

 Chair for Network Architectures and Services

Institute of Informatics

TU München – Prof. Carle

Network Security

Chapter 2 Cryptography

2.6 Cryptographic Protocols

 for Encryption, Authentication

and Key Establishment

Network Security, WS 2013/14, Chapter 2.6 2

Acknowledgments

This course is based to a significant extend on slides provided by

Günter Schäfer, author of the book "Netzsicherheit - Algorithmische

Grundlagen und Protokolle", available in German from dpunkt Verlag.

The English version of the book is entitled “Security in Fixed and Wireless

Networks: An Introduction to Securing Data Communications” and is

published by Wiley is also available. We gratefully acknowledge his support.

The slides by Günter Schäfer have been partially reworked by

Heiko Niedermayer, Ali Fessi, Ralph Holz and Georg Carle.

Network Security, WS 2013/14, Chapter 2.6 3

 Authentication and Key Establishment Protocols

 Introduction

 Key Distribution Centers (KDC)

 Public Key Infrastructures (PKI)

 Building Blocks of key exchange protocols

Overview

Network Security, WS 2013/14, Chapter 2.6 4

Problem Statement

 Goal

 Run a key exchange protocol such that at the end of the protocol:

• Alice and Bob have agreed on a shared „session key“ for a secure channel

• Alice and Bob have agreed on the cryptographic algorithms to be used for the

secure channel

• Alice (Bob) must be able to verify that Bob (Alice) knows K and that he (she) is

“alive”

• Alice and Bob must know that K is newly generated

Network Security, WS 2013/14, Chapter 2.6 5

Entity Authentication or Key Establishment? (1)

 Many authentication protocols – as a side effect of the authentication

exchange - do establish a secret session key for securing the session

(to be used only for the current session).

 Some opinions about the relationship between authentication and key

establishment:

 „It is accepted that these topics should be considered jointly rather

separately“ [Diff92]

 „… authentication is rarely useful in the absence of an associated key

distribution“ [Bell95]

 „In our view there are situations when entity authentication by itself may

useful, such as when using a physically secured communication channel.“

[Boyd03]

Network Security, WS 2013/14, Chapter 2.6 6

Entity Authentication or Key Establishment? (2)

 Example

 Alice wants to use the online banking service provided by her bank

 Alice can perform an online banking session from any terminal using a (secure)

Internet Browser

 The Internet browser authenticates the web server based on the certificate (see

below) which includes the public key of the web server.

 Authentication of the web server:

• as a consequence of this authentication mechanism, a shared session key KA,B is

generated, which can be used for this session (it is important that this session key is

correctly destroyed when the session is over)

 Authentication of the client:

• the web server authenticates Alice based on her PIN number. (As a consequence of the

successful authentication of Alice, no additional secret key is established.)

 This example shows that both cases are common:

• Entity authentication with key establishment

• Entity authentication without key establishment

 The goals of a protocol have to be carefully set up for each application scenario

 Entity authentication  Mutual entity authentication

 Entity auth. with key establishment  Mutual entity auth. with key establishment

Network Security, WS 2013/14, Chapter 2.6 7

First Try: Key Establishment with Diffie-Hellman

 Assume Alice and Bob want to establish a secure channel with a

shared secret KA,B

 The Diffie-Hellman protocol introduced in Chapter 2.2 is our first

example of a cryptographic protocol for key exchange. So what’s

wrong with it?

 The problem with a “simple DH exchange” is that a man-in-the-middle

attack is possible.

 Neither Alice nor Bob know after a protocol run with whom they

actually have exchanged a key

Network Security, WS 2013/14, Chapter 2.6 8

Why Diffie-Hellman does not provide authentication.

 Diffie-Hellman provides a key agreement, but without authentication.

 Without further security measures, neither Alice nor Bob know or proof

with whom they shared the key. DH is a key agreement protocol!

 Knowing = it was proven given your knowledge and the protocol

Knowledge of Alice Knowledge of Bob

g, ga , p

Additonal knowledge:

Someone shared

a key with me.

gb Additonal knowledge:

This someone shared

a key with me.

Additonal knowledge:

Sent a DH exchange

to someone.

Network Security, WS 2013/14, Chapter 2.6 9

Authentication = Proof in Logic

 Entities belief all facts that can be derived from their axioms and the

facts they learned. (Axiom = basic fact believed without pre-condition)

Belief of Alice

Belief of Bob

Axiom: TTP is trustworthy

Axiom: Cryptographic

Algorithms secure

Axiom: Protocol is secure

…..

Axiom: Alice = me.

Fact: kBS Bob‘s key with TTP

Axiom: Bob = me.

Fact: kAS Alice‘s key with TTP

Fact: Alice and Bob exist.

Belief of Bob

Shared belief

of Alice

and Bob

Belief of Alice

Unknown facts

Network Security, WS 2013/14, Chapter 2.6 10

Authentication = Proof in Logic

 Entities belief all facts that can be derived from their axioms and the

facts they learned. (Axiom = basic fact believed without pre-condition)

Belief of Alice Belief of Bob

Axiom: TTP is trustworthy

Axiom: Cryptographic

Algorithms secure

Axiom: Protocol is secure

…..

Axiom: Alice = me.

Fact: kBS Bob‘s key with TTP

Axiom: Bob = me.

Fact: kAS Alice‘s key with TTP

Fact: Alice and Bob exist.

Fact: received a message

with NA from someone

Fact: sent a message

with NA to someone,

hopefully Bob

NA

Each message increases the knowledge

/ the beliefs of Alice and Bob

(usually the receiver gains more information)

Network Security, WS 2013/14, Chapter 2.6 11

Authentication = Proof in Logic

 Goal: Both proove their identity and they establish a shared key and

recognize each other with this key (for some time, their session)

Belief of Alice Belief of Bob

Axiom: TTP is trustworthy

Axiom: Cryptographic

Algorithms secure

Axiom: Protocol is secure

…..

Axiom: Alice = me.

Fact: kBS Bob‘s key with TTP

Axiom: Bob = me.

Fact: kAS Alice‘s key with TTP

Fact: Alice and Bob exist.

Fact: A is Alice, B is Bob

 and kAB

is the shared key

Fact: A is Alice, B is Bob

 and kAB

is the shared key

Make this a

shared fact

Network Security, WS 2013/14, Chapter 2.6 12

Authentication = Proof in Logic

 Both entities locally proof the fact, they need to agree on it in the end.

 Formal definitions for this exist, yet we do not need them for the lecture.

Belief of Alice Belief of Bob

Axiom: TTP is trustworthy

Axiom: Cryptographic

Algorithms secure

Axiom: Protocol is secure
Axiom: Alice = me.

Fact: kBS Bob‘s key with TTP

Axiom: Bob = me.

Fact: kAS Alice‘s key with TTP

Fact: Alice and Bob exist.

Fact: A is Alice, B is Bob

 and kAB

is the shared key

TTP

Network Security, WS 2013/14, Chapter 2.6 13

Second Try: Static Approach

 Static Approach for the negotiation of “session keys” and cryptographic

algorithms

 Keys are manually exchanged. Cryptographic algorithms are agreed on

personally

 Pro’s

 Simple,

 session keys are automatically authenticated

 Con‘s

 Manual process is required (either by a direct meeting or by phone call)

 Does not scale for a large set of hosts

 symmetric keys would be needed for n entities

 Renewing of keys or cryptographic algorithms require another manual

process

 If the key is compromised, all sessions can be compromised (also previous

recorded sessions!)

 Keys are not changed frequently

2

)1(* nn

Network Security, WS 2013/14, Chapter 2.6 14

Example: Static Approach in GSM/UMTS Networks

 The user mobile phone share a long-term secret key with the home

network.

 The secret key is stored in the SIM card that the user received from his

provider.

 Note: in GSM/UMTS networks, the scalability issue is not severe

 A mobile device does not communicate directly with other mobile devices.

 Communication takes place between the mobile device and the network

instead.

 Only n symmetric keys are required (instead of keys).
 2

)1(* nn

Network Security, WS 2013/14, Chapter 2.6 15

Trusted Third Parties (TTP)

 Boyd‘s Theorem [Boyd03]

 „Assuming the absence of a secure channel, two entities cannot establish

an authenticated session without the existence of an entity that can

mediate between the two and which both parties trust and have a secure

channel with“.

 A TTP is a special entity which has to be trusted by its users

 A TTP can significantly reduce the key management complexity

 “Trusted” means that it is expected to always behave honestly.

 The TTP is assumed to always respond exactly according to the

protocol specification, and, therefore, will never deliberately

compromise the security of its clients.

Network Security, WS 2013/14, Chapter 2.6 16

Key Distribution Centers (KDC)

 A KDC is an option for providing authentication and key establishment.

 A KDC is a TTP that shares secrets with all entities (an entity may be a

user or a host).

 Alice asks KDC for a secret to (securely) talk to Bob.

 KDC generates a secret KA,B

 Example of KDCs:

 The Kerberos protocol is based on a KDC.

 In fact, a Kerberos server is often called a KDC.

 Drawbacks:

 KDC can monitor all authentication and key establishment activities.

 KDC knows the session key.

 KDC needs to be online during the authentication and key establishment

procedure.

 KDC is a potential single-point-of-failure/ bottleneck.

Network Security, WS 2013/14, Chapter 2.6 17

Public Key Infrastructures (PKI)

 A Certificate Authority (CA) asserts the correctness of the certificate by

signing it with her private key.

 CA is a trusted third party (TTP) that is trusted by all the entities.

 All entities know the public key of the CA.

 Since Alice knows CA’s public key, she can verify the signature of

Bob’s certificate that was generated by CA.

 See later in this chapter for more details on PKIs.

Network Security, WS 2013/14, Chapter 2.6 18

Trusted Third Parties (TTP) – General Remarks

 The TTP is a very powerful entity in this topology. If an attacker

manages to compromise TTP, he will be in control of the whole

network!

 The TTP may directly be involved in the authentication procedure,

which is the case for KDCs.

Online TTP

 TTP may not be required for the authentication.

 In case a CA signs the public key of Alice, and Bob knows the public

key of the CA, he will be able to verify the validity of Alice’s certificate

that is signed by CA without talking to CA.

Offline TTP (provides more scalability)

However, Certificate Revocation Lists (CRLs) are still required.

Network Security, WS 2013/14, Chapter 2.6 19

Some Notation...

Notation Meaning

A

CAA

rA

tA

(m1, ..., mn)

A  B: m

KA, B

Name of A, analogous for B, E, TTP, CA

Certification Authority of A

Random value chosen by A

Timestamp generated by A

Concatenation of messages m1, ..., mn

A sends message m to B

Secret key, only known to A and B

Notation of Cryptographic Protocols (1)

Network Security, WS 2013/14, Chapter 2.6 20

Some Notation...

Notation Meaning

KA-pub

KA-priv

{m}K

H(m)

A[m]

CertCKCA-priv
(KA-

pub)

Public key of A

Private key of A

Message m encrypted with key K, synonym for E(K, m)

(also integrity protection in case of shared key protocols)

Cryptographic hash value over message m, computed

with function H

Shorthand notation for (m, {H(m)}KA-priv
)

Certificate of CA for public key KA-pub of A, signed with

private certification key CKCA-priv

Shorthand notation for CertCKCA-priv
(KA-pub)

Notation of Cryptographic Protocols (2)

Network Security, WS 2013/14, Chapter 2.6 21

How do attacks against crypto protocols look like?

Replay Attack

 An attacker C can resend the

second message.

 Bob cannot decide whether the

message is fresh or not.

 Reacting to an old message can

result in security compromise!

Man-in-the-Middle attack

 C positions itself between Bob

and Alice, and between Bob and

the TTP.

 In this example, we assume that

C has once talked to Bob and

seen the second message

containing {NC}kBS.

A,{A,B}kAS

Alice (A) TTP (S) Bob (B)

{A, B}kBS

A, B, {NA}kAS A,{NA}kBS

NB,{NC}kCB

{A, B}kBS C
Replay Attack

A,B,{NA}kAS

A,{NA}kBS

NB,{NA}kAB

MitM Attack

with kAB=hash(NA,NB)

A,{NC}kBS

C

C
NC,{NA}kAC

B,C,{NA}kBS

B,{NA}kCS

Use S as

oracle for NA

C

{data}kAC {data}kCB

C

From previous

communication

with Bob

Network Security, WS 2013/14, Chapter 2.6 22

 Part I: Introduction

 Part II: The Secure Channel

 Part III: Authentication and Key Establishment Protocols

 Introduction

 Key Distribution Centers (KDC)

• Needham-Schroeder Protocol

 Public Key Infrastructures (PKI)

 Building Blocks of a key exchange protocol

Overview

Network Security, WS 2013/14, Chapter 2.6 23

The Needham-Schroeder Protocol (1)

 Invented in 1978 by Roger Needham and Michael Schroeder [Nee78]

Roger Needham

Michael Schroeder

Network Security, WS 2013/14, Chapter 2.6 24

The Needham-Schroeder Protocol (2)

 The Needham-Schroeder Protocol is a protocol for mutual

authentication and key establishment

 It aims to establish a session key between two users (or a user and an

application server, e.g. email server) over an insecure network

 The protocol has 2 versions:

 The Needham Schroeder Symmetric Key Protocol:

• based on symmetric encryption

• Forms the basis for the Kerberos protocol

 The Needham Schroeder Public Key Protocol:

• Uses public key cryptography

• A flaw in this protocol was published by Gavin Lowe

[Lowe95] 17 years later!

• Lowe proposes also a way to fix the flaw in

[Lowe95]

Gavin Lowe

Network Security, WS 2013/14, Chapter 2.6 25

 Part I: Introduction

 Part II: The Secure Channel

 Part III: Authentication and Key Establishment Protocols

 Introduction

 Key Distribution Centers (KDC)

• Needham-Schroeder Protocol

– Symmetric Version

– Asymmetric Version

 Public Key Infrastructures (PKI)

 Building Blocks of a key exchange protocol

Overview

Network Security, WS 2013/14, Chapter 2.6 26

The Needham-Schroeder Symmetric Key Protocol (1)

Authentication

Server AS

(user data)

3. Ticket, Challenge2

4. Response2 , Challenge3

User Bob: B

The Needham Schroeder Symmetric Key Protocol - Overview

5. Response3

User Alice: A

Network Security, WS 2013/14, Chapter 2.6 27

The Needham-Schroeder Symmetric Key Protocol (2)

 AS shares symmetric keys with all users, in particular with Alice (KAS,A) and Bob (KAS,B)

1.) A  AS: (A, B, r1)

 Alice sends a message to AS with her name und Bob’s name, telling the server she wants to

communicate with Bob.

 In other words, Alice asks the KDC to supply a session key and a “ticket” for secure

communication with Bob.

 The freshly generated random number r1 is used to authenticate AS and avoid that a man-in-

the-middle is pretending to be AS.

2.) AS  A: {r1, KA,B, B, TicketA,B }KAS,A
 where TicketA,B = {KA,B, A} KAS,B

 AS generates the session key KA,B and sends it to Alice encrypted with KAS,A

 AS includes r1 in the encrypted message, so Alice can confirms that r1 is identical to the number

generated by her in the first step, thus she knows the reply is a fresh reply from AS.

 Furthermore, AS includes a copy of the session key KA,B for Bob included in TicketA,B

 Note here that during this protocol run, AS does not communicate directly with Bob

 Since Alice may be requesting keys for several different people, the inclusion of Bob's name

tells Alice who she is to share this key with.

Network Security, WS 2013/14, Chapter 2.6 28

The Needham-Schroeder Symmetric Key Protocol (3)

 Needham-Schroeder protocol definition (continued):

3.) A  B: (TicketA,B)

 Alice forwards the ticket to Bob.

 Bob can decrypt the ticket with KAS,B and get the session key KA,B .

 Since Alice’s name A is included in the ticket, Bob knows that this ticket was granted by AS for

Alice.

4.) B  A: {r2 }KA,B

 After decrypting message (3), Bob generates the new random number r2 and includes it in

message (4) which is encrypted with the freshly generated session key KA,B .

 However, Bob still also needs to verify that Alice knows the session key KA,B and that she is

alive (otherwise, an attacker could send an “old” ticket pretending to be Alice). Therefore, Bob

challenges Alice with this new random number r2

5.) A  B: {r2 - 1}KA,B

 Alice checks if message 4 was encrypted with the freshly generated session key KA,B . Since
Alice does not know r2, she has to check the integrity of the message (or detect by similar means
that Bob used key KA,B).

 After decrypting Bob’s message, Alice computes r2 - 1 and answers with message (5)

 Bob decrypts the message and verifies that it contains r2 – 1.

Network Security, WS 2013/14, Chapter 2.6 29

The Needham-Schroeder Symmetric Key Protocol (4)

 Needham-Schroeder also proposed a protocol variant where Alice reuses the Ticket
from the server. Key KA,B is therefore not new anymore and it cannot be used to
authenticate Bob. As a consequence Alice needs to include a challenge in message (3).

 Protocol variant with reuse of ticket and shared key:

1.)+ 2.) Not necessary, Alice reuses the ticket.

3.) A  B: (TicketA,B ,{r2} KA,B
)

 Alice sends the ticket again to Bob.

 Bob either still knows the ticket or he can decrypt the ticket again with KAS,B and get the session key KA,B .

 Since Alice’s name A is included in the ticket, Bob knows that this ticket was granted by AS for Alice.

 As the session key is not fresh anymore, Alice cannot authenticate Bob with KA,B. In order to verify that Bob is
alive, receiving Alice’s messages and still has the correct session key, Alice includes a challenge in message (3)
which consists of a nonce random number r2

4.) B  A: {r3 , r2 - 1}KA,B

 After decrypting message (3), Bob calculates (r2 – 1) and includes it in message (4) which is encrypted with the
freshly generated session key KA,B

 However, Bob still also needs to verify that Alice really knows the session key KA,B and that she is alive
(otherwise, an attacker could send an “old” ticket pretending to be Alice).

 Therefore, Bob must challenge Alice with a new random number r3

5.) A  B: {r3 - 1}KA,B

 After decrypting Bob’s message, Alice computes r3 - 1 and answers with message (5)

 Bob decrypts the message and verifies that it contains r3 – 1.

Network Security, WS 2013/14, Chapter 2.6 30

The Needham-Schroeder Symmetric Key Protocol (5)

 Discussion:

 The Needham-Schroeder Symmetric Key Protocol can be considered as secure (no

known attacks so far) if the session key KA,B can not be “brute-forced” or discovered

by an attacker.

 However, if an attacker, Eve, can manage to get to know a session key KA,B , she

can later use this to impersonate as Alice by replaying the message 3:

 3’) E  B: (TicketA,B, r2)

 4’) B  A: {r3 , r2 - 1}KA,B
 , Eve has to intercept this message

Since Eve knows KA,B knows she will be able to decrypt Bob‘s reply 4’) and answers

with

 5’) E  B: {r3 - 1}KA,B

 So, if an attacker Eve is able to compromise one session key KA,B , she will be able

to impersonate Alice in the future even though she doesn’t know KA,TTP

 This problem is solved in the Kerberos protocol with timestamps.

Network Security, WS 2013/14, Chapter 2.6 31

The Needham-Schroeder Symmetric Key Protocol (6)

 Note:

 The term „ticket“ was not used in the original description of the Needham-

Schroeder Protocol. [Nee78]

 However, it is used here to provide an analogy with the Kerberos protocol.

 In the Kerberos protocol, the ticket includes more data than KA,B and A.

Network Security, WS 2013/14, Chapter 2.6 32

 Part I: Introduction

 Part II: The Secure Channel

 Part III: Authentication and Key Establishment Protocols

 Introduction

 Key Distribution Centers (KDC)

• Needham-Schroeder Protocol

– Symmetric Version

– Asymmetric Version

 Public Key Infrastructures (PKI)

 Building Blocks of a key exchange protocol

Overview

Network Security, WS 2013/14, Chapter 2.6 33

The Needham-Schroeder Public Key Protocol (1)

 The Needham-Schroeder Public Key Protocol

 Protocol description

 Attack published by Gavin Lowe in 1995

Network Security, WS 2013/14, Chapter 2.6 34

The Needham-Schroeder Public Key Protocol (2)

 Assumptions

 AS is a trusted server.

 AS knows the public keys of all users

 All users know AS‘s public key

 Protocol run

1.) A  AS: (A, B)

 Alice requests Bob’s public key from AS.

2.) AS  A: { KB-pub , B }KAS-priv

 AS asserts that Bob’s public key is KB-pub

3.) A  B: { rA , A }KB-pub

 Alice generates a random number rA and sends it to Bob together with her name,

encrypted with Bob’s public key KB-pub

4.) B  AS: (B, A)

 Bob requests Alice’s public key from AS.

Network Security, WS 2013/14, Chapter 2.6 35

The Needham-Schroeder Public Key Protocol (3)

 Needham-Schroeder public key protocol definition (continued):

5.) AS  B: { KA-pub , A }KAS-priv

 AS asserts that Alice’s public key is KA-pub

6.) B  A: { rA , rB } KA-pub

 Bob generates a random number rB and sends it to Alice together with rA encrypted with KA-pub.

Thus, Bob proves to Alice that he was able to decrypt message (3) successfully and therefore

proving his identity to Alice. Here in message (6), Bob challenges also, whether she can decrypt

the message and extracts rB .

7.) A  B: { rB } KB-pub

 Alice decrypts message (6) with her private key, extracts rB and encrypts it with Bob’s public key.

 Upon receipt, Bob can verify that rB is correct and thus verify that he is talking to Alice.

 At the end of the protocol run, Alice and Bob know each other‘s identities, know both rA ,
rB but rA , rB are not known to eavesdroppers. Therefore, a symmetric session key KA,B

can be now easily derived on both sides: e.g. KA,B = H(rA , rB), where H is cryptographic

hash function that has been agreed on a priori.

Network Security, WS 2013/14, Chapter 2.6 36

The Needham-Schroeder Public Key Protocol (4)

 Attack:

 The Needham-Schroeder Public Key Protocol is vulnerable to a man-in-the-middle
attack.

 If an attacker M can persuade A to initiate a session with him, he can relay the
messages to B and convince B that he is communicating with A.

 For simplicity, we don’t illustrate the communication with AS here, which remains
unchanged.

 3’) A  M: { rA , A }KM-pub

• A sends rA to M, who decrypts the message with KM-priv

 3’’) M  B: { rA , A } KB-pub

• M relays the message to B, pretending that A is communicating

 6’) B  M: { rA , rB } KA-pub

• B sends rB

 6’’) M  A: { rA , rB } KA-pub

• M relays it to A

Network Security, WS 2013/14, Chapter 2.6 37

The Needham-Schroeder Public Key Protocol (5)

 Attack on the Needham-Schroeder public key protocol (continued):

 7’) A  M: { rB } KM-pub

 A decrypts rB and confirms it to M, who learns it

 7’’) M  B: { rB } KB-pub

 M re-encrypts rB and convinces B that he has decrypted it.

 At the end of the attack, B falsely believes that A is communicating with him, and that rA

and rB are known only to A and B.

 The attack was first described in 1995 by Gavin Lowe [Lowe95].

 The paper also describes a fixed version of the protocol, referred to as the Needham-

Schroeder-Lowe protocol. The fix involves the modification of message (6)

 6.) B  A: { rA , rB } KA-pub

 which is replaced with the fixed version

 6.) B  A: { rA , rB , B } KA-pub

Network Security, WS 2013/14, Chapter 2.6 38

 Part I: Introduction

 Part II: The Secure Channel

 Part III: Authentication and Key Establishment Protocols

 Introduction

 Key Distribution Centers (KDC)

 Public Key Infrastructures (PKI)

 Building Blocks of key exchange protocols

Overview

Network Security, WS 2013/14, Chapter 2.6 39

Certificates ~ Passports in Network Security

Certificate

 Generated by Certificate Authority

(CA) for an entity

 Purpose

 The CA states that an entity and a

public key correspond.

 A certificate contains

 Cleartext

• Name of the entity (e.g. Bob)

• Public Key of entity

• Name of the CA

• (optionally) further data about the

entity

– E.g. is it also a CA?

• (optionally) more data about CA

• for all the cryptographic operations

the algorithms that are used

 Signature by the CA

• Hash value of cleartext signed with

private key of CA

Certificate

--- for ----

Name: Bob

Public Key:

RSA 47399844398

….

--- by ---

CA: GlobalCA

--- Signature ---

10493850405

Trusted Root

Certificate

--- for ----

Name: GlobalCA

Public Key:

RSA 29302048934

….

--- by ---

CA: GlobalCA

--- Signature ---

4850300434040

Alice, Bob, and all other entities

have stored this certificate on their

device because they trust this

authority.

 They know its public key!

Network Security, WS 2013/14, Chapter 2.6 40

PKI – Overview (more on PKI in a separate chapter)

 Each entity has a public key/private key pair,

 e.g. RSA or ECC public/private keys

 Each entity has a „certificate“ that binds its „name“ to its public key

 Note: in a networking environment “names” could be

 a user name (optionally with an email address)

 But it could be also e.g. IP addresses, the DNS name of the node, etc.

 A Certificate Authority (CA) asserts the correctness of the certificate by

signing it with her private key.

 CA is a trusted third party (TTP) that is trusted by all the entities.

 Furthermore, each entity knows the public key of CA

 When Alice wishes to communicate with Bob, she can receives Bob‘s

certificate

 E.g. from a directory service or from Bob himself at the beginning of the

authentication procedure

 Since Alice knows CA’s public key, she can verify the signature of

Bob’s certificate that was generated by CA

Network Security, WS 2013/14, Chapter 2.6 41

X.509 PKI Authentication Services – Introduction

 X.509 is an international recommendation of ITU-T and is part of the

X.500-series defining directory services:

 The first version of X.509 was standardized in 1988

 A second version standardized 1993 resolved some security concerns

 A third version was drafted in 1995

 X.509 defines a framework for provision of authentication services,

comprising:

 Certification of public keys and certificate handling:

• Certificate format

• Certificate hierarchy

• Certificate revocation lists

Network Security, WS 2013/14, Chapter 2.6 42

X.509 – Public Key Certificates (1)

Version

Certificate

Serial Number

Algorithm ID

Parameters

Issuer Name

Not Before

Not After

Subject Name

Algorithm ID

Parameters

Key

Issuer Unique ID

Subject Unique ID

Extensions

Signature

Signature

Algorithm

Period of

Validity

Subject’s

Public

Key Info

V
e
rs

io
n
 1

V
e
rs

io
n
 2

V
e
rs

io
n
 3

All Versions

 A public key certificate is

some sort of passport,

certifying that a public key

belongs to a specific name

 Certificates are issued by

certification authorities (CA)

 If all users know for sure the

public key of the CA, every

user can check every

certificate issued by this CA

 Certificates can avoid

online-participation of a TTP

 The security of the private

key of the CA is crucial to

the security of all users!

Network Security, WS 2013/14, Chapter 2.6 43

X.509 – Public Key Certificates (2)

 Notation of a certificate binding a public key KA-pub to user A issued by

certification authority CA using its private key KCA-priv:

 CertKCA-priv
(KA-pub) = CA[V, SN, AI, CA, TCA, A, KA-pub]

 with: V = version number

 SN = serial number

 AI = algorithm identifier of signature algorithm used

 CA = name of certification authority

 TCA = period of validity of this certificate

 A = name to which the public key in this certificate is bound

 KA-pub = public key to be bound to a name

 The shorthand notation CA[m] stands for (m, {H(m)}KCA-priv)

 Another shorthand notation for CertKCA-priv
(KA-pub) is CA<<A>>

Network Security, WS 2013/14, Chapter 2.6 44

X.509 – Certificate Chains & Certificate Hierarchy (1)

 Consider now two users Alice and Bob, living in different countries,

who want to communicate securely:

 Chances are quite high that their public keys are certified by different CAs

 Let’s call Alice’s certification authority CA and Bob’s CB

 If Alice does not trust or even know CB then Bob’s certificate CB<> is

useless to her, and the same applies in the other direction

 A solution to this problem is to construct certificate chains:

 Imagine for a moment that CA and CB know and trust each other

• A real world example of this concept is the mutual trust between countries

considering their passport issuing authorities

 If CA certifies CB’s public key with a certificate CA<<CB>>, then A can

check B’s certificate by checking a certificate chain:

• Upon being presented CB<> Alice tries to look up if there is a certificate

CA<<CB>>

• She then checks the chain: CA<<CB>>, CB<>

 In WWW (SSL/TLS) it is expected that B (= server) sends the complete

chain to A. Assumption: a certain set of worldwide Root CAs is known by

all participants.

Network Security, WS 2013/14, Chapter 2.6 45

X.509 – Certificate Chains & Certification Hierarchy (2)

 Certificate chains need not to be limited to a length of two certificates:

 CA<<CC>>, CC<<CD>>, CD<<CE>>, CE<<CG>>, CG<<G>

would permit Alice to check the certificate of user G issued by CG even if

she just knows and trusts her own certification authority CA

 In fact, A’s trust in the key KG-priv is established by a chain of trust between

certification authorities

 However, if Alice is presented CG<<G>>, it is not obvious which

certificates she needs for checking it

 X.509 therefore suggests that authorities are arranged in a certification

hierarchy, so that navigation is straightforward:

CD

CE CC

CB CA CF CH CG

Network Security, WS 2013/14, Chapter 2.6 46

X.509 – Certificate Revocation (1)

 When a certificate is issued, it is expected to be in use for its entire

validity period.

 However, various circumstances may cause a certificate to become

invalid prior to the expiration of the validity period.

 Reasons for revocating a certificate:

 The information in the certificate is not valid anymore.

 The private key can not be used anymore, e.g. because

• the physical medium where the private key was stored becomes defect, e.g.

the hard disk, the USB stick or the smart card.

• the physical medium where the private key is stored has been stolen.

• the private is protected with a password and the password can not be

recovered.

 The private key is (partially) revealed or at least assumed to be revealed,

e.g. a Trojan horse or a key logger has been discovered on the computer.

 The parameters of the certificate become inadequate, e.g.

• The cryptographic algorithm is broken.

• The key length is considered as inappropriate.

Network Security, WS 2013/14, Chapter 2.6 47

X.509 – Certificate Revocation (2)

 An even worse situation occurs if the private key of a certification

authority is compromised:

 This implies that all certificates signed with this key have to be revoked.

 Certificate revocation is realized by maintaining certificate revocation

lists (CRL):

 CRLs are stored in the X.500 directory

 Each CA issues a signed data structure periodically called a certificate

revocation list (CRL).

Certificate revocation is a relatively slow and expensive operation

Network Security, WS 2013/14, Chapter 2.6 48

Online Certificate Status Protocol (OCSP)

 The CRL can be accessed with the Online Certificate Status Protocol

(OCSP)

 An OCSP client issues a status request to an OCSP server and

suspends acceptance of the certificate in question until the responder

provides a response.

 CAs that support an OCSP service, either hosted locally or provided

by an Authorized Responder, provide the necessary information for

the online validation of the status of the certificate.

 OCSP just ports revocation status (OSCP does not do certificate

verification).

 The certificate validation process is rather resource-consuming.

 Therefore, in some environments, e.g. with cell phones, it would be

desirable to fully off-load the certificate validation process to an external

trusted entity.

 The Simple Certificate Validation Protocol (SCVP) [RFC5055] offers this

functionality.

Network Security, WS 2013/14, Chapter 2.6 49

PKI - Discussion

 PKIs assume a relationship between the CA and the entities, which is

not always available:

 There is no „global“ PKI

 There is no worldwide CA. (But CAs might “cross-certify” each others)

 It remains questionable whether a CA executes its task faithfully, i.e.,

whether a CA verify the identity of the users thoroughly.

 In particular, if the CA certifies millions of users.

 Nevertheless, PKIs are very commonly used

 They are integrated, e.g. in each Internet browser

 Every Internet-Browser has a list of „root CAs“ that are considered as

trusted.

Network Security, WS 2013/14, Chapter 2.6 50

 Part I: Introduction

 Part II: The Secure Channel

 Part III: Authentication and Key Establishment Protocols

 Introduction

 Key Distribution Centers (KDC)

 Public Key Infrastructures (PKI)

 Building Blocks of key exchange protocols

Overview

Network Security, WS 2013/14, Chapter 2.6 51

Problem Statement

(c.f. Niels Ferguson, Bruce Schneier: Practical Cryptography, Ch. 15, pp.
261ff)

 Assumption

 Alice and Bob are able to authenticate messages to each other, e.g.

• Using RSA signatures, if Alice and Bob know each other‘s public keys or using
a PKI

• Using a long term pre-shared secret key and a MAC function

 Goal

 Run a key exchange protocol such as at the end of the protocol:

1. Alice and Bob have agreed on a shared „session key“ for a secure channel

2. Alice and Bob have agreed on the cryptographic algorithms to be used for the
secure channel

3. Alice (Bob) must be able to verify that Bob (Alice) knows K and that he (she) is
“alive”

4. Alice and Bob must know that K is newly generated

 Note: even if Alice and Bob possess a long term pre-shared secret
key, it is recommended to perform a key exchange in order to derive a
separate session key

Network Security, WS 2013/14, Chapter 2.6 52

Reasons for Separating Session Keys and Long-Term Keys

 Why do we need a session key if we already have a (long term) key?

 De-couple the session key from the long-term key

1. If the session key is compromised, e.g. because of a flawed
implementation of the secure channel, then the long-term shared secret
should remain safe.

2. If the long-term key is compromised after the key negotiation has been
run, the attacker who learns the shared secret key still does not learn the
session key negotiated by the protocol, i.e. yesterday‘s data is still
protected if the long-term key is compromised today.

 These properties are important and make the entire system more robust

 The 2nd property is called „Forward Secrecy“

 Definition: Forward Secrecy [Boyd03]

 A key establishment protocol provides forward secrecy if compromise of
the long-term keys of a set of entities (private keys or symmetric keys)
does not compromise the session keys established in previous protocol
runs involving these entities.

Network Security, WS 2013/14, Chapter 2.6 53

Other Reasons for Separating Session Keys and Long-Term Keys

 Sometimes the long-term key is weak, e.g. passwords

 Users do not want to memorize a 30-letters password

 They tend to choose much simpler ones

 In some cases, the session key needs to be changed before the

session is over (re-keying)

 This is, e.g., the case if the message sequence numbers overflow and

need to be reset

 This would be problematic if the session key is equal to the long-term key

Network Security, WS 2013/14, Chapter 2.6 54

First Try

 Alice and Bob perform a Diffie-Hellman key exchange and then

authenticate the obtained key k

Alice Bob ga mod n

AuthA(K)

gb mod n

AuthB(K)

K = gab K = gab

Check(AuthA(K))

Check(AuthB(K))

Known (p,g) Known (p,g)

Network Security, WS 2013/14, Chapter 2.6 55

Problems with “First Try”

 Alice and Bob use constant DH parameters p and g

 This is a bad design, since

• p and g might be considered as insecure after a while

• Protocols live for a long time. Using the same constants raises interoperability

issues

 The exchange uses 4 messages, whereas it is possible to achieve the

goal using 3 messages

 K is used as input for the authentication function Auth

 This would be fine, if Auth is a strong function

 But if Auth(K) leaks some knowledge about K this would require a new

analysis of the entire protocol

 A rule of thumb: “Secrets should be used only for a single purpose”.

 The authentication messages are too similar

 If Auth is a MAC function, then AuthB(K) = AuthA(K)

Bob can just send the authentication value that he received from Alice.

At the end of the protocol run, Alice can not be sure that Bob has the

correct key

Network Security, WS 2013/14, Chapter 2.6 56

Second Attempt

Alice Bob

 Alice chooses the DH parameters p and g

 Bob verifies that he supports p and g

 The protocol exchange is reduced to 2 messages

(p,g, ga,AuthA(p,g, ga)

gb,AuthB(gb)

• Check(p,g, ga,AuthA(p,g, ga))

• k = gab

• Check(gb,AuthB(gb))

• k = gab

Network Security, WS 2013/14, Chapter 2.6 57

Second Attempt, Evaluation

 DH parameters are chosen dynamically

 If p is not large enough, Bob can send an error message to Alice with the
minimal supported length for p and abort the protocol run

 The protocol run requires only 2 messages

 The key gab is not used anymore for the authentication of messages

 Strings that are being authenticated are not the same

 However, a replay attack is possible

 Bob can not be sure that he is actually talking to Alice

 Anybody can record the first message that Alice sends and then later send
it to Bob

 Bob verifies AuthA and finishes the protocol thinking that he has just
shared a session key k with Alice

 This problem is called the lack of liveliness

 Bob can not be sure that Alice is „alive“, and he is not talking to a replaying
attacker

 The typical way to solve this problem is to make sure that Alice‘s

authenticator AuthA covers a random value that has been chosen by Bob

Network Security, WS 2013/14, Chapter 2.6 58

Third Attempt

Alice Bob Na,(p,g), ga

AuthA(p,g,ga ,Nb)

Nb, gb ,AuthB(gb ,Na)
k = gab k = gab

Check(AuthA)

Check(AuthB)

Network Security, WS 2013/14, Chapter 2.6 59

Further Design Issues: Dynamic Negotiation of Crypto Algorithms

 Alice and Bob need to agree on the cryptographic algorithms to be

used for encryption and data integrity

 Facilitates the support of new stronger cryptographic algorithms

 Deprecated cryptographic algorithms can be removed easily

 Upgrades do not require an additional standardization process

Alice
Bob

List of supported

crypto algorithms

Chosen crypto

algorithms

Network Security, WS 2013/14, Chapter 2.6 60

Further Design Issues: Denial-of-Service Protection (1)

 Bob may be flooded with a large number of requests for establishing a

secure channel from a large number of attackers

 This phenomena is called Distributed Denial-of-Service attacks

(DDoS)

 Since Bob needs to store state and perform computation for each

request, a DoS attack would exhaust Bob‘s resources, such as CPU

and memory

 Possible Countermeasures:

 Before processing a new request, verify if the “initiator” can receive

messages sent to the claimed source of the request (see next slide)

Network Security, WS 2013/14, Chapter 2.6 61

Denial-of-Service Protection with Cookies (1)

1: request Bob

Alice
2: Cookie

 Upon receiving a request from Alice, Bob calculates a Cookie and sends it to Bob.

 Alice will receive the Cookie and resend the request with the Cookie together.

 Bob verifies that the Cookie is correct and then starts to process Alice‘s request.

 An attacker that is sending requests with a spoofed (i.e. falsified) source address will not

be able to send the Cookie.

“Request”

“Cookie”

Bob

Attacker

Alice

3: request, Cookie

Network Security, WS 2013/14, Chapter 2.6 62

Denial-of-Service Protection with Cookies (2)

 Requirements:

 An attacker that is not on the path between Alice and Bob must not be able to guess

the correct value of the Cookie

 Bob must be able to generate the Cookie after receiving message 1 with minimal

processing (CPU friendly)

 Bob must be able to verify that the Cookie is correct upon receipt of message 3,

without necessarily storing any information after message 1 (memory friendly)

  Bob must be able to re-calculate the Cookie sent in message 2 and verify that

the received Cookie from Alice in message 3 is correct

 One possible way to compute the cookie could be as follow:

 Cookie = Hash(Na | AddressAlice | <secret>)

where

 Na is the nonce sent by Alice (as above)

 <secret> is randomly generated secret known only to Bob

 Hash is a cryptographic hash function.

 Only a legitimate initiator (Alice) or a host on the path can read the “cookie”

and can send the cookie back to the responder (Bob)

Network Security, WS 2013/14, Chapter 2.6 63

Denial-of-Service Protection with Cookies (3)

 Additional requirement:

 <secret> needs to be changed regularly. Otherwise, it can be brute-forced

successfully after a while

 Another possible way to compute the cookie could be as follow:

 Cookie = <Version ID of Secret> | Hash(Na | IPa | <secret>)

where

 <Version ID of Secret> is changed whenever <secret> is regenerated.

 Cookies discussion:

 Advantage: allows to counter simple address spoofing attacks

 Drawbacks:

• requires one additional message roundtrip.

Network Security, WS 2013/14, Chapter 2.6 64

Further Design Issues: Reuse of the DH Values

 The calculation if the DH values ga and gb is computationally expensive

 Alice and Bob may re-use the values ga and gb

 However, Alice and Bob must ensure that the key has been freshly

generated

 The random numbers Na and Nb can be included in the computation of

the shared key

 One possible way to compute the session key:

 K = H (Na | Nb | g
ab) where H is a cryptographic hash function

 However, the re-use of the DH values affects the property of (perfect)

forward secrecy (see next slide).

Network Security, WS 2013/14, Chapter 2.6 65

Forward Secrecy (1)

 The DH exchange is not only used to gain a shared secret gab (that needs to

be authenticated).

 The DH exchange offers also the property of "forward secrecy“

 If any long term keys,

• the long-term pre-shared secret key between Alice and Bob

• or Alice/Bob private key

 is compromised, an attacker that has recorded previous protocol runs, would need

to compromise the DH exchange as well in order to gain the session keys for these

previous sessions.

 Forward Secrecy was originally called “Perfect Forward Secrecy” (PFS)

 Many cryptographers did not agree with the term “perfect”, so it is usually skipped.

 PFS requires that when a session is closed, each endpoint forgets

 all the keying material used for this session

 any information that could be used to recompute those keys

 In particular, it needs to forget the secrets used in the DH calculation and the state

of a pseudo-random number generator that could be used to re-compute the DH

secrets.

Network Security, WS 2013/14, Chapter 2.6 66

Forward Secrecy (2)

 Note

 By running a key exchange protocol, PFS is usually provided with the DH

exchange

 Many protocols do not provide PFS, since DH is computationally intensive

 Examples

• IPSec IKEv (Version 1 and Version 2): yes,

• TLS: PFS optionally provided with ephemeral (temporary) DH

• WLAN: WEP, WPA: no

• GSM/UMTS Authentication and Key Exchange (AKA): no

 (although some commercial products do already support PFS for GSM

networks. But both mobile phones need to support it)

Network Security, WS 2013/14, Chapter 2.6 67

Further Design Issues: Simplicity

 „A more complex system loses on all fronts. It contains more

weaknesses to start with, it is much harder to analyze, and it is much

harder to implement without introducing security-critical errors in the

implementation.“ [Fer00]

 An important design criterion for a new protocol is that the protocol

state machine should be as simple as possible.

 Especially for security protocols, the simpler the state machine is the

easier the security analysis of the protocol can be.

 Remember that an attacker can send any type of message at any time

to any participant in the protocol.

 One way to reduce the complexity is to design the protocol such as it

consists of pairs of messages:

 a request

 and a response.

 Every request requires a response.

Network Security, WS 2013/14, Chapter 2.6 68

Final protocol design attempt

Alice Bob
Na,(p,g), ga, proposed crypto algs

Nb, g
b , chosen crypto algs

k = gab k = gab

Check(AuthA)

Check(AuthB)
AuthB(gb , chosen crypto algs, Na)

AuthA(p,g,ga, proposed crypto algs, Nb)

Network Security, WS 2013/14, Chapter 2.6 69

Online TTP not always a KDC (knows session key)

 In the lecture slides, we only look at Key Distribution Centers (KDC) in

case of symmetric encryption

 Key Transport Protocol instead of Key Agreement Protocol

 Key Transport

 One party generates key and „transports“ it to the other parties.

 Key Agreement

 The key is generated by the interaction of multiple parties. In the end, they

agree on the same key.

Network Security, WS 2013/14, Chapter 2.6 70

Example for Key Agreement Protocol

Boyd Key Agreement Protocol

 Assumptions

 Trusted Party TTP exists

 A and B each share a secret

key with a TTP (KAS, KBS).

 Key

 Provides

 Mutual authentication

 Key is authenticated, fresh,

and confirmed.

 Key Agreement

• All 3 entities contribute to

key.

• TTP does not know KAB.

 No known attack.

 No forward secrecy.

A, B, NA

{A, B, KS}kAS, {A, B, KS}kBS, NA

{A,B,KS}kAS, [NA]kAB, NB

[NB]kAB

),(BAKAB NNMACK
S



Now knowns

KAB.Only Bob

could have

hashed NA with

KAB.
 Bob

Only Alice could

have hashed NB

with KAB

 Alice

now knows

KAB

Alice (A) TTP (S) Bob (B)

[m]k = MAC for m

using key k

Network Security, WS 2013/14, Chapter 2.6 71

Key Agreement using Key Transport plus DH

 Needham-Schroeder

Symmetric Key Protocol

 Key Transport

 TTP knows key

 Option: Add Diffie-

Hellman exchange

 Secured due to Kab

 Kab,2 = gab mod p
 Question: Can an evil TTP still

attack?

A, B, NA

Alice (A) TTP (S) Bob (B)

{NA , kAB, B, {kAB, A}kBS }kAS

{NB}kAB

{kAB, A}kBS

{NB -1}kAB

Now knows

KAB

Now knows

KAB and that only

Alice should

also know it
Only Bob could

have used KAB.
Bob

(argument requires

integrity protection) Only Bob could

have used NB

and KAB.
 Alice

A, B, and TTP

know KAB

{g, ga , p}kAB

{gb }kAB

A and B generated

and know KAB,2

Network Security, WS 2013/14, Chapter 2.6 72

Forward Secrecy and Diffie-Hellman Value as Public

Key?

 Assume that Bob has this certificate.

 The result is a shared key that only Bob could have

generated from Alice‘s request.

 If g and p are fixed, then also Alice could also send a

certificate and mutual authentication would be possible.

 However, you cannot sign or encrypt with it. It only

generates a symmetric key.

 Possible to build a PKI from DH. Actually, SSL/TLS

support this (hardly used, if at all).

 No Forward Secrecy!

Certificate

--- for ----

Name: Bob

Public Key:

DH 49583385

g 9303

p 2094739744

--- by ---

CA: GlobalCA

--- Signature ---

10493850405

Na, ga

{certB}

now knows

KAB now knows

KAB

{Na}kAB

now knows

that it is Bob

Network Security, WS 2013/14, Chapter 2.6 73

References

[Bell95] M. Bellare and P. Rogaway, Provably Secure Session Key
Distribution - The Three Party Case, Proc. 27th STOC, 1995, pp
57--64

[Boyd03] Colin Boyd, Anish Mathuria, “Protocols for Authentication and Key
Establishment”, Springer, 2003

[Bry88a] R. Bryant. Designing an Authentication System: A Dialogue in
Four Scenes. Project Athena, Massachusetts Institute of
Technology, Cambridge, USA, 1988.

[Diff92] W. Diffie, P. C. van Oorschot, and M. J. Wiener. Authentication
and authenticated key exchanges. Designs, Codes, and
Cryptography, 1992

[Dol81a] D. Dolev, A.C. Yao. On the security of public key protocols.
Proceedings of IEEE 22nd Annual Symposium on Foundations of
Computer Science, pp. 350-357, 1981.

[Fer00] Niels Ferguson, Bruce Schneier, “A Cryptographic Evaluation of
IPsec”. http://www.counterpane.com/ipsec.pdf 2000

[Fer03] Niels Ferguson, Bruce Schneier, „Practical Cryptography“, John
Wiley & Sons, 2003

[Gar03] Jason Garman, “Kerberos. The Definitive Guide”, O'Reilly Media,
1st Edition, 2003

Network Security, WS 2013/14, Chapter 2.6 74

References

[Kau02a] C. Kaufman, R. Perlman, M. Speciner. Network
 Security. Prentice Hall, 2nd edition, 2002.

[Koh94a] J. Kohl, C. Neuman, T. T'so, The Evolution of the
 Kerberos Authentication System. In Distributed Open
 Systems, pages 78-94. IEEE Computer Society Press,
 1994.

[Mao04a] W. Mao. Modern Cryptography: Theory & Practice.
 Hewlett-Packard Books, 2004.

[Nee78] R. Needham, M. Schroeder. Using Encryption for
 Authentication in Large Networks of Computers.
 Communications of the ACM, Vol. 21, No. 12, 1978.

[Woo92a] T.Y.C Woo, S.S. Lam. Authentication for distributed
 systems. Computer, 25(1):39-52, 1992.

[Lowe95] G. Lowe, „An Attack on the Needham-Schroeder
 Public-Key Authentication Protocol”, Information
 Processing Letters, volume 56, number 3, pages 131-
 133, 1995.

Network Security, WS 2013/14, Chapter 2.6 75

Additional references from the IETF

[RFC2560] M. Myers, et al., “X.509 Internet Public Key Infrastructure

 Online Certificate Status Protocol – OCSP”, June 1999

[RFC3961] K. Raeburn, “Encryption and Checksum Specifications

 for Kerberos 5”, February 2005

[RFC3962] K. Raeburn, “Advanced Encryption Standard (AES)

 Encryption for Kerberos 5”, February 2005

[RFC4757] K. Jaganathan, et al., “The RC4-HMAC Kerberos

 Encryption Types Used by Microsoft Windows ”,

 December 2006

[RFC4120] C. Neuman, et al., “The Kerberos Network Authentication

 Service (V5)”, July 2005

[RFC4537] L. Zhu, et al, “Kerberos Cryptosystem Negotiation

 Extension”, June 2006

[RFC5055] T. Freeman, et al, “Server-Based Certificate Validation

 Protocol (SCVP)”, December 2007

