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Encryption/Decryption using Public Key Cryptography 

General Idea: encrypt with a publicly known key, but decryption 

only possible with a secret = private key 
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Public Key Cryptography 

 General idea: 

 Use two different keys 

• a private key Kpriv 

• a public key Kpub 

 Given a ciphertext c = E(Kpub , m) and Kpub it should be infeasible to 

compute the corresponding plaintext without the private key Kpriv: 

m = D(Kpriv , c) = D(Kpriv , E(Kpub , m)) 

 It must also be infeasible to compute Kpriv when given Kpub 

 The key Kpriv is only known to the owner entity A 

 called A’s private key Kpriv-A  

 The key Kpub can be publicly known and is called A’s public key Kpub-A 
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Public Key Cryptography 

 Applications: 

 Encryption: If B encrypts a message with A’s public key Kpub-A , he can be 

sure that only A can decrypt it using Kpriv-A 

 Integrity check and digital signatures: 

• If B encrypts a message with his private key Kpriv-B , everyone knowing B’s 

public key Kpub-B can read the message and know that B has sent it. 

 

 Important: 

 If B wants to communicate with A, he needs to verify that he really knows 

A’s public key and does not accidentally use the key of an adversary 

 Known as the “binding of a key to an identity” 

 Not a trivial problem – so-called Public Key Infrastructures are one 

“solution” 

• X.509 

• GnuPG Web of Trust 
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Public Key Cryptography 

 Ingredients for a public key crypto system: 

 One-way functions: It is believed that there are certain functions that are 
easy compute, while the inverse function is very hard to compute 

• Real-world analogon: phone book 

 When we speak of easy and hard, we refer to certain complexity classes 
 more about that in crypto lectures and complexity theorey 

 For us: Hard means “infeasible on current hardware” 

 We know candidates, but have no proof for the existence of such functions 

• Existence would imply P != NP 

 Special variant: Trap door functions 

 Same as one-way functions, but if a second (“secret”) information is 
known, then the inverse is easy as well 

 Blueprint: use a trap-door function in your crypto system 

 Candidates: 

 Factorization problem: basis of the RSA algorithm 

• Complexity class unknown, but assumed to be outside P 

 Discrete logarithm problem: basis of Diffie-Hellman and ElGamal 

• No polynomial algorithms known, assumed to be outside P 
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The Discrete Logarithm: DLog 

 In the following, we will discuss another popular one-way / trap-door function: 

the discrete logarithm 

 DLog is used in a number of ways 

 Diffie-Hellman Key Agreement Protocol 

• “Can I agree on a key with someone else if the attacker can read my 

messages?” 

 ElGamal 

 DLog problems can be transformed to Elliptic Curve Cryptography 

• We’ll discuss this later 

 Now: more mathematics 
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Some Mathematical Background 

 Theorem/Definition: primitive root, generator 

 Let p be prime. Then  g  {1,2,…,p-1} such that  

 {ga | 1  a  (p-1) } = {1,2,…,p-1} if everything is computed MOD p 

i.e. by exponentiating g you can obtain all numbers between 1 and (p -1) 

 For the proof see [Niv80a] 

  g is called a primitive root (or generator) of {1,2,…,p-1} 

 Example: Let p = 7. Then 3 is a primitive root of {1,2,…,p-1} 

1  36 MOD  7, 2  32 MOD  7, 3  31 MOD  7, 4  34 MOD  7,  

5  35 MOD  7, 6  33 MOD  7 
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DLog: Some Mathematical Background 

 Definition: discrete logarithm 

 Let p be prime, g be a primitive root of {1,2,…,p-1} and c be any element of 

{1,2,…,p-1}. Then  z such that: gz  c MOD p  

 z is called the discrete logarithm of c modulo p to the base g  

 Example: 6 is the discrete logarithm of 1 modulo 7 to the base 3 as 

 36  1 MOD  7  

 The calculation of the discrete logarithm z when given g, c, and p is a 

computationally difficult problem and the asymptotical runtime of the best 

known algorithms for this problem is exponential in the bit-length of p 
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Diffie-Hellman Key Exchange (1) 

 The Diffie-Hellman key exchange was first published in the landmark 

paper [DH76], which also introduced the fundamental idea of 

asymmetric cryptography  
 

 The DH exchange in its basic form enables two parties A and B to 

agree upon a shared secret using a public channel: 

 Public channel means, that a potential attacker can read all messages 

exchanged between A and B 

 It is important that A and B can be sure that the attacker is not able to alter 

messages as in this case he might launch a man-in-the-middle attack 

 The mathematical basis for the DH exchange is the problem of finding 

discrete logarithms in finite fields 

 The DH exchange is not an encryption algorithm. 
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Diffie-Hellman Key Exchange (2) 

Generate random a < p  

Compute X = ga MOD p 

Generate random b < p  

Compute Y = gb MOD p 

 

Compute K = Xb MOD p 

Compute K = Ya MOD p  

 

 

(p, g, X) 

Y 

Whitfield 

Diffie 

Martin E.  

Hellman 
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Diffie-Hellman Key Exchange (3) 

 If Alice (A) and Bob (B) want to agree on a shared secret K and their only 
means of communication is a public channel, they can proceed as follows: 

 A chooses a prime p, a primitive root g of {1,2,…,p-1} and a random number x 

 A and B can agree upon the values p and g prior to any communication, or A 
can choose p and g and send them with his first message 

 A chooses a random number a: 

 A computes X = ga MOD p and sends X to B 

 B chooses a random number b 

 B computes Y = gb MOD p and sends Y to A 

 Both sides compute the common secret: 
 A computes K = Ya MOD p  

 B computes K’ = Xb MOD p  

 As g(a . b) MOD p = g(b . a) MOD p, it holds: K = K’  

 An attacker Eve who is listening to the public channel can only compute the 
secret K, if she is able to compute either a or b which are the discrete 
logarithms of X and Y modulo p to the base g. 

 In essence, A and B have agreed on a key without ever sending the key over 
the channel 

 This does not work anymore if an attacker is on the channel and can replace 
the values with his own ones 
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Can we use it for public key encryption and 

decryption? 

 The TLS / SSL protocols support the use of Diffie-Hellman as Public Key 

algorithm. How does this work? 

 Here, the Diffie-Hellman values are considered to be constant. 

 Public key of Alice:  ga MOD p, g, p 

 Private key of Alice: a 

 Public key of Bob:    gb MOD p, g, p 

 Private key of Alice: b 

 To send a message: Bob takes Alice’s public key, computes k = gab MOD p and 

encrypts the message with k using symmetric key cryptography. 

 Alice needs to know Bob’s public key and that the message is from Bob. Then she 

can generate k and decrypt it using symmetric encryption. 
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Can we use it for signature? 

 

 Remember the problem: If B encrypts a message with his private key Kpriv-B , 

everyone knowing B’s public key Kpub-B can read the message and know that B 

has sent it (given that the message makes sense or is known because it was also 

sent in clear text). 

 This means that Bob would have to use his secret DH value b in combination 

with anyone else’s public key. But if it uses Alice’s public key only Alice can obtain 

the shared key and no one else. So, in that way this cannot be done. 

 

 Diffie-Hellman is key agreement protocol and not a general-purpose public key 

algorithm. 

 

 Now, we want to discuss public key algorithms where we 

 … do not need symmetric encryption for encryption and decryption. 

 … can sign messages, so that all others can verify. 

 Therefore, we briefly introduce El Gamal on the next slide and then discuss 

RSA in more detail. 

 



Network Security, WS 2013/14, Chapter 2.4   15 

El Gamal 

 The ElGamal algorithm was invented by an Egyptian cryptographer 

“Tahar El Gamal”. It uses the DLog problem like in Diffie-Hellman.  

 

 Again, the public key of Alice:  ga MOD p, g, p 

 Encyption 

 Bob choses a random z  and computes gz MOD p 

 Message m  ciphertext c 

 c = m * gaz MOD p 

 Bob sends gz MOD p and the ciphertext c to Alice. 

 Why does this work for signatures also? 

 Bob could use his private key b instead of Alice’s public key. 

 Real world 

 ElGamal is a default in GnuPG 

 Digital Signature Algorithm (DSA) is based on ElGamal 

 As such, ElGamal/DSA is also part of Digital Signature Standard (NIST) 
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The RSA Public Key Algorithm 

 The RSA algorithm was described in 1977 by R. Rivest, A. Shamir and L. Adleman 
[RSA78] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Note: Clifford Cocks in the UK came up with the same scheme 
in 1973 – but he worked for the government and it was treated 
classified and thus remained unknown to the scientific community. 

 

Ron Rivest 

Adi Shamir 

Leonard Adleman 
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Some Mathematical Background 

 Definition: Euler’s  Function: 

 Let (n) denote the number of positive integers m < n, such that m is 

relatively prime to n. 

  “m is relatively prime to n”  = the greatest common divisor (gcd) 

of m and n is one. 

 Let p be prime, then {1,2,…,p-1}  are relatively prime to p,  (p) = p-1 

 Let p and q be distinct prime numbers and n = p  q, then  

 (n) = (p-1)  (q-1)  

 

 Euler’s Theorem: 

  Let n and a be positive and relatively prime integers,  

   a(n)   1 MOD  n 

• Proof: see [Niv80a] 
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The RSA Public Key Algorithm 

 RSA Key Generation: 

 Randomly choose p, q distinct and large primes 

(really large: hundreds of bits = 100-200 digits each) 

 Compute n = p  q, calculate (n) = (p-1)  (q-1)       (Euler’s  Function) 

 Pick e  Z such that 1 < e < (n) and e is relatively prime to (n), 

i.e. gcd(e,(n)) = 1 

 Use the extended Euclidean algorithm to compute d such that 

 e  d  1 MOD  (n) 

 

 The public key is (n, e) 

 The private key is d – this is the “trap door information” 
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The RSA Public Key Algorithm 

 Definition: RSA function 

 Let p and q be large primes; let n = p  q. 

Let e  N be relatively prime to (n). 

 Then RSA(e,n) := x → xe MOD n 

 Example: 

 Let M be an integer that represents the message to be encrypted, with M 

positive, smaller than n.  

• Example: Encode with <blank> = 99, A = 10, B = 11, ..., Z = 35 

So “HELLO” would be encoded as 1714212124.  

If necessary, break M into blocks of smaller messages: 17142   12124 

 To encrypt, compute: C  Me MOD n 

 

 Decryption: 

 To decrypt, compute: M’  Cd MOD n 
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The RSA Public Key Algorithm 

 Why does RSA work: 

 As d  e  1 MOD  (n)  

  k  Z:   (d  e) = 1 + k  ( n)  

We sketch the “proof” for the case where M and n are relatively prime 

  M’  Cd MOD n 

        (Me ) d MOD n 

        M(e  d) MOD n 

        M(1 + k  ( n)) MOD  n 

        M  (M ( n) )k MOD  n 

        M  1k MOD  n (Euler’s theorem*) 

        M MOD  n = M  

 

 In case where M and n are not relatively prime, Euler’s theorem can not be 

applied.  

 See [Niv80a] for the complete proof in that case. 
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Using RSA 

 All public-key crypto systems are much slower and more resource-

consuming than symmetric cryptography 

 Thus, RSA is usually used in a hybrid way: 

 Encrypt the actual message with symmetric cryptography 

 Encrypt the symmetric key with RSA 

 Using RSA requires some precautions 

 Careful with choosing p and q: there are factorization algorithms for certain 

values that are very efficient 

 Generally, one also needs a padding scheme to prevent certain types of 

attacks against RSA 

 E.g. attack via Chinese remainder theorem: if the same clear text message 

is sent to e or more recipients in an encrypted way, and the receivers share 

the same exponent e, it is easy to decrypt the original clear text message 

 Padding also works against a Meet-in-the-middle attack 

 OAEP (from PKCS#1) is a well-known padding scheme for RSA 
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On the Security of RSA 

 The security of the RSA algorithm lies in the presumed difficulty of 

factoring n = p  q 

 It is known that computing the private key from the public key is as 

difficult as the factorization 

 It is unknown if the private key is really needed for efficient decryption 

(there might be a way without, only no-one knows it yet) 

 RSA is one of the most widely used – and studied – algorithms 

 We need to increase key length regularly, as computers become more 

powerful 

 768 bit keys have already been factored 

 There are claims that 1024 bits may be routinely breakable in the 

not-so-far future 

 Current NIST recommendation is 2048 bit, should be on the safe side 

 More is better, but slower 
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Digital Signatures 

 Signing = adding a proof of who has created a message, and that it has 

not been altered on the way 

 Who: authenticity 

 Not altered: integrity 
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Digital Signatures 

 A wants to sign a message. General idea: 

 A computes a cryptographic hash value of her message: h(m) 

• Hashes are one-way functions, i.e. given h(m) it’s infeasible to obtain m 

• We’ll discuss hash functions soon 

 A encrypts h(m) with her private key Kpriv-A  Sig = EK_priv(h(m)) 

 Given m, everyone can now 

• compute h(m) 

• Decrypt signature: D(E(h(m))) = h(m) and check if hash values are the same 

 If they match, A must have been the creator as only A knows the private 

key 
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Elliptic Curve Cryptography (ECC) 

 Motivation: RSA is still probably the most widely implemented 

algorithm for Public Key Cryptography 

 Does public key cryptography need long keys with 1024-8192 bits? 

 Also, it is good to think of alternatives due to the developments in the area 

of primality testing, factorization and computation of discrete logarithms 

 Elliptic Curve Cryptocraphy (ECC) 

 ECC is based on a finite field of points. 

 Points are presented within a 2-dimensional coordinate system: (x,y) 

 All points within the elliptic curve satisfy an equation of this type: 

   y2 = x3 + ax + b 
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Elliptic Curve Cryptography (ECC) 

 Given this set of points an additive operator can be defined 

 

 

 

 

 

 

 A multiplication of a point P by a number n is simply the addition of P to itself n 

times 

    Q = nP = P + P + … + P  

 The problem of determining n, given P and Q, is called the elliptic curve’s 

discrete logarithm problem (ECDLP) 

 The ECDLP is believed to be hard in the general class obtained from the 

group of points on an elliptic curve over a finite field 

P

P

R

Q

Q

P

P

Q

1 2 3 4

P + Q + R = 0 P + Q + Q = 0 P + Q + 0 = 0 P + P + 0 = 0



Network Security, WS 2013/14, Chapter 2.4   27 

Elliptic Curve Cryptography (ECC) 

 Any DLog-based algorithm can be turned into an ECC-based algorithm 

 ECC problems are generally believed to be “harder” 

(though there is a lack of mathematic proofs) 

 Allows us to have shorter key sizes 

 good for storage and transmission over networks 

 New ECC curves are being developed and more and more 

applications use ECC. 
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Key Length (1) 

 It is difficult to give good recommendations for appropriate and secure 

key lengths  

 Hardware is getting faster 

 So key lengths that might be considered as secure this year, might 

become insecure in 2 years 

 Adi Shamir published in 2003 [Sham03] a concept for breaking 1024 

bits RSA key with a special hardware within a year (hardware costs 

were estimated at 10 Millions US Dollars) 

 Bruce Schneier recommends in [Fer03] a minimal length of 2048 bits 

for RSA “if you want to protect your data for 20 years” 

 He recommends also the use of 4096 and up to 8192 bits RSA keys 
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Key Length (2) 

 Comparison of the security of different cryptographic 

algorithms with different key lengths 

 Note: this is an informal way of comparing the complexity of 

breaking an encryption algorithm 

 So please be careful when using this table 

 Note also: a symmetric algorithm is supposed to have no 

significant better attack that breaks it than a brute-force attack 

 Symmetric RSA ECC 

56 622 105 

64 777 120 

74 1024 139 

103 2054 194 

128 3214 256 

192 7680 384 

256 15360 512 

Source [Bless05] page 89 
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Pitfall: Public key cryptography is not “symmetric” 

 In contrast to symmetric cryptography, sender and receiver 

do not form a closed group with shared knowledge. 

 Public Key Cryptography  

• Encrypt with private key  everyone can read 

• Encrypt with a public key  only owner of key (receiver) can read 

 Symmetric Cryptography 

• Encrypt with shared key  only sender and receiver can read 
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Pitfall: Public key cryptography is not “symmetric” 

 How to combine encryption and signature to protect messages m? 

 

 Case 1: A  B: Ekpub-B(m,Sigkpriv-A(m)) 

• Attack if destination B was not included in M: B  C: Ekpub-C(m, Sigkpriv-A(m)) 

– This attack is called “Surreptitious forwarding” : receiver B can decrypt, re-encrypt  

and replace receiver with some entity C and claim message was always for C. 

• Recommendation: always include receiver (and all other relevant entities like 

sender, etc.) in signature: A  B: EkpubB(B,m,Sigkpriv-A(B,m)) 

 

 Case 2: A  B : Ekpub-B(m), Sigkpriv-A(Ekpub-B(m)) = sign encrypted data only 

• Attack: C  B: Ekpub-B(m), Sigkpriv-C(Ekpub-B(m)) 

– Attacker C can just strip signature and replace it with his own – and receiver cannot 

determine who has sent the message. Note that attacker C cannot read plaintext m, 

yet he can sign it! 

• Recommendation: sign plaintext instead of ciphertexts, e.g.: A  B: Ekpub-

B(m),Sigkpriv-A(m) or include sender, receiver in m. 

• However, for symmetric case, encrypt then sign is best according to theory. 
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How to apply Public Key Cryptography? 

 

 Usually used in combination with symmetric cryptography and hash 

functions 

 Symmetric cipher protects large data 

 Hash function computes fingerprint of m  

 Public Key Encryption (with public key of Bob) protects key 

 Public Key Signature (with private key of Alice) protects fingerprint 

 Recent idea: provide API so that only data and public key have to be 

provided. 

 NaCL (Salt) Network and Cryptography Library 

 http://nacl.cr.yp.to 

 Usually, cryptography libraries require more programmer interaction and 

choices. 

 

 

 

Alice (A) Bob (B) 

E(kpriv_A, h(m)),  

E(kpub_B, k), E(k,m) 
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Summary 

 Public key cryptography allows to use two different keys for: 

 Encryption / Decryption 

 Digital Signing / Verifying 

 Some practical algorithms that are still considered to be secure: 

 RSA, based on the difficulty of factoring 

 Diffie-Hellman (a key agreement protocol) 

 As their security is entirely based on the difficulty of certain number 

theory problems, algorithmic advances constitute their biggest threat 

 Practical considerations: 

 Public key cryptographic operations are magnitudes slower than symmetric 

ones 

 Public cryptography is often just used to exchange a symmetric session key 

securely, which is on turn will be used for to secure the data itself. 
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