entitled “Security in Fixed and Wireless

Networks: An Introduction to Securing Data Communications” and is

published by Wiley is also available. We gratefully acknowledge his support.

The slides by Günter Schäfer have been partially reworked by

Cornelius Diekmann, Heiko Niedermayer, Ali Fessi, Ralph Holz and

Georg Carle.

Network Security, WS 2013/14, Chapter 2.2 3

Motivation (1)

 Data integrity is an essential security service

 Upon receiving a message m, we need to detect whether m has

been modified intentionally by an attacker

 Common practice in data communications: error detection code over

messages, to identify if errors were introduced during transmission

 Examples: Parity, Bit-Interleaved Parity, Cyclic Redundancy Check (CRC)

 Underlying idea of these codes: add redundancy to a message for

being able to detect, or even correct transmission errors

 The error detection/correction code of choice and its parameters:

trade-off between

• computational overhead

• increase of message length

• Probability/characteristics of errors on the transmission medium

Network Security, WS 2013/14, Chapter 2.2 4

Motivation (2)

 It is a different (and much harder!) problem to determine if m has been

modified on purpose!

 Consequently, we need to add a Modification Detection Code (MDC)

that fulfills some additional properties which should make it

computationally infeasible for an attacker to tamper with messages

 This property is fulfilled by so-called “cryptographic hash functions”

Network Security, WS 2013/14, Chapter 2.2 5

 Cryptographic Hash Function

Overview

Network Security, WS 2013/14, Chapter 2.2 6

Cryptographic Hash Functions: Definition

 Definition: A function h is called a hash function if

 Compression: h maps an input x of arbitrary finite bit length

to an output h(x) of fixed bit length n:

 h: {0,1}* → {0,1} n

 Ease of computation: Given h and x it is easy to compute h(x)

 Definition: A function h is called a one-way function if

 h is a hash function

 for essentially all pre-specified outputs y, it is computationally infeasible

to find an x such that h(x) = y

 Example: given a large prime number p and a primitive root g in Z*
p

 Let h(x) = gx mod p

 Then h is a one-way function

Network Security, WS 2013/14, Chapter 2.2 7

Cryptographic Hash Functions: Definition

 Definition: A function H is called a cryptographic hash function if

1. H is a one-way function

Also called 1st pre-image resistance:

For essentially all pre-specified outputs y, it is computationally infeasible

to find an x such that H(x) = y

2. 2nd pre-image resistance:

Given x it is computationally infeasible to find any second input x’ with

x x’ such that H(x) = H(x’)

Note: This property is very important for digital signatures.

3. Collision resistance:

It is computationally infeasible to find any pair

(x, x’) with x x’ such that H(x) = H(x’)

4. Random oracle property:

It is computationally infeasible to distinguish H(m) from random n-bit value

Network Security, WS 2013/14, Chapter 2.2 8

General Remarks (1)

 Computational infeasibility

 In a mathematical sense, the notion of computational infeasibility is directly

related to complexity theory.

 It means that no polynomial complexity algorithm for the given problem

exists

 However, cryptographic hash functions, which are actually used in

practice, e.g. SHA-1 or SHA-3, are not directly based on such

mathematical problems

 Random output

 The algorithm for calculating the hash value of a string is deterministic

 However, the output of a cryptographic hash function should “look” random

[Ferg03]

 In particular, a cryptographic hash function should map two “similar”

strings to completely uncorrelated outputs (similar in the sense of a small

Hamming distance) [Cos06]

 In particular, a cryptographic hash function should not be additive

• If x’ = x Δ, then H(x’) should be different from H(x) H(Δ)

Network Security, WS 2013/14, Chapter 2.2 9

General Remarks (2)

 In networking there are codes for error detection.

 Cyclic redundacy checks (CRC)

 CRC is commonly used in networking environments

 CRC is based on binary polynomial division with Input / CRC divisor

(divisor depends on CRC variant).

 The remainder of the division is the resulting error detection code.

 CRC is a fast compression function.

 Why not use CRC?

 CRC is not a cryptographic hash function

 CRC does not provide 2nd pre-image resistance and collision resistance

 CRC is additive

• If x’ = x Δ, then CRC(x’) = CRC(x) CRC(Δ)

 CRC is useful for protecting against noisy channels

 But not against intentional manipulation

Network Security, WS 2013/14, Chapter 2.2 10

 MAC and other applications

Overview

Network Security, WS 2013/14, Chapter 2.2 11

Application of Cryptographic Hash Functions for Data Integrity

 Applying a hash function is not sufficient to secure a message.

 H(m) needs to be protected.

Alice (A) Bob (B)
m, H(m)

Alice (A) Bob (B)
m, H(m) m‘, H(m‘)

ok

ok

Case:

No attacker

Case:

With attacker

Network Security, WS 2013/14, Chapter 2.2 12

Application of Cryptographic Hash Functions for Data Integrity

 Cryptographic hash functions are used to detect whether a message

has been modified by an attacker

 As seen on the last slide:

 However, the use of a cryptographic hash function is not sufficient to

detect whether a message has been modified.

 if Alice sends a message (x, H(x)) to Bob, with H a cryptographic hash

function, it holds:

• The computation of H(x) is usually based on a well-known algorithm

• The computation of H(x) does not include a secret key or anything else bound

to the identity of Alice

An attacker can modify x to x‘, calculate H(x‘) easily and sends (x‘, H(x‘)) to Bob

pretending that this message would be originating from Alice

Network Security, WS 2013/14, Chapter 2.2 13

Application of Cryptographic Hash Functions for Data Integrity

 Potential workarounds:

 Alice might send the cryptographic hash value via an out-of-band (trusted)

channel to Bob. Examples:

• by phone call

• by a letter

• the hash value may be published on a (trusted) web server.

• Alice and Bob might use a physically-protected channel where attackers can

only listen, but not send.

 Use cryptography and secret keys

• Message Authentication Code (MAC) that depends on key k and message m.

Network Security, WS 2013/14, Chapter 2.2 14

Application of Cryptographic Hash Functions for Data Integrity

 Since the secret key k is unknown to the attacker, the attacker cannot

compute MACK (m’)

Alice (A) Bob (B)
m, MACK (m)

Alice (A) Bob (B)
m, MACK (m) m', MACK (m)

ok

not ok

Case:

No attacker

Case:

With attacker

share symmetric key K

Network Security, WS 2013/14, Chapter 2.2 15

Message Authentication Codes (MACs)

 Definition: Let Hk be a family of functions parameterized by a secret

key k. Then Hk is called a Message Authentication Code (MAC)

algorithm if it satisfies the following properties:

1. Compression:

Hk maps an input x of arbitrary finite bitlength to an output Hk(x) of fixed

bitlength, called the MAC

2. Ease of computation:

given k, x and a known function family Hk the value Hk(x) is easy to

compute

3. Computation-resistance:

for every fixed, allowed, but unknown value of k, given zero or more text-

MAC pairs (xi, Hk(xi)) it is computationally infeasible to compute a text-MAC

pair (x, Hk(x)) for any new input x xi

Network Security, WS 2013/14, Chapter 2.2 16

Message Authentication Codes (MACs)

 Note that computation-resistance implies key non-recovery

 k can not be recovered from pairs (xi, Hk(xi)),

 but computation-resistance can not be deduced from key non-recovery, as

the key k needs not always to be recovered to forge new MACs

(as shown in subsequent example)

Network Security, WS 2013/14, Chapter 2.2 17

A Simple Attack Against an Insecure MAC

 For illustrative purposes, consider the following MAC definition:

 Input: message m = (x1, x2, ..., xn) with xi being 128-bit values, and key K

 Compute (m) := x1 x2 ... xn with denoting XOR

 Output: MACK(m) := EncK((m)) with EncK(x) denoting AES encryption

 The key length is 128 bit and the MAC length is 128 bit, so we would expect
an effort of about 2127 operations to break the MAC (being able to forge
messages).

 Unfortunately the MAC definition is insecure:

 Attacker Eve wants to forge messages. Eve does not know K

 Alice and Bob exchange a message (m, MACK(m)), Eve eavesdrops it

 Eve can construct a message m’ that yields the same MAC:

• Let y1, y2, ..., yn-1 be arbitrary 128-bit values

• Define yn := y1 y2 ... yn-1 (m)

• This yn allows to construct the new message m’ := (y1, y2, ..., yn)

• Therefore, MACK(m’) = Enc((m’)) = Enck(y1 y2 ... yn-1 yn))

 = Enck(y1 y2 ... yn-1 y1 y2 ... yn-1 (m)))

 = Enck((m)))

 = MACk(m)

 Therefore, MACk(m) is a valid MAC for m’

 When Bob receives (m’, MACK(m)) from Eve, he will accept it as being originated

Network Security, WS 2013/14, Chapter 2.2 18

Applications of Cryptographic Hash Functions

 Principal application which led original design:

 Message integrity:

• Using a shared secret key:

– A MAC over a message m directly certifies that the sender of the message

possesses the secret key k and the message could not have been modified

without knowledge of that key

• Using public key cryptography:

– The cryptographic hash value represents a digital fingerprint, which can be

signed with a private key using public key cryptography (like RSA, ECC,

ElGamal)

– Given a cryptographic hash function it is computationally infeasible to

construct two messages with the same fingerprint. Therefore, a given

signed fingerprint can not be re-used by an attacker.

– Note: Signatures in public key cryptography are often used in settings

where the security has to be guaranteed a long time, e.g. digitalling signing

a contract.

Network Security, WS 2013/14, Chapter 2.2 19

Other Applications which require some Caution

 Pseudo-random number generation

 The output of a cryptographic hash function is assumed to be uniformly
distributed

 Although this property has not been proven in a mathematical sense for
common cryptographic hash functions, such as MD5, SHA-1, it is often
used

 Start with random seed, then hash

 b0 = seed

 bi+1 = H (bi | seed)

 Encryption

 Remember: Output Feedback Mode (OFB) – encryption performed by
generating a pseudo random stream, and performing XOR with plain text

 Generate a key stream as follow:

 k0 = H(KA,B | IV)

 ki+1 = H (KA,B | ki)

 The plain text is XORed with the key stream to obtain the cipher text.

Network Security, WS 2013/14, Chapter 2.2 20

Other Applications of Cryptographic Hash Functions

 Authentication with a challenge-response mechanism

Alice Bob

rA

Network Security, WS 2013/14, Chapter 2.2 21

Other Applications of Cryptographic Hash Functions

 Authentication with a challenge-response mechanism

 Alice Bob: random number “rA”

 Bob Alice: “H(KA,B, rA)”

 Based on the assumption that only Alice and Bob know the shared secret KA,B,

Alice can conclude that an attacker would not be able to compute H(KA,B, rA),

and therefore that the response is actually from Bob

 Mutual authentication can be achieved by a 2nd exchange in opposite direction

 This authentication is based on a well-established authentication method called

„challenge-response“

 This type of authentication is used, e.g., by HTTP digest authentication

• It avoids transmitting the transport of the shared key (e.g. password) in clear text

 Another type of a challenge-response would be, e.g., if Bob signs the challenge

“rA” with his private key

 Note that this kind of authentication does not include negotiation of a session key.

 Protocols for key negotiation will be discussed in subsequent chapters.

Network Security, WS 2013/14, Chapter 2.2 22

Other Applications of Cryptographic Hash Functions

 Cryptographic hash values can also be used for error detection, but

they are generally computationally more expensive than simple error

detection codes such as CRC

Network Security, WS 2013/14, Chapter 2.2 23

 Common Structures of Hash Functions

 Merkle-Damgård construction

 SHA-1

 SHA-3 and Skein

Overview

Network Security, WS 2013/14, Chapter 2.2 24

Overview of Commonly Used Cryptographic Hash Functions

and Message Authentication Codes

 Cryptographic Hash Functions:

 Message Digest 5 (MD5):

• Invented by R. Rivest, Successor to MD4. Considered broken.

 Secure Hash Algorithm 1 (SHA-1):

• Old NIST standard.

• Invented by the National Security Agency (NSA). Inspired by MD4.

 Secure Hash Algorithm 3 (SHA-3):

• Current NIST standard (since October 2012).

• Keccak algorithm by G. Bertoni, J. Daemen, M. Peeters und G. Van Assche.

 Message Authentication Codes:

 MACs constructed from cryptographic hash functions:

• Example HMAC, RFC 2104, details later

 CBC-MAC, CMAC

• Uses blockcipher in Cipher Block Chaining mode
(Encryption: XOR plain text with cipher text of previous block, then encrypt)

• CMAC better than pure CBC-MAC, details later

Network Security, WS 2013/14, Chapter 2.2 25

Merkle-Damgård construction (1)

 Like many of today’s block ciphers follow the general structure of a

Feistel network, cryptographic hash functions such as SHA-1 follow

the Merkle-Damgård construction:

 Let y be an arbitrary message. Usually, the length of the message is

appended to the message and padded to a multiple of some block size b.

Let (y0, y1, ..., yL-1) denote the resulting message consisting of L blocks of

size b

 The general structure is as depicted below:

 CV is a chaining value, with CV0 := IV and H(y) := CVL

 f is a specific compression function which compresses (n + b) bit to n bit

f

y0

CV0

n

b

f

y1

CV1

n

b

f

yL-1

CVL-1

n

b

CVL CV2

n
...

n

Network Security, WS 2013/14, Chapter 2.2 26

Merkle-Damgård construction (2)

 The hash function H according to Merkle-Damgård construction can be

summarized as follows:

 CV0 = IV = initial n-bit value

 CVi = f(CVi-1, yi-1) 1 i L

 H(y) = CVL

 Security proofs by the authors [Mer89a] have shown shown that if the

compression function f is collision resistant, then the resulting iterated

hash function H is also collision resistant.

 However, the construction has undesirable properties like length

extension attacks. The Merkle-Damgård construction can be

strengthened:

 by adding a block with the length of the message (length padding).

 by using a wide pipe construction where the hash output has less bits than

the intermediate chaining values CVi with i < L.

• Hash shorter than state good as less info leaked to attacker (e.g. against length

extension). However, less search space for other attacks like brute force.

Network Security, WS 2013/14, Chapter 2.2 27

The Secure Hash Algorithm SHA-1 (1)

 Also SHA-1 follows the common structure as described above:

 SHA-1 works on 512-bit blocks and produces a 160-bit hash value

 Initialization

• The data is padded, a length field is added and the resulting message is
processed as blocks of length 512 bit

• The chaining value is structured as five 32-bit registers A, B, C, D, E

• Initialization: A = 0x 67 45 23 01 B = 0x EF CD AB 89

 C = 0x 98 BA DC FE D = 0x 10 32 54 76

 E = 0x C3 D2 E1 F0

• The values are stored in big-endian format

 Each block yi of the message is processed together with CVi in a module
realizing the compression function f in four rounds of 20 steps each.

• The rounds have a similar structure but each round uses a different primitive
logical function f1, f2, f3, f4

• Each step makes use of a fixed additive constant Kt, which remains unchanged
during one round

 The text block yi which consists of 16 32-bits words is „stretched“ with a
recurrent linear function in order to make 80 32-bits out of it, which are
required for the 80 steps:

• t{0, ..., 15} Wt := yi[t]

• t{16, ..., 79} Wt := CLS1(Wt-16 Wt-14 Wt-8 Wt-3)

Network Security, WS 2013/14, Chapter 2.2 28

The Secure Hash Algorithm SHA-1 (2) - One Step

 After step 79 each register A, B, C, D, E is added modulo 232 with the value of the
corresponding register before step 0 to compute CVi+1

f(t DIV 20)

yi[k]
CLS5 +

+

+

+

Wt

K(t DIV 20)

A B C D E

CLS30

A B C D E

Network Security, WS 2013/14, Chapter 2.2 29

The Secure Hash Algorithm SHA-1 (3)

 The SHA-1 value over a message is the content of the chaining value

CV after processing the final message block

 Security of SHA-1:

 As SHA-1 produces a hash value of length 160 bit, it offers better security

than MD5 with its 128 bits.

 In February 2005, 3 Chinese Scientists published a paper where they

break SHA-1 collision resistance within 269 steps, which is much less than

expected from a cryptographic hash function with an output of 160 bits

(280).

 Meanwhile down to 252 steps (EuroCrypt 2009 Rump Session).

 Up to now, no attacks on the pre-image resistance of SHA-1 have been

published.

Network Security, WS 2013/14, Chapter 2.2 30

SHA-3 – a new hash standard

 MD5 is considered broken and SHA-1 is under heavy attack.

 Performance of SHA-1 worse than performance of up-to-date

symmetric ciphers like AES or Twofish.

 NIST started a competition for a new hash function standard that will

be called SHA-3 in 2007.

 NIST SHA-3 competetition

 Requirement: fast and secure!

 Round1: 51 candidates accepted, 13 rejected. (December 2008)

 Round2: 14 candidates survivded. (July 2009)

 Round3 (final): 5 candidates (BLAKE, Grostl, JH, Keccak, Skein)

(December 2010)

 Winner (October 2012): Keccak

Network Security, WS 2013/14, Chapter 2.2 31

SHA-3 / Keccak / Sponge Construction

 SHA-3 (Keccak)

 Follows the sponge construction

 M is padded to a multiple of the block length r

 r=0, c=0

 For each block i, compute f(r+mi | ci) (= Absorbing phase)

 In squeezing phase concatenate the ri until output length reached.

Source: Cryptographic sponge functions [CSF],

January 2011, http://sponge.noekeon.org/ by Keccak

authors

http://sponge.noekeon.org/
http://sponge.noekeon.org/
http://sponge.noekeon.org/

Network Security, WS 2013/14, Chapter 2.2 32

SHA-3 / Keccak / Sponge Construction

 The function f follows a block cipher-like concept.

 Internal state:

 3d state space, 5x5 64-bit words (400 Bits)

 256 Bit and 512 Bit blocks, 24 rounds with each 5

subrounds

 Round operations include

 Parity in columns of the state space

 Bitwise rotation in words

 Permutation of words

 A non-linear bitwise combination operation

 XOR with round constant

 Authenticated Encryption and Tree Hash support

proposed, not standardized.

Network Security, WS 2013/14, Chapter 2.2 33

SHA-3 candidate Skein

 In addition to SHA-3 finalist Skein might also get wide support in

libraries and protocols due to its prominent authors .

 Variants Skein-n / Skein-n-m

 n = size of internal state (relates to the strength of the hash function)

• n = 512 (default), n = 1024 (conservative), n = 256 (low memory)

 m = size of hash output

 Concept

 Build hash function out of tweakable block cipher

 Uses block cipher Threefish

• 512, 1024, 256 bits key length and block length (depending on variant)

 Unique Block Iteration (UBI) as chaining mode

• Variable input and fixed (configurable) output size

 Optional Argument System

• Key, Configuration, Personalization, Public Key, Key Derivation Identifier,

Nonce, Message, Output

 Support for Tree Hashing

• Option to process large plaintexts on parallel CPUs / machines in a tree rather

than linear processing (cannot be parallelized)

Network Security, WS 2013/14, Chapter 2.2 34

Tweak

 Tweak in Skein

 Overall size = 128 bits

 96 bits counter for message length

• Incremented for each block

 6 bits type information

 Bit indicates padding

 Bit indicates first block

 Bit indicates last block

 Makes hash result for a plaintext subsequence position-dependent

• E.g. harder to insert blocks that do not change chaining value to next block

• E.g. harder to extend message and compute new MAC

• Etc.

Network Security, WS 2013/14, Chapter 2.2 35

Threefish

 Block size 256, 512, or 1024 bits

 Key size = block size

 Tweak size = 128 bits

 All operations on 64 bit words

 Mix operation uses

 XOR, addition (mod 2^64), constant

rotation (round and word-specific)

 72 rounds (80 rounds for 1024 bit

version)

 Subkeys

 Are round-specific and derived from

key (4, 8, or 16 words) and tweak

(128 bits = 2 words)

Taken from [FLS+08] Skein Specification v1.1

http://www.skein-hash.info/sites/default/files/skein1.1.pdf

Network Security, WS 2013/14, Chapter 2.2 36

Unique Block Iteration (UBI) Chaining Mode

 Unique Block Iteration (UBI)

 Block cipher

• Input: Message Blocks

• Key: Tweak and chaining value

 Chaining Value

• XOR of output and input of block

cipher

 Tweak

• „Counts bytes until now“ (len field)

• Indicates first block / finalblock

 UBI in Skein

 type field

• Config

– 32 byte configuration string

containing fields like output length

• Message

– Plaintext

• Out

– Generates final output, input is 0.

Taken from [FLS+08] Skein Specification v1.1

http://www.skein-hash.info/sites/default/files/skein1.1.pdf

Taken from [FLS+08] Skein

Specification v1.1

Network Security, WS 2013/14, Chapter 2.2 37

UBI in Skein – Output Generation

 Increase the output size by applying a counter mode for the output

computation

Taken from [FLS+08] Skein

Specification v1.1

Network Security, WS 2013/14, Chapter 2.2 38

Skein-MAC

 MAC usage

 Skein can be used with HMAC and similar functions, requires two hashes

 Faster option: use Skein with optional argument „key“

• The key input are processed by an UBI block with the key as input, 0 as

constant / initial chaining value and the tweak type information „Key“

• This does not suffer the same weaknesses mentioned before like adding a key

to the plaintext as in some weaker MAC contructions like H(k,m,k).

Taken from [FLS+08] Skein

Specification v1.1

Network Security, WS 2013/14, Chapter 2.2 39

 Birthday Phenomenon

Overview

Network Security, WS 2013/14, Chapter 2.2 40

Attacks Based on the Birthday Phenomenon (1)

 Attack against collision resistance of cryptographic hash functions

 The Birthday Phenomenon:

 How many people need to be in a room such that the possibility that there
are at least two people with the same birthday is greater than 0.5?

 For simplicity, we don’t care about February, 29, and assume that each
birthday is equally likely

 Define P(n, k) := Pr[at least one duplicate in k items, with each item
 able to take one of n equally likely values
 between 1 and n]

 Define Q(n, k) := Pr[no duplicate in k items, each item between 1 and n]

 P(n, k) = 1 - Q(n, k)

 We are able to choose the first item from n possible values, the second item
from n - 1 possible values, etc.

 Hence, the number of different ways to choose k items out of n values with
no duplicates is: N = n (n - 1) ... (n - k + 1) = n! / (n - k)!

 The number of different ways to choose k items out of n values, with or
without duplicates is: nk

 So, Q(n, k) = N / nk = n! / ((n - k)! nk)

Network Security, WS 2013/14, Chapter 2.2 41

Attacks Based on the Birthday Phenomenon (2)

 P(n, k) := Pr[at least one duplicate in k items, with each item able to

take one of n equally likely values between 1 and n]

 We have:

 We will use the following inequality: (1 - x) e-x for all x 0

 So:

n

k

nn

n

kn

n

n

n

n

n

knnn

nkn

n
knQknP

k

k

1
1...

2
1

1
11

1
...

21
1

)1(...)1(
1

)!(

!
1),(1),(

n
kk

n
k

nn

n
k

nn

e

e

eeeknP

2
)1(

1...21

)1(21

1

1

...1),(

Network Security, WS 2013/14, Chapter 2.2 42

Attacks Based on the Birthday Phenomenon (3)

 In the last step, we used the equality: 1 + 2 + ... + (k - 1) = (k2 - k) / 2

 Exercise: proof the above equality by induction

 Let’s go back to our original question: how many people k have to be

in one room such that there are at least two people with the same

birthday (out of n = 365 possible) with probability 0,5?

 So, we want to solve:

 For large k we can approximate k (k - 1) by k2, and we get:

 For n = 365, we get k = 22.54 which is quite close to the correct answer 23

n

kk

e

e

n
kk

n
kk

2

)1(
)2ln(

2

1
2

1

2
)1(

2
)1(

nnk 18.1)2ln(2

Network Security, WS 2013/14, Chapter 2.2 43

Attacks Based on the Birthday Phenomenon (4)

 What does this have to do with cryptographic hash functions?

 We have shown, that if there are n possible different values, the

number k of values one needs to randomly choose in order to obtain a

pair of identical values with probability ≥ 0.5, is in the order of

 Now, consider the “Yuval’s square root attack” [Yuv79a]:

 Eve wants Alice to sign a message m1 which Alice normally never would

sign. Eve knows that Alice uses the function H to compute a cryptographic

hash value of m. The hash value has length r bit before she signs it with

her private key yielding her digital signature

 First, Eve produces her message m1. If she would now compute H(m1)

and then try to find a second harmless message m2 which leads to the

same hash value her search effort in the average case would be on the

order of 2(r - 1)

 Instead she takes any harmless message m2 and starts producing

variations m1’ and m2’ of the two messages, e.g. by adding <space>

<backspace> combinations or varying with semantically identical words

n

Network Security, WS 2013/14, Chapter 2.2 44

Attacks Based on the Birthday Phenomenon (5)

 As we learned from the birthday phenomenon, Eve will just have to

produce about variations of each of the two messages such

that the probability that she obtains two messages m1’ and m2’ with

the same hash value is at least 0.5

 As she has to store the messages together with their hash values in

order to find a match, the memory requirement of her attack is on the

order of and its computation time requirement is on the same

order

 After she has found m1’ and m2’ with H(m1’) = H(m2’) she asks Alice

to sign m2’. Eve can then take this signature and claim that Alice

signed m1’

222
r

r

22
r

Network Security, WS 2013/14, Chapter 2.2 45

Attacks Based on the Birthday Phenomenon (6)

 Attacks following this method are called birthday attacks

 Consider now, that Alice uses RSA with keys of length 2048 bit and a

cryptographic hash function which produces hash values of length 96

bit.

 Eves average effort to produce two messages m1’ and m2’ as described

above is on the order of 248, which is feasible today. Breaking RSA keys of

length 2048 bit is far out of reach with today's algorithms and technology

Network Security, WS 2013/14, Chapter 2.2 46

 Constructing MACs

 HMAC

 CBC-MACs

 CMAC

Overview

Network Security, WS 2013/14, Chapter 2.2 47

Constructing a MAC from a Cryptographic Hash Functions (1)

 Reasons for constructing MACs from cryptographic hash functions :

 Cryptographic hash functions generally execute faster than symmetric

block ciphers (Note: with AES this isn’t much of a problem today)

 There are no export restrictions to cryptographic hash functions

 Basic idea: “mix” a secret key K with the input and compute a hash

value

 The assumption that an attacker needs to know K to produce a valid

MAC nevertheless raises some cryptographic concern:

 The construction H(K | m) is not secure

 The construction H(m, K) is not secure

 The construction H(K, p, m, K) with p denoting an additional padding field

does not offer sufficient security

Network Security, WS 2013/14, Chapter 2.2 48

Constructing a MAC from a Cryptographic Hash Functions (2)

 The construction H(K | m | K), called prefix-suffix mode, has been used
for a while.

 See for example [RFC 1828]

 It has been also used in earlier implementations of the Secure Socket
Layer (SSL) protocol (until SSL 3.0)

 However, it is now considered vulnerable to attack by the cryptographic
community.

 The most used construction is HMAC:

 The length of the key K is first extended to the block length required for the
input of the hash function H by appending zero bytes.

 Then it is xor’ed respectively with two constants opad and ipad

 The hash function is applied twice in a nested way.

 Currently no attacks have been discovered on this MAC function. (see
note 9.67 in [Men97a])

 It is standardized in RFC 2104 [Kra97a] and is called HMAC

))|(|(mipadKHopadKH

Network Security, WS 2013/14, Chapter 2.2 49

Cipher Block Chaining Message Authentication Codes (1)

 A CBC-MAC is computed by encrypting a message in CBC Mode and

taking the last ciphertext block or a part of it as the MAC:

 This MAC needs not to be signed any further, as it has already been

produced using a shared secret K.

 This scheme works with any block cipher (AES, Twofish, 3DES, ...)

 It is used, e.g., for IEEE 802.11 (WLAN) WPA2, many modes in SSL / IPSec

use some CBC-MAC construction.

Encrypt

C1

K

y2

Encrypt

C2

K

yn

Encrypt

Cn

K ...

y1

+ + Cn-1

MAC (up to b bits)

Network Security, WS 2013/14, Chapter 2.2 50

Cipher Block Chaining Message Authentication Codes (2)

 CBC-MAC security

 CBC-MAC must NOT be used with the same key as for the encryption

 In particular, if CBC mode is used for encryption, and CBC-MAC for

integrity with the same key, the MAC will be equal to the last cipher text

block

 If the length of a message is unknown or no other protection exists, CBC-

MAC can be prone to length extension attacks. CMAC resolves the issue.

 CBC-MAC performance

 Older symmetric block ciphers (such as DES) require more computing

effort than dedicated cryptographic hash functions, e.g. MD5, SHA-1

therefore, these schemes are considered to be slower.

 However, newer symmetric block ciphers (AES) is faster than conventional

cryptographic hash functions.

 Therefore, AES-CBC-MAC is becoming popular.

Network Security, WS 2013/14, Chapter 2.2 51

Cipher-based MAC (CMAC)

 CMAC is a modification of CBC-MAC

 Compute keys k1 and k2 from shared key k.

 Within the CBC processing

• XOR complete blocks before encryption with k1

• XOR incomplete blocks before encryption with k2

• k is used for the block encryption

 Output is the last encrypted block or the l most significant bits of the last

block.

 AES-CMAC is standardized by IETF as RFC 4493 and its truncated form

in RFC 4494.

 XCBC-MAC (e.g. found in TLS) is a predecessor of CMAC where k1

and k2 are input to algorithm and not derived from k.

Network Security, WS 2013/14, Chapter 2.2 52

 Integrity Check and Digital Signature

Overview

Network Security, WS 2013/14, Chapter 2.2 53

Integrity check with hash function / MAC

 Alice protects her message m with a MAC function

 Alice has to send m and the MAC value to Bob.

Examples for potential MAC constructions:

 HMAC

 CBC-MAC / CMAC

 EncK (h(m))

Alice (A) Bob (B)

share symmetric key K

m, MACK (m)

))|(|(mipadKHopadKH

Network Security, WS 2013/14, Chapter 2.2 54

Integrity check with hash function / MAC

 Alice „signs“ her data m with the Message Authentication Code.

 Bob can verify the MAC code by using the shared key.

 He reads Alice‘s MACK (m)

 He can check if his MACK (m) matches the one Alice signed.

 Only Alice and Bob who know K can do this.

Take home message: for integrity checks the receiver needs to know m

and a modification check value that it can compare.

 Think about it: Why is EncK (m) usually not sufficient?

Alice (A) Bob (B)

share symmetric key K

m, MACK (m)

Network Security, WS 2013/14, Chapter 2.2 55

Additional References I

(Beyond the scope of examination)

[Cos06] B. Coskun, N. Memon, "Confusion/Diffusion Capabilities of Some Robust Hash
Functions", CISS 2006: Conference on Information Sciences and Systems,
March 22-24, 2006, Princeton, NJ

[Kra97a] H. Krawczyk, M. Bellare, R. Canetti. HMAC: Keyed-Hashing for Message
Authentication. Internet RFC 2104, February 1997.

[Mer89a] R. Merkle. One Way Hash Functions and DES. Proceedings of Crypto ‘89,
Springer, 1989.

[Ferg03] Niels Ferguson, Bruce Schneier, „Practical Cryptography“, John Wiley & Sons,
2003

[PSMD5] Peter Selinger, http://www.mscs.dal.ca/~selinger/md5collision/

[RFC1828] P. Metzger, „IP Authentication using Keyed MD5“, IETF RFC 1828, August
1995

[Riv92a] R. L. Rivest. The MD5 Message Digest Algorithm. Internet RFC 1321, April

1992.
[Rob96a] M. Robshaw. On Recent Results for MD2, MD4 and MD5. RSA Laboratories'

Bulletin, No. 4, November 1996.
[Yiqun05] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu, "Collision Search Attacks on

SHA1", February 2005, <http://theory.csail.mit.edu/~yiqun/shanote.pdf>

[Yuv79a] G. Yuval. How to Swindle Rabin. Cryptologia, July 1979.

Network Security, WS 2013/14, Chapter 2.2 56

Additional References II

[FLS+08] Niels Ferguson, Stefan Lucks, Bruce Schneier, et. al.: Skein Specification v1.1.

 http://www.skein-hash.info/sites/default/files/skein1.1.pdf (accessed on

 31/10/2011)

[Skein] http://www.skein-hash.info

[SHA-3] NIST (National Institute for Standards and Technology (USA)):

 CRYPTOGRAPHIC HASH ALGORITHM COMPETITION.

 http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

[CSF] G. Bertoni, J. Daemen, M. Peeters und G. Van Assche: Cryptographic Sponge

 Functions.

 http://sponge.noekeon.org/CSF-0.1.pdf

[Keccak3] G. Bertoni, J. Daemen, M. Peeters und G. Van Assche: Keccak Reference

 (version 3.0).

 http://keccak.noekeon.org/Keccak-reference-3.0.pdf

[Keccak] G. Bertoni, J. Daemen, M. Peeters und G. Van Assche: Keccak sponge function

 family main document.

 http://keccak.noekeon.org/Keccak-main-2.1.pdf

