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Motivation (1) 

 Data integrity is an essential security service 

  Upon receiving a message m, we need to detect whether m has 

been modified intentionally by an attacker 

 Common practice in data communications: error detection code over 

messages, to identify if errors were introduced during transmission 

 Examples: Parity, Bit-Interleaved Parity, Cyclic Redundancy Check (CRC) 

 Underlying idea of these codes: add redundancy to a message for  

being able to detect, or even correct transmission errors 

 The error detection/correction code of choice and its parameters: 

trade-off between  

• computational overhead 

• increase of message length  

• Probability/characteristics of errors on the transmission medium 
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Motivation (2) 

 It is a different (and much harder!) problem to determine if m has been 

modified on purpose! 

 Consequently, we need to add a Modification Detection Code (MDC) 

that fulfills some additional properties which should make it 

computationally infeasible for an attacker to tamper with messages 

 This property is fulfilled by so-called “cryptographic hash functions” 
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 Cryptographic Hash Function 

Overview 
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Cryptographic Hash Functions: Definition 

 Definition: A function h is called a hash function if 

 Compression: h maps an input x of arbitrary finite bit length  

to an output h(x) of fixed bit length n: 

  h: {0,1}* → {0,1} n 

 Ease of computation: Given h and x it is easy to compute h(x) 

 

 Definition: A function h is called a one-way function if 

 h is a hash function 

 for essentially all pre-specified outputs y, it is computationally infeasible  

to find an x such that h(x) = y 

 

 Example: given a large prime number p and a primitive root g in Z*
p 

 Let h(x) = gx mod p  

 Then h is a one-way function 
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Cryptographic Hash Functions: Definition 

 Definition: A function H is called a cryptographic hash function if 

1. H is a one-way function 

Also called 1st pre-image resistance: 

For essentially all pre-specified outputs y, it is computationally infeasible  

to find an x such that H(x) = y  
 

2. 2nd pre-image resistance: 

Given x it is computationally infeasible to find any second input x’ with  

x  x’ such that H(x) = H(x’) 

Note: This property is very important for digital signatures. 
 

3. Collision resistance:  

It is computationally infeasible to find any pair  

(x, x’) with x  x’ such that H(x) = H(x’) 
 

4. Random oracle property:  

It is computationally infeasible to distinguish H(m) from random n-bit value 
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General Remarks (1)  

 Computational infeasibility  

 In a mathematical sense, the notion of computational infeasibility is directly 

related to complexity theory.  

 It means that no polynomial complexity algorithm for the given problem 

exists 

 However, cryptographic hash functions, which are actually used in 

practice, e.g. SHA-1 or SHA-3, are not directly based on such 

mathematical problems 

 Random output 

 The algorithm for calculating the hash value of a string is deterministic 

 However, the output of a cryptographic hash function should “look” random 

[Ferg03] 

 In particular, a cryptographic hash function should map two “similar” 

strings to completely uncorrelated outputs (similar in the sense of a small 

Hamming distance) [Cos06] 

  In particular, a cryptographic hash function should not be additive 

• If x’ = x  Δ, then H(x’) should be different from H(x)  H(Δ) 
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General Remarks (2) 

 In networking there are codes for error detection. 

 Cyclic redundacy checks (CRC)  

 CRC is commonly used in networking environments 

 CRC is based on binary polynomial division with Input / CRC divisor 

(divisor depends on CRC variant). 

 The remainder of the division is the resulting error detection code. 

 CRC is a fast compression function. 

 Why not use CRC?  

 CRC is not a cryptographic hash function 

 CRC does not provide 2nd pre-image resistance and collision resistance 

 CRC is additive 

• If x’ = x  Δ, then CRC(x’) = CRC(x)  CRC(Δ) 

 CRC is useful for protecting against noisy channels  

 But not against intentional manipulation 
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 MAC and other applications 

Overview 
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Application of Cryptographic Hash Functions for Data Integrity  

 Applying a hash function is not sufficient to secure a message. 

 H(m) needs to be protected. 

Alice (A) Bob (B) 
m, H(m)  

Alice (A) Bob (B) 
m, H(m)  m‘, H(m‘)  

ok 

ok 

Case: 

No attacker 

Case: 

With attacker 
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Application of Cryptographic Hash Functions for Data Integrity  

 Cryptographic hash functions are used to detect whether a message 

has been modified by an attacker 

 As seen on the last slide: 

 However, the use of a cryptographic hash function is not sufficient to 

detect whether a message has been modified. 

 if Alice sends a message (x, H(x)) to Bob, with H a cryptographic hash 

function, it holds: 

• The computation of H(x) is usually based on a well-known algorithm  

• The computation of H(x) does not include a secret key or anything else bound 

to the identity of Alice 

An attacker can modify x to x‘, calculate H(x‘) easily and sends (x‘, H(x‘)) to Bob 

pretending that this message would be originating from Alice 
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Application of Cryptographic Hash Functions for Data Integrity  

 

 Potential workarounds: 

 Alice might send the cryptographic hash value via an out-of-band (trusted) 

channel to Bob. Examples: 

• by phone call 

• by a letter 

• the hash value may be published on a (trusted) web server. 

• Alice and Bob might use a physically-protected channel where attackers can 

only listen, but not send. 

 Use cryptography and secret keys 

• Message Authentication Code (MAC) that depends on key k and message m. 
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Application of Cryptographic Hash Functions for Data Integrity  

 Since the secret key k is unknown to the attacker, the attacker cannot 

compute MACK (m’) 

Alice (A) Bob (B) 
m, MACK (m)  

Alice (A) Bob (B) 
m, MACK (m)  m', MACK (m)  

ok 

not ok 

Case: 

No attacker 

Case: 

With attacker 

share symmetric key K 
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Message Authentication Codes (MACs) 

 Definition: Let Hk be a family of functions parameterized by a secret 

key k. Then Hk  is called a Message Authentication Code (MAC) 

algorithm if it satisfies the following properties: 

1. Compression: 

Hk maps an input x of arbitrary finite bitlength to an output Hk(x) of fixed 

bitlength, called the MAC 

 

2. Ease of computation: 

given k, x and a known function family Hk the value Hk(x) is easy to 

compute 

 

3. Computation-resistance: 

for every fixed, allowed, but unknown value of k, given zero or more text-

MAC pairs (xi, Hk(xi)) it is computationally infeasible to compute a text-MAC 

pair (x, Hk(x)) for any new input x  xi  
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Message Authentication Codes (MACs) 

 

 Note that computation-resistance implies key non-recovery  

 k can not be recovered from pairs (xi, Hk(xi)),  

 but computation-resistance can not be deduced from key non-recovery, as 

the key k needs not always to be recovered to forge new MACs 

(as shown in subsequent example) 
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A Simple Attack Against an Insecure MAC 

 For illustrative purposes, consider the following MAC definition: 

 Input: message m = (x1, x2, ..., xn) with xi being 128-bit values, and key K 

 Compute (m) := x1  x2  ...  xn   with  denoting XOR 

 Output: MACK(m) := EncK((m))  with EncK(x) denoting AES encryption 

 The key length is 128 bit and the MAC length is 128 bit, so we would expect 
an effort of about 2127 operations to break the MAC (being able to forge 
messages). 

 Unfortunately the MAC definition is insecure: 

 Attacker Eve wants to forge messages. Eve does not know K 

 Alice and Bob exchange a message (m, MACK(m)), Eve eavesdrops it 

 Eve can construct a message m’ that yields the same MAC: 

• Let y1, y2, ..., yn-1 be arbitrary 128-bit values 

• Define yn := y1  y2  ...  yn-1  (m) 

• This yn allows to construct the new message m’ := (y1, y2, ..., yn) 

• Therefore, MACK(m’) = Enc((m’)) = Enck(y1  y2  ...  yn-1  yn )) 

                                                    = Enck(y1  y2  ...  yn-1  y1  y2  ...  yn-1  (m))) 

                                                    = Enck((m))) 

                                                    = MACk(m) 
 

 Therefore, MACk(m) is a valid MAC for m’ 

 When Bob receives (m’, MACK(m)) from Eve, he will accept it as being originated 
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Applications of Cryptographic Hash Functions 

 Principal application which led original design: 

 Message integrity: 

• Using a shared secret key: 

– A MAC over a message m directly certifies that the sender of the message 

possesses the secret key k and the message could not have been modified 

without knowledge of that key 

• Using public key cryptography: 

– The cryptographic hash value represents a digital fingerprint, which can be 

signed with a private key using public key cryptography (like RSA, ECC, 

ElGamal)  

– Given a cryptographic hash function it is computationally infeasible to 

construct two messages with the same fingerprint. Therefore, a given 

signed fingerprint can not be re-used by an attacker. 

– Note: Signatures in public key cryptography are often used in settings 

where the security has to be guaranteed a long time, e.g. digitalling signing 

a contract. 
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Other Applications which require some Caution  

 Pseudo-random number generation 

 The output of a cryptographic hash function is assumed to be uniformly 
distributed 

 Although this property has not been proven in a mathematical sense for 
common cryptographic hash functions, such as MD5, SHA-1, it is often 
used 

 Start with random seed, then hash 

 b0 = seed 

 bi+1 = H (bi  | seed) 

 

 Encryption 

 Remember: Output Feedback Mode (OFB) – encryption performed by 
generating a pseudo random stream, and performing XOR with plain text  

 Generate a key stream as follow: 

 k0   = H(KA,B | IV) 

 ki+1 = H (KA,B | ki) 

 The plain text is XORed with the key stream to obtain the cipher text. 
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Other Applications of Cryptographic Hash Functions 

 Authentication with a challenge-response mechanism 

Alice Bob 

rA 
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Other Applications of Cryptographic Hash Functions 

 Authentication with a challenge-response mechanism 

 Alice  Bob: random number “rA” 

 Bob   Alice: “H(KA,B, rA )” 

 Based on the assumption that only Alice and Bob know the shared secret KA,B,  

Alice can conclude that an attacker would not be able to compute H(KA,B, rA ), 

and therefore that the response is actually from Bob 

 Mutual authentication can be achieved by a 2nd exchange in opposite direction  

 This authentication is based on a well-established authentication method called  

„challenge-response“ 

 This type of authentication is used, e.g., by HTTP digest authentication 

• It avoids transmitting the transport of the shared key (e.g. password) in clear text 

 Another type of a challenge-response would be, e.g., if Bob signs the challenge  

“rA” with his private key 

 Note that this kind of authentication does not include negotiation of a session key. 

 Protocols for key negotiation will be discussed in subsequent chapters. 
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Other Applications of Cryptographic Hash Functions 

 Cryptographic hash values can also be used for error detection, but 

they are generally computationally more expensive than simple error 

detection codes such as CRC 

 



Network Security, WS 2013/14, Chapter 2.2   23 

 Common Structures of Hash Functions 

 Merkle-Damgård construction 

 SHA-1 

 SHA-3 and Skein 

 

Overview 
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Overview of Commonly Used Cryptographic Hash Functions  

and Message Authentication Codes 

 Cryptographic Hash Functions: 

 Message Digest 5 (MD5): 

• Invented by R. Rivest, Successor to MD4. Considered broken. 

 Secure Hash Algorithm 1 (SHA-1): 

• Old NIST standard.  

• Invented by the National Security Agency (NSA). Inspired by MD4. 

 Secure Hash Algorithm 3 (SHA-3): 

• Current NIST standard (since October 2012). 

• Keccak algorithm by G. Bertoni, J. Daemen, M. Peeters und G. Van Assche. 

 

 Message Authentication Codes: 

 MACs constructed from cryptographic hash functions: 

• Example HMAC, RFC 2104, details later 

 CBC-MAC, CMAC 

• Uses blockcipher in Cipher Block Chaining mode  
(Encryption: XOR plain text with cipher text of previous block, then encrypt) 

• CMAC better than pure CBC-MAC, details later 
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Merkle-Damgård construction (1) 

 Like many of today’s block ciphers follow the general structure of a 

Feistel network, cryptographic hash functions such as SHA-1 follow 

the Merkle-Damgård construction: 

 Let y be an arbitrary message. Usually, the length of the message is 

appended to the message and padded to a multiple of some block size b. 

Let (y0, y1, ..., yL-1) denote the resulting message consisting of L blocks of 

size b  

 The general structure is as depicted below: 

 

 

 

 

 

 

 CV is a chaining value, with CV0 := IV and H(y) := CVL  

 f is a specific compression function which compresses (n + b) bit to n bit 

 

f 

y0 

CV0 

n 

b 

f 

y1 

CV1 

n 

b 

f 

yL-1 

CVL-1 

n 

b 

CVL CV2 

n 
... 

n 
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Merkle-Damgård construction (2) 

 The hash function H according to Merkle-Damgård construction can be 

summarized as follows: 

      CV0  = IV   = initial n-bit value 

      CVi = f(CVi-1, yi-1) 1  i  L 

      H(y) = CVL  

 Security proofs by the authors [Mer89a] have shown shown that if the 

compression function f is collision resistant, then the resulting iterated 

hash function H is also collision resistant. 

 However, the construction has undesirable properties like length 

extension attacks. The Merkle-Damgård construction can be 

strengthened:  

 by adding a block with the length of the message (length padding). 

 by using a wide pipe construction where the hash output has less bits than 

the intermediate chaining values CVi  with i < L. 

• Hash shorter than state good as less info leaked to attacker (e.g. against length 

extension). However, less search space for other attacks like brute force. 
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The Secure Hash Algorithm SHA-1 (1) 

 Also SHA-1 follows the common structure as described above: 

 SHA-1 works on 512-bit blocks and produces a 160-bit hash value 

 Initialization 

• The data is padded, a length field is added and the resulting message is 
processed as blocks of length 512 bit 

• The chaining value is structured as five 32-bit registers A, B, C, D, E 

• Initialization: A = 0x 67 45 23 01 B = 0x EF CD AB 89 

 C = 0x 98 BA DC FE D = 0x 10 32 54 76  

 E = 0x C3 D2 E1 F0 

• The values are stored in big-endian format 

 Each block yi of the message is processed together with CVi in a module 
realizing the compression function f in four rounds of 20 steps each. 

• The rounds have a similar structure but each round uses a different primitive 
logical function f1, f2, f3, f4  

• Each step makes use of a fixed additive constant Kt, which remains unchanged 
during one round 

 The text block yi which consists of 16 32-bits words is „stretched“ with a 
recurrent linear function in order to make 80 32-bits out of it, which are 
required for the 80 steps: 

• t{0, ..., 15}  Wt := yi[t]   

• t{16, ..., 79}   Wt := CLS1(Wt-16  Wt-14  Wt-8  Wt-3) 
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The Secure Hash Algorithm SHA-1 (2) - One Step 

 

 

 After step 79 each register A, B, C, D, E is added modulo 232 with the value of the 
corresponding register before step 0 to compute CVi+1  

f(t DIV 20) 

yi[k] 
CLS5 + 

+ 

+ 

+ 

Wt 

K(t DIV 20) 

A B C D E 

CLS30 

A B C D E 
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The Secure Hash Algorithm SHA-1 (3) 

 The SHA-1 value over a message is the content of the chaining value 

CV after processing the final message block 

 Security of SHA-1: 

 As SHA-1 produces a hash value of length 160 bit, it offers better security 

than MD5 with its 128 bits. 

 In February 2005, 3 Chinese Scientists published a paper where they 

break SHA-1 collision resistance within 269 steps, which is much less than 

expected from a cryptographic hash function with an output of 160 bits 

(280). 

 Meanwhile down to 252 steps (EuroCrypt 2009 Rump Session). 

 Up to now, no attacks on the pre-image resistance of SHA-1 have been 

published. 
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SHA-3 –  a new hash standard  

 MD5 is considered broken and SHA-1 is under heavy attack. 

 Performance of SHA-1 worse than performance of up-to-date 

symmetric ciphers like AES or Twofish. 

 NIST started a competition for a new hash function standard that will 

be called SHA-3 in 2007. 

 

 NIST SHA-3 competetition 

 Requirement: fast and secure! 

 Round1: 51 candidates accepted, 13 rejected. (December 2008) 

 Round2: 14 candidates survivded. (July 2009) 

 Round3 (final): 5 candidates (BLAKE,  Grostl, JH, Keccak, Skein) 

(December 2010) 

 Winner (October 2012): Keccak 
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SHA-3 / Keccak / Sponge Construction 

 SHA-3 (Keccak) 

 Follows the sponge construction  

 M is padded to a multiple of the block length r 

 r=0, c=0 

 For each block i, compute f(r+mi | ci)  (= Absorbing phase) 

 In squeezing phase concatenate the ri until output length reached. 

Source: Cryptographic sponge functions [CSF], 

January 2011, http://sponge.noekeon.org/ by Keccak 

authors 

http://sponge.noekeon.org/
http://sponge.noekeon.org/
http://sponge.noekeon.org/
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SHA-3 / Keccak / Sponge Construction 

 The function f follows a block cipher-like concept. 

 Internal state:  

 3d state space, 5x5 64-bit words (400 Bits) 

 256 Bit and 512 Bit blocks, 24 rounds with each 5 

subrounds 

 Round operations include 

 Parity in columns of the state space 

 Bitwise rotation in words 

 Permutation of words 

 A non-linear bitwise combination operation 

 XOR with round constant 

 Authenticated Encryption and Tree Hash support 

proposed, not standardized. 
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SHA-3 candidate Skein 

 In addition to SHA-3 finalist Skein might also get wide support in 

libraries and protocols due to its prominent authors . 

 Variants Skein-n / Skein-n-m 

 n = size of internal state (relates to the strength of the hash function) 

• n = 512 (default), n = 1024 (conservative), n = 256 (low memory) 

 m = size of hash output 

 Concept 

 Build hash function out of tweakable block cipher 

 Uses block cipher  Threefish  

• 512, 1024, 256 bits  key length and block length (depending on variant) 

 Unique Block Iteration (UBI) as chaining mode 

• Variable input and fixed (configurable) output size 

 Optional Argument System 

• Key, Configuration, Personalization, Public Key, Key Derivation Identifier, 

Nonce, Message, Output 

 Support for Tree Hashing 

• Option to process large plaintexts on parallel CPUs / machines in a tree rather 

than linear processing (cannot be parallelized) 



Network Security, WS 2013/14, Chapter 2.2   34 

Tweak 

 

 Tweak in Skein 

 Overall size = 128 bits 

 96 bits counter for message length 

• Incremented for each block 

 6 bits type information 

 Bit indicates padding 

 Bit indicates first block 

 Bit indicates last block 

 Makes hash result for a plaintext subsequence position-dependent  

• E.g. harder to insert blocks that do not change chaining value to next block 

• E.g. harder to extend message and compute new MAC 

• Etc. 
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Threefish 

 Block size 256, 512, or 1024 bits 

 Key size = block size 

 Tweak size = 128 bits 

 All operations on 64 bit words 

 Mix operation uses 

 XOR, addition (mod 2^64), constant 

rotation (round and word-specific) 

 72 rounds  (80 rounds for 1024 bit 

version) 

 Subkeys 

 Are round-specific and derived from 

key (4, 8, or 16 words) and tweak 

(128 bits = 2 words) 

 

 

 

Taken from [FLS+08] Skein Specification v1.1 

http://www.skein-hash.info/sites/default/files/skein1.1.pdf  
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Unique Block Iteration (UBI) Chaining Mode 

 Unique Block Iteration (UBI) 

 Block cipher 

• Input: Message Blocks 

• Key: Tweak and chaining value  

 Chaining Value 

• XOR of output and input of block 

cipher 

 Tweak 

• „Counts bytes until now“ (len field) 

• Indicates first block / finalblock 

 UBI in Skein 

 type field 

• Config 

– 32 byte configuration string 

containing fields like output length 

• Message 

– Plaintext 

• Out 

– Generates final output, input is 0. 

 

 

 

Taken from [FLS+08] Skein Specification v1.1 

http://www.skein-hash.info/sites/default/files/skein1.1.pdf  

Taken from [FLS+08] Skein  

Specification v1.1  
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UBI in Skein – Output Generation 

 

 Increase the output size by applying a counter mode for the output 

computation 

Taken from [FLS+08] Skein  

Specification v1.1  
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Skein-MAC 

 MAC usage 

 Skein can be used with HMAC and similar functions, requires two hashes 

 Faster option: use Skein with optional argument  „key“ 

• The key input are processed by an UBI block with the key as input, 0 as 

constant / initial chaining value and the tweak type information „Key“ 

• This does not suffer the same weaknesses mentioned before like adding a key 

to the plaintext as in some weaker MAC contructions like H(k,m,k). 

Taken from [FLS+08] Skein  

Specification v1.1 
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 Birthday Phenomenon 

Overview 
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Attacks Based on the Birthday Phenomenon (1) 

 Attack against collision resistance of cryptographic hash functions 

 The Birthday Phenomenon: 

 How many people need to be in a room such that the possibility that there 
are at least two people with the same birthday is greater than 0.5? 

 For simplicity, we don’t care about February, 29, and assume that each 
birthday is equally likely 

 Define P(n, k) := Pr[at least one duplicate in k items, with each item 
 able to take one of n equally likely values  
 between 1 and n]  

 Define Q(n, k) := Pr[no duplicate in k items, each item between 1 and n] 

 P(n, k) = 1 - Q(n, k)  

 We are able to choose the first item from n possible values, the second item 
from n - 1 possible values, etc. 

 Hence, the number of different ways to choose k items out of n values with 
no duplicates is: N = n  (n - 1)  ...  (n - k + 1) = n! / (n - k)! 

 The number of different ways to choose k items out of n values, with or 
without duplicates is: nk 

 So, Q(n, k) = N / nk = n! / ((n - k)!  nk) 
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Attacks Based on the Birthday Phenomenon (2) 

 P(n, k) := Pr[at least one duplicate in k items, with each item able to 

take one of n equally likely values between 1 and n]  

 We have: 

 

 

 

 

 

 

 

 We will use the following inequality: (1 - x)  e-x for all x  0 

 So: 
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Attacks Based on the Birthday Phenomenon (3) 

 In the last step, we used the equality: 1 + 2 + ... + (k - 1) = (k2 - k) / 2 

 Exercise: proof the above equality by induction 

 Let’s go back to our original question: how many people k have to be 

in one room such that there are at least two people with the same  

birthday (out of n = 365 possible) with probability  0,5? 

 So, we want to solve:  

 

 

 

 For large k we can approximate k  (k - 1) by k2, and we get: 

 

 For n = 365, we get k = 22.54 which is quite close to the correct answer 23 
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Attacks Based on the Birthday Phenomenon (4) 

 What does this have to do with cryptographic hash functions? 

 We have shown, that if there are n possible different values, the 

number k of values one needs to randomly choose in order to obtain a 

pair of identical values with probability ≥ 0.5, is in the order of  

 Now, consider the “Yuval’s square root attack” [Yuv79a]: 

 Eve wants Alice to sign a message m1 which Alice normally never would 

sign. Eve knows that Alice uses the function H to compute a cryptographic 

hash value of m. The hash value has length r bit before she signs it with 

her private key yielding her digital signature 

 First, Eve produces her message m1. If she would now compute H(m1) 

and then try to find a second harmless message m2 which leads to the 

same hash value her search effort in the average case would be on the 

order of 2(r - 1) 

 Instead she takes any harmless message m2 and starts producing 

variations m1’ and m2’ of the two messages, e.g. by adding <space> 

<backspace> combinations or varying with semantically identical words 

n
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Attacks Based on the Birthday Phenomenon (5) 

 As we learned from the birthday phenomenon, Eve will just have to 

produce about                 variations of each of the two messages such 

that the probability that she obtains two messages m1’ and m2’ with 

the same hash value is at least 0.5 

 As she has to store the messages together with their hash values in 

order to find a match, the memory requirement of her attack is on the 

order of         and its computation time requirement is on the same 

order 

 After she has found m1’ and m2’ with H(m1’) = H(m2’) she asks Alice 

to sign m2’. Eve can then take this signature and claim that Alice 

signed m1’ 

222
r

r 

22
r
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Attacks Based on the Birthday Phenomenon (6) 

 Attacks following this method are called birthday attacks 

 Consider now, that Alice uses RSA with keys of length 2048 bit and a 

cryptographic hash function which produces hash values of length 96 

bit. 

 Eves average effort to produce two messages m1’ and m2’ as described 

above is on the order of 248, which is feasible today. Breaking RSA keys of 

length 2048 bit is far out of reach with today's algorithms and technology 
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 Constructing MACs 

 HMAC  

 CBC-MACs 

 CMAC  

Overview 
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Constructing a MAC from a Cryptographic Hash Functions (1) 

 Reasons for constructing MACs from cryptographic hash functions : 

 Cryptographic hash functions generally execute faster than symmetric 

block ciphers (Note: with AES this isn’t much of a problem today) 

 There are no export restrictions to cryptographic hash functions 

 Basic idea: “mix” a secret key K with the input and compute a hash 

value 

 The assumption that an attacker needs to know K to produce a valid 

MAC nevertheless raises some cryptographic concern: 

 The construction H(K | m) is not secure 

 The construction H(m, K) is not secure 

 The construction H(K, p, m, K) with p denoting an additional padding field 

does not offer sufficient security 
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Constructing a MAC from a Cryptographic Hash Functions (2) 

 The construction H(K | m | K), called prefix-suffix mode, has been used 
for a while.  

 See for example [RFC 1828] 

 It has been also used in earlier implementations of the Secure Socket 
Layer (SSL) protocol (until SSL 3.0) 

 However, it is now considered vulnerable to attack by the cryptographic 
community. 

 

 The most used construction is HMAC: 

 

 

 The length of the key K is first extended to the block length required for the 
input of the hash function H by appending zero bytes. 

 Then it is xor’ed respectively with two constants opad and ipad 

 The hash function is applied twice in a nested way. 

 Currently no attacks have been discovered on this MAC function. (see 
note 9.67 in [Men97a]) 

 It is standardized in RFC 2104 [Kra97a] and is called HMAC 

))|(|( mipadKHopadKH 
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Cipher Block Chaining Message Authentication Codes (1) 

 A CBC-MAC is computed by encrypting a message in CBC Mode and 

taking the last ciphertext block or a part of it as the MAC: 

 

 

 

 

 

 

 

 

 This MAC needs not to be signed any further, as it has already been 

produced using a shared secret K. 

 This scheme works with any block cipher (AES, Twofish, 3DES, ...) 

 It is used, e.g., for IEEE 802.11 (WLAN) WPA2, many modes in SSL / IPSec 

use some CBC-MAC construction. 

Encrypt 

C1 

K 

y2 

Encrypt 

C2 

K 

yn 

Encrypt 

Cn 

K ... 

y1 

+ + Cn-1 

MAC (up to b bits) 
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Cipher Block Chaining Message Authentication Codes (2) 

 CBC-MAC security 

 CBC-MAC must NOT be used with the same key as for the encryption 

 In particular, if CBC mode is used for encryption, and CBC-MAC for 

integrity with the same key, the MAC will be equal to the last cipher text 

block 

 If the length of a message is unknown or no other protection exists, CBC-

MAC can be prone to length extension attacks. CMAC resolves the issue. 

 CBC-MAC performance 

 Older symmetric block ciphers (such as DES) require more computing 

effort than dedicated cryptographic hash functions, e.g. MD5, SHA-1 

therefore, these schemes are considered to be slower. 

 However, newer symmetric block ciphers (AES) is faster than conventional 

cryptographic hash functions. 

 Therefore, AES-CBC-MAC is becoming popular. 
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Cipher-based MAC (CMAC) 

 

 CMAC is a modification of CBC-MAC  

 Compute keys k1 and k2 from shared key k. 

 Within the CBC processing 

• XOR complete blocks before encryption with k1 

• XOR incomplete blocks before encryption  with k2 

• k is used for the block encryption 

 Output is the last encrypted block or the l most significant bits of the last 

block. 

 AES-CMAC is standardized by IETF as RFC 4493 and its truncated form 

in RFC 4494. 

 XCBC-MAC (e.g. found in TLS) is a predecessor of CMAC where k1 

and k2 are input to algorithm and not derived from k. 
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 Integrity Check and Digital Signature 

Overview 
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Integrity check with hash function / MAC 

 Alice protects her message m with a MAC function 

 Alice has to send m and the MAC value to Bob. 

 

Examples for potential MAC constructions: 

 HMAC 

 CBC-MAC / CMAC 

 EncK (h(m)) 

Alice (A) Bob (B) 

share symmetric key K 

m, MACK (m) 

))|(|( mipadKHopadKH 
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Integrity check with hash function / MAC 

 Alice „signs“ her data m with the Message Authentication Code. 

 Bob can verify the MAC code by using the shared key. 

 He reads Alice‘s  MACK (m) 

 He can check if his MACK (m) matches the one Alice signed. 

 Only Alice and Bob who know K can do this. 

 

Take home message: for integrity checks the receiver needs to know m 

and a modification check value that it can compare. 

 Think about it: Why is EncK (m) usually not sufficient? 

Alice (A) Bob (B) 

share symmetric key K 

m, MACK (m) 
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