

 Chair for Network Architectures and Services

Department of Informatics

TU München – Prof. Carle

Network Security

 Chapter 2 – Cryptography
2.4 Public Key Cryptography

Network Security, WS 2013/14, Chapter 2.4 2

Acknowledgments

This course is based to a significant extend on slides provided by

Günter Schäfer, author of the book "Netzsicherheit - Algorithmische

Grundlagen und Protokolle", available in German from dpunkt Verlag.

The English version of the book is entitled “Security in Fixed and Wireless

Networks: An Introduction to Securing Data Communications” and is

published by Wiley is also available. We gratefully acknowledge his support.

The slides by Günter Schäfer have been partially reworked by

Heiko Niedermayer, Ali Fessi, Ralph Holz and Georg Carle.

Network Security, WS 2013/14, Chapter 2.4 3

Encryption/Decryption using Public Key Cryptography

General Idea: encrypt with a publicly known key, but decryption

only possible with a secret = private key

Network Security, WS 2013/14, Chapter 2.4 4

Public Key Cryptography

 General idea:

 Use two different keys

• a private key Kpriv

• a public key Kpub

 Given a ciphertext c = E(Kpub , m) and Kpub it should be infeasible to

compute the corresponding plaintext without the private key Kpriv:

m = D(Kpriv , c) = D(Kpriv , E(Kpub , m))

 It must also be infeasible to compute Kpriv when given Kpub

 The key Kpriv is only known to the owner entity A

 called A’s private key Kpriv-A

 The key Kpub can be publicly known and is called A’s public key Kpub-A

Network Security, WS 2013/14, Chapter 2.4 5

Public Key Cryptography

 Applications:

 Encryption: If B encrypts a message with A’s public key Kpub-A , he can be

sure that only A can decrypt it using Kpriv-A

 Integrity check and digital signatures:

• If B encrypts a message with his private key Kpriv-B , everyone knowing B’s

public key Kpub-B can read the message and know that B has sent it.

 Important:

 If B wants to communicate with A, he needs to verify that he really knows

A’s public key and does not accidentally use the key of an adversary

 Known as the “binding of a key to an identity”

 Not a trivial problem – so-called Public Key Infrastructures are one

“solution”

• X.509

• GnuPG Web of Trust

Network Security, WS 2013/14, Chapter 2.4 6

Public Key Cryptography

 Ingredients for a public key crypto system:

 One-way functions: It is believed that there are certain functions that are
easy compute, while the inverse function is very hard to compute

• Real-world analogon: phone book

 When we speak of easy and hard, we refer to certain complexity classes
 more about that in crypto lectures and complexity theorey

 For us: Hard means “infeasible on current hardware”

 We know candidates, but have no proof for the existence of such functions

• Existence would imply P != NP

 Special variant: Trap door functions

 Same as one-way functions, but if a second (“secret”) information is
known, then the inverse is easy as well

 Blueprint: use a trap-door function in your crypto system

 Candidates:

 Factorization problem: basis of the RSA algorithm

• Complexity class unknown, but assumed to be outside P

 Discrete logarithm problem: basis of Diffie-Hellman and ElGamal

• No polynomial algorithms known, assumed to be outside P

Network Security, WS 2013/14, Chapter 2.4 7

The Discrete Logarithm: DLog

 In the following, we will discuss another popular one-way / trap-door function:

the discrete logarithm

 DLog is used in a number of ways

 Diffie-Hellman Key Agreement Protocol

• “Can I agree on a key with someone else if the attacker can read my

messages?”

 ElGamal

 DLog problems can be transformed to Elliptic Curve Cryptography

• We’ll discuss this later

 Now: more mathematics

Network Security, WS 2013/14, Chapter 2.4 8

Some Mathematical Background

 Theorem/Definition: primitive root, generator

 Let p be prime. Then  g  {1,2,…,p-1} such that

 {ga | 1  a  (p-1) } = {1,2,…,p-1} if everything is computed MOD p

i.e. by exponentiating g you can obtain all numbers between 1 and (p -1)

 For the proof see [Niv80a]

 g is called a primitive root (or generator) of {1,2,…,p-1}

 Example: Let p = 7. Then 3 is a primitive root of {1,2,…,p-1}

1  36 MOD 7, 2  32 MOD 7, 3  31 MOD 7, 4  34 MOD 7,

5  35 MOD 7, 6  33 MOD 7

Network Security, WS 2013/14, Chapter 2.4 9

DLog: Some Mathematical Background

 Definition: discrete logarithm

 Let p be prime, g be a primitive root of {1,2,…,p-1} and c be any element of

{1,2,…,p-1}. Then  z such that: gz  c MOD p

 z is called the discrete logarithm of c modulo p to the base g

 Example: 6 is the discrete logarithm of 1 modulo 7 to the base 3 as

 36  1 MOD 7

 The calculation of the discrete logarithm z when given g, c, and p is a

computationally difficult problem and the asymptotical runtime of the best

known algorithms for this problem is exponential in the bit-length of p

Network Security, WS 2013/14, Chapter 2.4 10

Diffie-Hellman Key Exchange (1)

 The Diffie-Hellman key exchange was first published in the landmark

paper [DH76], which also introduced the fundamental idea of

asymmetric cryptography

 The DH exchange in its basic form enables two parties A and B to

agree upon a shared secret using a public channel:

 Public channel means, that a potential attacker can read all messages

exchanged between A and B

 It is important that A and B can be sure that the attacker is not able to alter

messages as in this case he might launch a man-in-the-middle attack

 The mathematical basis for the DH exchange is the problem of finding

discrete logarithms in finite fields

 The DH exchange is not an encryption algorithm.

Network Security, WS 2013/14, Chapter 2.4 11

Diffie-Hellman Key Exchange (2)

Generate random a < p

Compute X = ga MOD p

Generate random b < p

Compute Y = gb MOD p

Compute K = Xb MOD p

Compute K = Ya MOD p

(p, g, X)

Y

Whitfield

Diffie

Martin E.

Hellman

Network Security, WS 2013/14, Chapter 2.4 12

Diffie-Hellman Key Exchange (3)

 If Alice (A) and Bob (B) want to agree on a shared secret K and their only
means of communication is a public channel, they can proceed as follows:

 A chooses a prime p, a primitive root g of {1,2,…,p-1} and a random number x

 A and B can agree upon the values p and g prior to any communication, or A
can choose p and g and send them with his first message

 A chooses a random number a:

 A computes X = ga MOD p and sends X to B

 B chooses a random number b

 B computes Y = gb MOD p and sends Y to A

 Both sides compute the common secret:
 A computes K = Ya MOD p

 B computes K’ = Xb MOD p

 As g(a . b) MOD p = g(b . a) MOD p, it holds: K = K’

 An attacker Eve who is listening to the public channel can only compute the
secret K, if she is able to compute either a or b which are the discrete
logarithms of X and Y modulo p to the base g.

 In essence, A and B have agreed on a key without ever sending the key over
the channel

 This does not work anymore if an attacker is on the channel and can replace
the values with his own ones

Network Security, WS 2013/14, Chapter 2.4 13

Can we use it for public key encryption and

decryption?

 The TLS / SSL protocols support the use of Diffie-Hellman as Public Key

algorithm. How does this work?

 Here, the Diffie-Hellman values are considered to be constant.

 Public key of Alice: ga MOD p, g, p

 Private key of Alice: a

 Public key of Bob: gb MOD p, g, p

 Private key of Alice: b

 To send a message: Bob takes Alice’s public key, computes k = gab MOD p and

encrypts the message with k using symmetric key cryptography.

 Alice needs to know Bob’s public key and that the message is from Bob. Then she

can generate k and decrypt it using symmetric encryption.

Network Security, WS 2013/14, Chapter 2.4 14

Can we use it for signature?

 Remember the problem: If B encrypts a message with his private key Kpriv-B ,

everyone knowing B’s public key Kpub-B can read the message and know that B

has sent it (given that the message makes sense or is known because it was also

sent in clear text).

 This means that Bob would have to use his secret DH value b in combination

with anyone else’s public key. But if it uses Alice’s public key only Alice can obtain

the shared key and no one else. So, in that way this cannot be done.

 Diffie-Hellman is key agreement protocol and not a general-purpose public key

algorithm.

 Now, we want to discuss public key algorithms where we

 … do not need symmetric encryption for encryption and decryption.

 … can sign messages, so that all others can verify.

 Therefore, we briefly introduce El Gamal on the next slide and then discuss

RSA in more detail.

Network Security, WS 2013/14, Chapter 2.4 15

El Gamal

 The ElGamal algorithm was invented by an Egyptian cryptographer

“Tahar El Gamal”. It uses the DLog problem like in Diffie-Hellman.

 Again, the public key of Alice: ga MOD p, g, p

 Encyption

 Bob choses a random z and computes gz MOD p

 Message m  ciphertext c

 c = m * gaz MOD p

 Bob sends gz MOD p and the ciphertext c to Alice.

 Why does this work for signatures also?

 Bob could use his private key b instead of Alice’s public key.

 Real world

 ElGamal is a default in GnuPG

 Digital Signature Algorithm (DSA) is based on ElGamal

 As such, ElGamal/DSA is also part of Digital Signature Standard (NIST)

Network Security, WS 2013/14, Chapter 2.4 16

The RSA Public Key Algorithm

 The RSA algorithm was described in 1977 by R. Rivest, A. Shamir and L. Adleman
[RSA78]

 Note: Clifford Cocks in the UK came up with the same scheme
in 1973 – but he worked for the government and it was treated
classified and thus remained unknown to the scientific community.

Ron Rivest

Adi Shamir

Leonard Adleman

Network Security, WS 2013/14, Chapter 2.4 17

Some Mathematical Background

 Definition: Euler’s  Function:

 Let (n) denote the number of positive integers m < n, such that m is

relatively prime to n.

  “m is relatively prime to n” = the greatest common divisor (gcd)

of m and n is one.

 Let p be prime, then {1,2,…,p-1} are relatively prime to p,  (p) = p-1

 Let p and q be distinct prime numbers and n = p  q, then

 (n) = (p-1)  (q-1)

 Euler’s Theorem:

 Let n and a be positive and relatively prime integers,

  a(n)  1 MOD n

• Proof: see [Niv80a]

Network Security, WS 2013/14, Chapter 2.4 18

The RSA Public Key Algorithm

 RSA Key Generation:

 Randomly choose p, q distinct and large primes

(really large: hundreds of bits = 100-200 digits each)

 Compute n = p  q, calculate (n) = (p-1)  (q-1) (Euler’s  Function)

 Pick e  Z such that 1 < e < (n) and e is relatively prime to (n),

i.e. gcd(e,(n)) = 1

 Use the extended Euclidean algorithm to compute d such that

 e  d  1 MOD (n)

 The public key is (n, e)

 The private key is d – this is the “trap door information”

Network Security, WS 2013/14, Chapter 2.4 19

The RSA Public Key Algorithm

 Definition: RSA function

 Let p and q be large primes; let n = p  q.

Let e  N be relatively prime to (n).

 Then RSA(e,n) := x → xe MOD n

 Example:

 Let M be an integer that represents the message to be encrypted, with M

positive, smaller than n.

• Example: Encode with <blank> = 99, A = 10, B = 11, ..., Z = 35

So “HELLO” would be encoded as 1714212124.

If necessary, break M into blocks of smaller messages: 17142 12124

 To encrypt, compute: C  Me MOD n

 Decryption:

 To decrypt, compute: M’  Cd MOD n

Network Security, WS 2013/14, Chapter 2.4 20

The RSA Public Key Algorithm

 Why does RSA work:

 As d  e  1 MOD (n)

  k  Z: (d  e) = 1 + k  (n)

We sketch the “proof” for the case where M and n are relatively prime

 M’  Cd MOD n

  (Me) d MOD n

  M(e d) MOD n

  M(1 + k  (n)) MOD n

  M  (M (n))k MOD n

  M  1k MOD n (Euler’s theorem*)

  M MOD n = M

 In case where M and n are not relatively prime, Euler’s theorem can not be

applied.

 See [Niv80a] for the complete proof in that case.

Network Security, WS 2013/14, Chapter 2.4 21

Using RSA

 All public-key crypto systems are much slower and more resource-

consuming than symmetric cryptography

 Thus, RSA is usually used in a hybrid way:

 Encrypt the actual message with symmetric cryptography

 Encrypt the symmetric key with RSA

 Using RSA requires some precautions

 Careful with choosing p and q: there are factorization algorithms for certain

values that are very efficient

 Generally, one also needs a padding scheme to prevent certain types of

attacks against RSA

 E.g. attack via Chinese remainder theorem: if the same clear text message

is sent to e or more recipients in an encrypted way, and the receivers share

the same exponent e, it is easy to decrypt the original clear text message

 Padding also works against a Meet-in-the-middle attack

 OAEP (from PKCS#1) is a well-known padding scheme for RSA

Network Security, WS 2013/14, Chapter 2.4 22

On the Security of RSA

 The security of the RSA algorithm lies in the presumed difficulty of

factoring n = p  q

 It is known that computing the private key from the public key is as

difficult as the factorization

 It is unknown if the private key is really needed for efficient decryption

(there might be a way without, only no-one knows it yet)

 RSA is one of the most widely used – and studied – algorithms

 We need to increase key length regularly, as computers become more

powerful

 768 bit keys have already been factored

 There are claims that 1024 bits may be routinely breakable in the

not-so-far future

 Current NIST recommendation is 2048 bit, should be on the safe side

 More is better, but slower

Network Security, WS 2013/14, Chapter 2.4 23

Digital Signatures

 Signing = adding a proof of who has created a message, and that it has

not been altered on the way

 Who: authenticity

 Not altered: integrity

Network Security, WS 2013/14, Chapter 2.4 24

Digital Signatures

 A wants to sign a message. General idea:

 A computes a cryptographic hash value of her message: h(m)

• Hashes are one-way functions, i.e. given h(m) it’s infeasible to obtain m

• We’ll discuss hash functions soon

 A encrypts h(m) with her private key Kpriv-A  Sig = EK_priv(h(m))

 Given m, everyone can now

• compute h(m)

• Decrypt signature: D(E(h(m))) = h(m) and check if hash values are the same

 If they match, A must have been the creator as only A knows the private

key

Network Security, WS 2013/14, Chapter 2.4 25

Elliptic Curve Cryptography (ECC)

 Motivation: RSA is still probably the most widely implemented

algorithm for Public Key Cryptography

 Does public key cryptography need long keys with 1024-8192 bits?

 Also, it is good to think of alternatives due to the developments in the area

of primality testing, factorization and computation of discrete logarithms

 Elliptic Curve Cryptocraphy (ECC)

 ECC is based on a finite field of points.

 Points are presented within a 2-dimensional coordinate system: (x,y)

 All points within the elliptic curve satisfy an equation of this type:

 y2 = x3 + ax + b

Network Security, WS 2013/14, Chapter 2.4 26

Elliptic Curve Cryptography (ECC)

 Given this set of points an additive operator can be defined

 A multiplication of a point P by a number n is simply the addition of P to itself n

times

 Q = nP = P + P + … + P

 The problem of determining n, given P and Q, is called the elliptic curve’s

discrete logarithm problem (ECDLP)

 The ECDLP is believed to be hard in the general class obtained from the

group of points on an elliptic curve over a finite field

P

P

R

Q

Q

P

P

Q

1 2 3 4

P + Q + R = 0 P + Q + Q = 0 P + Q + 0 = 0 P + P + 0 = 0

Network Security, WS 2013/14, Chapter 2.4 27

Elliptic Curve Cryptography (ECC)

 Any DLog-based algorithm can be turned into an ECC-based algorithm

 ECC problems are generally believed to be “harder”

(though there is a lack of mathematic proofs)

 Allows us to have shorter key sizes

 good for storage and transmission over networks

 New ECC curves are being developed and more and more

applications use ECC.

Network Security, WS 2013/14, Chapter 2.4 28

Key Length (1)

 It is difficult to give good recommendations for appropriate and secure

key lengths

 Hardware is getting faster

 So key lengths that might be considered as secure this year, might

become insecure in 2 years

 Adi Shamir published in 2003 [Sham03] a concept for breaking 1024

bits RSA key with a special hardware within a year (hardware costs

were estimated at 10 Millions US Dollars)

 Bruce Schneier recommends in [Fer03] a minimal length of 2048 bits

for RSA “if you want to protect your data for 20 years”

 He recommends also the use of 4096 and up to 8192 bits RSA keys

Network Security, WS 2013/14, Chapter 2.4 29

Key Length (2)

 Comparison of the security of different cryptographic

algorithms with different key lengths

 Note: this is an informal way of comparing the complexity of

breaking an encryption algorithm

 So please be careful when using this table

 Note also: a symmetric algorithm is supposed to have no

significant better attack that breaks it than a brute-force attack

 Symmetric RSA ECC

56 622 105

64 777 120

74 1024 139

103 2054 194

128 3214 256

192 7680 384

256 15360 512

Source [Bless05] page 89

Network Security, WS 2013/14, Chapter 2.4 30

Pitfall: Public key cryptography is not “symmetric”

 In contrast to symmetric cryptography, sender and receiver

do not form a closed group with shared knowledge.

 Public Key Cryptography

• Encrypt with private key  everyone can read

• Encrypt with a public key  only owner of key (receiver) can read

 Symmetric Cryptography

• Encrypt with shared key  only sender and receiver can read

Network Security, WS 2013/14, Chapter 2.4 31

Pitfall: Public key cryptography is not “symmetric”

 How to combine encryption and signature to protect messages m?

 Case 1: A  B: Ekpub-B(m,Sigkpriv-A(m))

• Attack if destination B was not included in M: B  C: Ekpub-C(m, Sigkpriv-A(m))

– This attack is called “Surreptitious forwarding” : receiver B can decrypt, re-encrypt

and replace receiver with some entity C and claim message was always for C.

• Recommendation: always include receiver (and all other relevant entities like

sender, etc.) in signature: A  B: EkpubB(B,m,Sigkpriv-A(B,m))

 Case 2: A  B : Ekpub-B(m), Sigkpriv-A(Ekpub-B(m)) = sign encrypted data only

• Attack: C  B: Ekpub-B(m), Sigkpriv-C(Ekpub-B(m))

– Attacker C can just strip signature and replace it with his own – and receiver cannot

determine who has sent the message. Note that attacker C cannot read plaintext m,

yet he can sign it!

• Recommendation: sign plaintext instead of ciphertexts, e.g.: A  B: Ekpub-

B(m),Sigkpriv-A(m) or include sender, receiver in m.

• However, for symmetric case, encrypt then sign is best according to theory.

Network Security, WS 2013/14, Chapter 2.4 32

How to apply Public Key Cryptography?

 Usually used in combination with symmetric cryptography and hash

functions

 Symmetric cipher protects large data

 Hash function computes fingerprint of m

 Public Key Encryption (with public key of Bob) protects key

 Public Key Signature (with private key of Alice) protects fingerprint

 Recent idea: provide API so that only data and public key have to be

provided.

 NaCL (Salt) Network and Cryptography Library

 http://nacl.cr.yp.to

 Usually, cryptography libraries require more programmer interaction and

choices.

Alice (A) Bob (B)

E(kpriv_A, h(m)),

E(kpub_B, k), E(k,m)

Network Security, WS 2013/14, Chapter 2.4 33

Summary

 Public key cryptography allows to use two different keys for:

 Encryption / Decryption

 Digital Signing / Verifying

 Some practical algorithms that are still considered to be secure:

 RSA, based on the difficulty of factoring

 Diffie-Hellman (a key agreement protocol)

 As their security is entirely based on the difficulty of certain number

theory problems, algorithmic advances constitute their biggest threat

 Practical considerations:

 Public key cryptographic operations are magnitudes slower than symmetric

ones

 Public cryptography is often just used to exchange a symmetric session key

securely, which is on turn will be used for to secure the data itself.

Network Security, WS 2013/14, Chapter 2.4 34

Additional References

[Bless05] R. Bless, S. Mink, E.-O. Blaß, M. Conrad, H.-J. Hof, K. Kutzner, M. Schöller: "Sichere
Netzwerkkommunikation", Springer, 2005, ISBN: 3-540-21845-9

[Bre88a] D. M. Bressoud. Factorization and Primality Testing. Springer, 1988.

[Cor90a] T. H. Cormen, C. E. Leiserson, R. L. Rivest. Introduction to Algorithms. The MIT Press,
1990.

[DH76] W. Diffie, M. E. Hellman. New Directions in Cryptography. IEEE Transactions on
Information Theory, IT-22 , pp. 644-654, 1976.

[DSS] National Institute of Standards and Technology (NIST). FIPS 186--3, DRAFT Digital
Signature Standard (DSS), March 2006.

[ElG85a] T. ElGamal. A Public Key Cryptosystem and a Signature Scheme based on Discrete
Logarithms. IEEE Transactions on Information Theory, Vol.31, Nr.4, pp. 469-472, July
1985.

[Ferg03] Niels Ferguson, B. Schneier: “Practical Cryptography”, Wiley, 1st edition, March 2003

[Kob87a] N. Koblitz. A Course in Number Theory and Cryptography. Springer, 1987.

[Men93a] A. J. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers,
1993.

[Niv80a] I. Niven, H. Zuckerman. An Introduction to the Theory of Numbers. John Wiley & Sons, 4th
edition, 1980.

[Resc00] Eric Rescorla, „SSL and TLS: Designing and Building Secure Systems“, Addison-Wesley,
2000

[RSA78] R. Rivest, A. Shamir und L. Adleman. A Method for Obtaining Digital Signatures and Public
Key Cryptosystems. Communications of the ACM, February 1978.

[Sham03] Adi Shamir, Eran Tromer, “On the cost of factoring RSA-1024”, RSA Cryptobytes vol. 6,
2003

