

 Chair for Network Architectures and Services

Institute of Informatics

TU München – Prof. Carle

Network Security

Chapter 2.3

Secure Channel and

Authenticated Encryption

Network Security, WS 2013/14, Chapter 2.3 2

Acknowledgments

This course is based to a significant extend on slides provided by

Günter Schäfer, author of the book "Netzsicherheit - Algorithmische

Grundlagen und Protokolle", available in German from dpunkt Verlag.

The English version of the book is entitled “Security in Fixed and Wireless

Networks: An Introduction to Securing Data Communications” and is

published by Wiley is also available. We gratefully acknowledge his support.

The slides by Günter Schäfer have been partially reworked by

Heiko Niedermayer, Ali Fessi, Ralph Holz and Georg Carle.

Network Security, WS 2013/14, Chapter 2.3 3

 Part I: The Secure Channel

 Part II: Attacks against Secure Channel

 Part III: Authenticated Encryption

Overview

Network Security, WS 2013/14, Chapter 2.3 4

Problem Statement (1)

Alice Bob Eve

(c.f. Niels Ferguson, Bruce Schneier: Practical Cryptography, Ch 8,

pp. 111ff)

 Goal

 This chapter illustrates the functionality of a “secure channel” between two

parties Alice and Bob, provided by a simple security protocol, the so-called

secure channel algorithm.

 The functionality of this secure channel is a good start for understanding

the functionality of common security protocols such as IPSec and SSL.

Network Security, WS 2013/14, Chapter 2.3 5

Problem Statement (2)

 Assumptions

 The channel is bi-directional, i.e. Alice sends messages to Bob and Bob

sends messages to Alice (almost all communications are bi-directional).

 Eve tries to attack the secure channel in any possible way.

• Eve can read all of the communication between Alice and Bob and arbitrarily

manipulate exchanged messages.

• Particularly, Eve can delete, insert, or modify exchanged messages.

 Requirement

 Alice and Bob share a secret session key K that is known only to both of

them.

 The way how this key is established is discussed in the next Chapter.

Network Security, WS 2013/14, Chapter 2.3 6

What should Alice and Bob keep secret?

 Kerckhoff’s Principle (short version): “A cryptosystem should be secure

even if everything about the system, except the key, is public

knowledge.”

 Now, is this a true fact?

 No, it is a guideline for good design, but not a universal truth.

 The assumption is that you gain more from making the system design

public and publicly scrutinized than from hiding a system design where

flaws at first may be unknown to attackers, but overlooked by designers.

 Kerckhoff’s principle is widely accepted in cryptography.

 So only the shared key is secret.

 Does all security technology follow this principle?

 Well, it is about cryptography.

 But philosophically, does a …. obey it? Firewall? NAT? IDS?

• Some technologies are more an arms race between defender and attacker.

Network Security, WS 2013/14, Chapter 2.3 7

Security Properties

 Processing

 Alice needs to send a sequence of messages (Service Data Units: SDU)

m1, m2, …

 These messages are processed by the secure channel algorithm (i.e. the

security protocol), which generates PDUs (Protocol Data Units) and sends

them to Bob.

 Bob processes the received PDUs using the corresponding secure

channel algorithm and ends up with a sequence of messages m1‘, m2‘, …

 In the ideal case {m1‘, m2‘, … } = {m1, m2, … }

Network Security, WS 2013/14, Chapter 2.3 8

Security Properties

 Security properties of the secure channel algorithm

 Eve does not learn anything about the messages mi except for their timing

and size.

 {m1‘, m2‘, … } ≤ {m1, m2, … }

 Bob can not prevent Eve from deleting a message in transit

 (and Bob can not prevent message loss either).

 The messages received are in the correct order.

 There are no duplicate messages, no modified messages and no bogus

messages sent by someone else other than Alice.

 Bob knows exactly which messages he has missed.

Network Security, WS 2013/14, Chapter 2.3 9

General Remark

 Some protocols have some acknowledgement mechanisms for

recovering from message loss.

 However, this is not handled by the secure channel, since it would

make it more complicated.

Network Security, WS 2013/14, Chapter 2.3 10

Alice (A) Bob (B)

MAC(k,m)

Enc(k,MAC(k,m))

Enc(MAC(k,m),m)

MAC(k, Enc(k,MAC(k,m)))

We know

 Symmetric ciphers

 Encryption modes

 MAC

How shall we combine them?

MAC-then-Enc/Enc-then-MAC – design guidelines?

ENC

MAC
P

C

k

Network Security, WS 2013/14, Chapter 2.3 11

Horton Principle vs Encrypt-then-MAC

 Horton principle: “Authenticate what you mean, not what you say”

 Typical conclusion: this means that the plaintext should be

authenticated and not the ciphertext.

 So, in our secure channel, we should do MAC-then-Encrypt

 Because then the MAC protects the plaintext

 However, for secure channel symmetric encryption state-of-art in

cryptography for symmetric encryption suggests that Encrypt-then-

MAC is better.

 Security proofs for Encrypt-then-MAC can be shown in more security

models (~ succeed against a slightly stronger attacker)

Network Security, WS 2013/14, Chapter 2.3 12

Encrypt-then-MAC, MAC-then-Encrypt, MAC&Encrypt

What are the options?

 MAC-then-Encrypt („SSL“)

 Proposed by Horton Principle

 Protects MAC, but not ciphertext C

 Ciphertext can be interfered with

 MAC&Encrypt („SSH“)

 Also follows Horton Principle

 MAC and ciphertext not protected

 Assumed to be the weakest of the three

 Encrypt-then-MAC („IPSec“)

 Most supported by research (for secure

channel)

 Protects ciphertext C

P MAC(P)
C

P
MAC(C)

C

P
MAC(P)

C

Network Security, WS 2013/14, Chapter 2.3 13

Horton Principle (philosophic)

 Horton principle: “Authenticate what you mean, not what you say”

 But what is the meaning of a data transport channel?

 Isn‘t it naive to think of the plaintext as what you mean?

 When we say the meaning is the data unit of the higher layer protocol,

then it is the plaintext.

 When we say the meaning is the transport of bits, then we might also

be able to think of the ciphertext as the meaning.

 Logically it is not forbidden by the sentence that meaning and saying is the

same.

 Whatever you might think about the philosophic question above, the

main message is that the mechanisms of one layer are not about

meanings of other layers. The Secure Channel has no semantics for

application-specific data.

Network Security, WS 2013/14, Chapter 2.3 14

Secure Channel Toy Example

 The message processing in the secure channel consists of

 Message numbering

 Authentication

 Encryption

 There are two approaches for the order of applying the authentication
and the encryption to a message

(1) One may either encrypt the message first, and then authenticate the
obtained cipher text

(2) Or one might authenticate first and then encrypt the message with the
MAC value together
(this approach is used subsequently)

 Both approaches have advantages and disadvantages

 If encryption is applied first (1), Bob can discard bogus messages before
spending CPU resources on decrypting them

 If authentication is applied first (2), the MAC value will be also protected.

 Also, the Horton principle: “Authenticate what you mean, not what you
say” (2)

 See [Fer03] for further details on this discussion

Network Security, WS 2013/14, Chapter 2.3 15

Message Numbering

 Message numbers allow Bob to reject replayed messages.

 They tell Bob which messages got lost in transit.

 They ensure that Bob receives the messages in their correct order.

 Messages numbers increase monotonically,

 i.e. later messages have a greater message number.

 Message numbers have to be unique;

 i.e. no two messages may have the same message number.

 A simple message numbering scheme functions as follow:

 Alice numbers the first message as 1, the second message as 2, etc.

 Bob keeps track of the last message number he has received.

 Any new message must have a message number that is larger than the

message number of the previous message.

 If the message number overflows,

 e.g. message number is an 32-bit integer and the current message is

 232 -1, then Alice needs to stop using the current session key K before it

can wrap back to 0.

Network Security, WS 2013/14, Chapter 2.3 16

Authentication/ Encryption

 For the data authentication, we need a MAC function,

 e.g. HMAC-SHA-256

 With a hash-value of 256 bits the collision rate is extremely low.

 The input to the MAC consists of

 the message number i

 the message mi

 extra authentication data xi that is required by Bob to interpret mi ,

 e.g., protocol version number, negotiated field size, etc.

 Note: the length of xi must be fix

 Let ai := MAC (i || xi || mi)

 The way how xi is interpreted is out-of-scope and not a part of the functionality of the

secure channel algorithm. The secure channel algorithm just considers it as a string.

 However, the secure channel assures the integrity of xi

 For encryption, we need an encryption algorithm,

 e.g. AES in CTR mode with 256 bits (since it is pretty fast and secure)

 Frame Format

 the message that Alice finally sends to Bob consists of

message number i, followed by E(mi || ai).

Network Security, WS 2013/14, Chapter 2.3 17

Initialization of the Secure Channel (1)

 The initialization procedure of the secure channel generates 4 different

keys from the existing shared session key K:

 An encryption key and an authentication key to send messages from Alice

to Bob.

 An encryption key and an authentication key to send messages from Bob

to Alice.

 It is strongly recommended not to reuse the same key for different

purposes.

 Moreover, the initialization procedure sets the initial message

numbers.

Network Security, WS 2013/14, Chapter 2.3 18

Possible Attacks on Secure Channels

 If the same key K is used for different purposes, different attacks become possible.

 E.g. If K is used for encryption in both directions, then known-plain-text attacks

become possible:

 Since encryption is done with AES in CTR mode

 and assuming that Alice and Bob initialize the counter for the generation of the key

streams ki in the same way (starting with 0 and incrementing by 1 for each

message)

 The key stream ki generated for each message mi depends only on K and the

sequence number i

 Therefore, for each sequence number i the same key stream ki will be generated on

both sides.

 If an attacker can guess a plain text mi

 then, it can decrypt m’i

 m’i || a’i = ci c’i (mi || ai)

 Note: Eve does not need to guess ai

 for this attack, since it can perform

 the xor operation only on the first bits

 that include mi.

Alice Bob

ci = (mi || ai) ki

c’i = (m’i || a’i) ki

Eve

Network Security, WS 2013/14, Chapter 2.3 19

Initialization of an Example Secure Channel (2)

Function InitializeSecureChannel

Input: K Key of the channel

 R Role: Specified if this party is Alice or Bob

Output S State for the secure channel

// First compute the 4 keys that are needed

KeySendEnc SHA-256 (K || „Enc Alice to Bob“)

KeyRecEnc SHA-256 (K || „Enc Bob to Alice“)

KeySendAuth SHA-256 (K || „Auth Alice to Bob“)

KeyRecAuth SHA-256 (K || „Auth Bob to Alice“)

// The strings „Enc Alice to Bob“, „Enc Bob to Alice“, etc. are simply used to generate different

 (uncorrelated) keys.They can be also substitued by other strings, e.g. „A“, „B“, „C“ and „D“.

// Swap the encryption and decryption keys if this party is Bob

If R = „Bob“ then { SWAP (KeySendEnc, KeyRecEnc)

 SWAP (KeySendAuth, KeyRecAuth)

 }

// Set the send and receive counters to zero. The send counter is the number of the last sent

 message. The receive counter is the number of the last received message

(MsgCNTSend, MsgCNTRec) (0,0)

// Package the state

S (KeySendEnc, KeyRecEnc, KeySendAuth, KeyRecAuth, MsgCNTSend, MsgCNTRec)

return S

Network Security, WS 2013/14, Chapter 2.3 20

Example – Sending a Message

Function SendMessage

Input: S Secure session state

 m message to be sent

 x addtional data to be authenticated

Output t data to be transmitted to the receiver

// First check the number and update it

if (MsgCNTSend >= MAX_MSG_NUMBER){

 print „MsgCNTSend overflow; re-keying is required“

 exit

}

MsgCNTSend MsgCNTSend + 1

i MsgCNTSend

// Compute the authentication

a HMAC-SHA-256 (KeySendAuth , i || x || m)

// Generate key stream k

k E(KeySendEnc, nonce || 0) || E(KeySendEnc, nonce || 1) || ...

// the message number i can be used as nonce as this would garantee

// that (nonce || block-number) will be unique each time E is applied

// Form the final text (i is an integer of 4 bytes length)

ma m||a

t i || (ma first-lenght(ma)-bytes(k))

return t

Network Security, WS 2013/14, Chapter 2.3 21

Example – Receiving a Message

Function ReceiveMessage

Input: S Secure session state

 t text received from transmitter

 x addtional data to be authenticated

Output m message that was sent

// Split t into i and the encrypted message plus authenticator.

// This split is unambiguous since i is an integer of 4 bytes length

i || t‘ t

// Generate the key stream, just as the sender did

k E(KeyRecEnc, nonce || 0) || E(KeyRecEnc, nonce || 1) || ...

// Decrypt the message and MAC field, and split.

// This split is also unambiguous since length of MAC value a is known (in this case 256 bits)

m || a t‘ first-length(t‘)-bytes(k)

// Recompute the authentication

a’ HMAC-SHA-256 (KeyRecAuth, i || x || m)

if (a‘ ≠ a) {

destroy k, m

return MsgAuthenticationFailure }

else if (i <= MsgCNTRec) {

 destroy k, m

 return MessageOrderError }

MsgCNTRec i

return m

Network Security, WS 2013/14, Chapter 2.3 22

Message Reordering during Transmission

 The presented algorithm for processing received messages

guarantees that no message is received twice.

 However, messages that are re-ordered during transmission,

otherwise perfectly valid, will be lost.

 In some situations this can be inefficient, e.g. with IP packets, since

they can be reordered during transport.

 We will see that IPSec, the IP security protocol that encrypts and

authenticate IP packets, deals with this problem by maintaining a

replay protection window instead of a single counter.

Network Security, WS 2013/14, Chapter 2.3 23

Further Design Criteria for a Secure Channel

 Negotiation of cryptographic algorithms

 AES-256 and SHA-256 are just examples in this secure channel

 Most security protocols support the negotiation of the cryptographic

algorithms to be used.

 This is the case, e.g., for IPSec and SSL

Network Security, WS 2013/14, Chapter 2.3 24

Further Design Criteria for a Secure Channel

 Multiple communication partners simultaneously

 In many cases, Alice wishes to communicate with several partners

simultaneously, e.g. with Bob and Carol.

 Bob and Carol may use different cryptographic algorithms.

 Therefore, Alice needs to know how to handle a message received from

Bob or from Carol.

 Each message needs to include a unique identifier for the connection in

order to facilitate this task.

 E.g.

• In IPSec, this identifier is called the Security Parameter Index (SPI)

• In SSL/TLS, there is a so-called Session Identifier (SessionID)

• (Both IPSec and SSL/TLS will be explained in subsequent chapters of this

lecture)

Network Security, WS 2013/14, Chapter 2.3 25

Secure Channels - Conclusions

 The secure channel is one of the most useful application of

cryptography.

 Given good encryption and authentication primitives, it is possible to

construct a secure channel.

 However, there are a lot of small details to pay attention to.

 Some applications require encryption.

 However, in most cases, authentication is more important.

 In fact Eve can cause a lot more damage if she manipulates messages

and sends bogus messages, than by just listening to the message sent

by Alice.

 Secure channel does not work without

 Establishing the shared secret

 Knowing to whom you are talking to Entity authentication

Network Security, WS 2013/14, Chapter 2.3 26

 Part I: The Secure Channel

 Part II: Attacks against Secure Channel

 Part III: Authenticated Encryption

Overview

Network Security, WS 2013/14, Chapter 2.3 27

 Part I: The Secure Channel

 Part II: Attacks against Secure Channel

 Attacks against Secure Channel with Stream Cipher

 Part III: Authenticated Encryption

Attacks against Secure Channel with Stream

Ciphers

Network Security, WS 2013/14, Chapter 2.3 28

Re-use of Initialization Vector

 Re-use of Initialization Vector (IV)

IV

k
1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 1 0 1

0 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0

xor

P1 =

C1 = 1 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1

IV

k
1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 1 0 1

1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1

xor

P2 =

C2 = 0 1 1 1 0 0 0 1 0 1 0 0 0 1 1 1 1 1 0

Then some time later the same IV is used again:

Network Security, WS 2013/14, Chapter 2.3 29

Re-use of Initialization Vector

 Re-use of Initialization Vector (IV) continued

0 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 P1 =

C1 = 1 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1

1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 P2 =

C2 = 0 1 1 1 0 0 0 1 0 1 0 0 0 1 1 1 1 1 0

C1+C2 = 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1

P1+P2 = 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1

 P1+P2=C1+C2

 As we see from the example, the attacker can computer C1+C2

because he observes C1 and C2, but that means he knows also

P1+P2.

 Known Plaintext (e.g. P1) attacker can compute other plaintext

 Statistical properties of plaintext can be used if plaintext is not

random-looking. That means if entropy of P1+P2 is low.

= = = = = = = = = = = = …

Network Security, WS 2013/14, Chapter 2.3 30

Weak Integrity Check, Linearity of Stream Cipher

 No integrity check or weak integrity check, e.g. CRC in WEP

 To simplify example, we use the last bit as parity bit to check integrity.

IV

k
1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 1 0 1

0 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0

xor

P =

C = 1 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1

1 1 1 0 0 0 1 0 1 1 1 1 0 1 0 1 0 1 1 P∆ =

C∆ = 0 1 0 1 0 0 1 1 1 0 1 0 1 1 0 1 1 1 0

1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 ∆ =

8 „1“s

 0

11 „1“s

 1

 ok
 Attacker can target individual bits, plaintext and checksum are

linear in ciphertext. Thus, checksum can be overcome and targeted

edits in a text could be done (e.g. change price information).

Network Security, WS 2013/14, Chapter 2.3 31

Same issues with block cipher modes?

 The attacks from the previous slides would not have worked that way

against a block cipher mode like CBC.

 The re-use of an IV can give hints about identical first blocks, but plaintext

cannot be calculated from it.

• The plaintext is not linear in the ciphertext. Thus, such trivial attacks won‘t work.

 Weak checksums cannot be attacked directly, since single individual bits

cannot be controlled by an attacker modifying the cipher text, again due to

the fact that the plaintext is sent through the encrpytion algorithm.

 However, the attacks resulted from severe usage errors and not from

proper use.

 Moreover, integrity is not the goal of encryption and, thus, the weak

checksum algorithm should be blamed.

 Block cipher modes can also fail when used badly.

 We will learn about attacks against block cipher modes next!

Network Security, WS 2013/14, Chapter 2.3 32

 Part I: The Secure Channel

 Part II: Attacks against Secure Channel

 Padding Oracle Attack against bad combination of

CBC mode and MAC

 Part III: Authenticated Encryption

Attacks against Secure Channel with Stream

Ciphers

Network Security, WS 2013/14, Chapter 2.3 33

Guessing a secret (revisited)

 Passwords

 N: size of alphabet (number of different characters)

 L: length of password in characters

 Complexity of guessing a randomly-generated password / secret

 The assumption is, we generate a password and then we test it.

 O(N^L)

 Complexity of guessing a randomly-generated password character by

character

 The assumption is that we can check each character individually for

correctness.

 For each character it is N/2 (avg) and N (worst case)

 So, overall L*N/2 (avg)

 In the subsequent slides we will show an attack that reduces the

decryption of a blockcipher in CBC mode to byte-wise decryption

(under special assumptions).

Network Security, WS 2013/14, Chapter 2.3 34

MAC-then-Encrypt Issues

 Operation

 P and MAC are encrypted and hidden in the ciphertext.

 Receiver

• Decrypts P

• Decrypts MAC

• Computes and checks MAC MAC error or success

 Consequence

 MAC does not protect the ciphertext.

 Integrity check can only be done once everything is decrypted.

 As a consequence, receiver will detect malicious messages at the end of

the secure channel processing and not earlier.

 But is that more than a performance issue? Well, yes.

P MAC
Ciphertext

Network Security, WS 2013/14, Chapter 2.3 35

MAC-then-Encode-then-Encrypt

 If we use a block cipher, we have to ensure that the message

encoding fits to the blocksize of the cipher.

 Encode-then-MAC-then-Encrypt:

 Format P so that with the MAC

added the encryption sees the right size.

 Needs that we know the size of the MAC and blocksize of cipher when

generating P | Padding.

 MAC-then-Encode-then-Encrypt

 Used in TLS/SSL

 Here, we add the MAC first

and then pad the P | MAC to the correct size.

 How do we know what is padding and what not? Padding in TLS/SSL:

• If size of padding is 1 byte, the padding is 1.

• If size of padding is 2 bytes, the padding is 2 2.

• If size of padding is 3 bytes, the padding is 3 3 3.

• ….

P MAC
Ciphertext

Pad

P MAC
Ciphertext

Pad

Network Security, WS 2013/14, Chapter 2.3 36

Oracles and Side Channels

 In ancient times, people asked oracles for guidance.

 In computer science, oracles are functions that give as cheaply access

to information that would otherwise hard to compute.

 E.g. O(1) cost to ask specific NP-complete question polynomial

hierarchy

 In cryptography, an attacker can trigger some participant O in a

protocol or communication to leak information that might or might not

be useful.

 Participant O may re-encrypt some message fragment

 Participant O responds with an error message explaining what went wrong

 Response time of participant O may indicate where error happened

 Response time may leak information about key if processing time depends

(enough) on which bits are set to 1.

• More obvious for the computationally expensive public key algorithms, but

implementations of symmetric ciphers have also been attacked.

Network Security, WS 2013/14, Chapter 2.3 37

Side Channels and Padding Oracles

 Side Channel Attacks

 A general class of attacks where the attacker gains information from

aspects of the physical implementation of a cryptosystem.

 Can be based on: Timing, Power Consumption, Radiation, …

 Padding Oracle

 The oracle tells the attacker if the padding in the message was correct.

 This may be due to a message with the information.

 It can also be due to side channel like the response time.

P
Ciphertext

Pad

ok

Network Security, WS 2013/14, Chapter 2.3 38

Concept of Padding Oracle Attack (against CBC)

 Attacker sees unknown ciphertext C =

that was sent from Alice to Bob

 To decrypt the ciphertext, the attacker modifies C and sends it to Bob.

 It is unlikely that the MAC and padding are correct. So, Bob will send

an error back to Alice (and the attacker).

 In earlier versions of TLS, Bob sent back different error messages for

padding errors and for MAC errors.

P MAC
Ciphertext

Pad

P∆ MAC∆

Ciphertext∆
Pad∆

Network Security, WS 2013/14, Chapter 2.3 39

Padding Oracle Attack – CBC mode decryption

(revisited)

 Encryption and Decryption in CBC mode

Time = 1 Time = 2 Time = n

Encrypt

C1

K

P2

Encrypt

C2

K

Pn

Encrypt

Cn

K Encrypt ...

...

C1

Decrypt

P1

K

C2

Decrypt

P2

K

Cn

Decrypt

Pn

K Decrypt ...

P1

+ IV + + Cn-1

+ IV + + Cn-1

CBC

Network Security, WS 2013/14, Chapter 2.3 40

Padding Oracle Attack against CBC

 We have n blocks and N bytes per block. The attacker first wants to decrypt

the last block Cn.

 In order to do so, he starts with the last byte Cn-1,N of the block Cn-1. If he

changes this byte (blue bytes are changed bytes)

Cn-1

Decrypt

Pn-1

K

Cn

Decrypt

Pn

K

+ … +

Cn-1,N

Pn,N

 the MAC will most likely be invalid (chance 1 in 2^m for MAC length m)

 the padding will be invalid unless Cn-1,N xor Pn,N= 1 (chance 1 in 256)

After testing the 256 values for Cn-1,N all of them produced padding errors

except for one that matches Cn-1,N xor Pn,N= 1.

We know Pn,N .

Network Security, WS 2013/14, Chapter 2.3 41

Padding Oracle Attack against CBC (2)

 Now, the byte Pn,N-1. For that we produce a padding of length 2.

 Since we know Pn,N we can calculate Cn-1,N so that Cn-1,N xor Pn,N= 2

 Now, we have to find the Cn-1,N-1 that satisfies Cn-1,N-1 xor Pn,N-1= 2

 Cn-1

Decrypt

Pn-1

K

Cn

Decrypt

Pn

K

+ … +

Cn-1,N

Pn,N

 With the same argument as before, we need to try up to 256 values, all values

except for the correct one will generate a padding error. The correct one will

produce a MAC errror.

We know Pn,N-1 .

Network Security, WS 2013/14, Chapter 2.3 42

Padding Oracle Attack against CBC (3)

 To completely decrypt Cn we have to repeat the procedure until all

bytes of the block are decrypted. In the figure with 8 bytes per block,

the last padding we generate is 8 8 8 8 8 8 8 8.

 To decrypt Cn-1 we can cut off Cn and repeat the same procedure with

Cn-1 as last block. For decrypting C1 we can use the IV as ciphertext

for the attack modifications.

Cn-2

Decrypt

Pn-2

K

Cn-1

Decrypt

Pn-1

K

+ … +

Cn-2,N

Pn-1,N

C1

Decrypt

P1

K

+
P1,N

IV
IVn

Network Security, WS 2013/14, Chapter 2.3 43

Final Remarks

 The attack was against CBC mode used in MAC-then-Encode-then-

Encrypt mode.

 Padding Oracle attack known long in cryptography.

 Mode still used in SSL / TLS. Hacks have utilized that. However, defenses

have been added.

 CBC with Encode-then-Encrypt-then-MAC does not have this

vulnerability.

 Because MAC check would fail first, process would be aborted, and

padding problems would then not be leaked.

Network Security, WS 2013/14, Chapter 2.3 44

 Part I: The Secure Channel

 Part II: Attacks against Secure Channel

 Part III: Authenticated Encryption

Overview

Network Security, WS 2013/14, Chapter 2.3 45

Authenticated Encryption

 Observations and Thoughts

 Encryption go over the data with some encryption mode

 Integrity and authentication go over the data with some MAC mode

 Usually, both is needed. Two passes over the data.

 Difficult to do right. Why not simplify process by providing both with one

API call.

 Authenticated Encryption (AE)

 Block Cipher Mode that provides Confidentiality, Integrity, and Authenticity

• Any combination (e.g. AES-CTR-SHA-1-HMAC) would fall into the category

 Some modern authenticated encryption modes do not combine an

encryption mode with a MAC mode, but they provide both in one mode.

• Needs only one pass over the data.

 Examples for AE modes are GCM (Galois/Counter Mode), OCB (Offset

Codebook Mode), CCM (Counter with CBC-MAC).

Network Security, WS 2013/14, Chapter 2.3 46

Offset Codebook Mode (OCB)

 Offset Codebook Mode

 Authenticated Encryption Mode

 Proposed by Rogaway in 2001, v3 in 2011.

 Encryption

• Modifies the Electronic Codebook Mode (ECB) by using block-dependent

offsets to avoid ECB mode problems

 MAC

• Checksum = XOR over plaintext, length- and key-dependent variables

• MAC = (Encryption of checksum with shared key k) XOR (hash(k,a))

– „a“ is non-encrypted data to be authenticated

– hash operates similar to main function of OCB

Encrypted using

ECB mode

Encrypted also using

OCB

Source: http://www.wikipedia.org/

Network Security, WS 2013/14, Chapter 2.3 47

Offset Codebook Mode (OCB)

Last Block

P_i

C_i

Enc

Offset_i-1

L_ntz(i)

Offset_i +

+

+

k

Checksum_i-1 + Checksum_i

P_*

C_*

Enc

L_*(i)

Offset_* +

+

+

k

+ Checksum_*

…

…

Pad

ding

Enc k

+

L_$

MAC

hash

a

…

…

Network Security, WS 2013/14, Chapter 2.3 48

Offset Codebook Mode

 L_*, L_$, L_0, L_1, L_2, … are variables depending on the key

 L_*=Enc(k,0)

 The other „L“s are computed by left-shift and addition of constant

 ntz(m) is function that returns the number of 0 bits at the end

 number of trailing zeros

 Hash(k,a) is a function similar to the basic OCB operation, except that

the checksum is over non-encrypted data „a“.

 This is used to include data that OCB shall protect, but not encrypt. Maybe

because it is sent as plaintext.

 Question: XOR plaintext and then encrypt, that sounds like the weak

MAC example from Chapter 2.2. Why is OCB more secure than the

easy-to-break example?

Network Security, WS 2013/14, Chapter 2.3 49

Galois/Counter Mode (GCM)

 Galois/Counter Mode (GCM)

 Developed by John Viega and David A. McGrew

 Standardized by NIST in 2007, IETF standards for cipher suites with AES-

GCM for TLS (SSL) and IPSec exist.

 Follows the Encrypt-then-MAC concept

 Combines concept of Counter Mode for encryption with Galois Field

Multiplication to compute MAC on the ciphertext

 GF(2^128) based on polynomial x^128 + x^7 + x^2 + x+1

 Definitions

 H is Enc(k,0)

 Auth Data is data not to be encrypted. GCM generates check value by

XOR and GF multiplication with H for each block.

 For the MAC, this process continues on the ciphertext and a length field in

the end.

Network Security, WS 2013/14, Chapter 2.3 50

Galois/Counter Mode (GCM)

Image from Wikipedia, Author

from NIST.

MAC

Starts with IV,

not with 0.

Network Security, WS 2013/14, Chapter 2.3 51

Galois Field Multiplication

 In a Galois Field we consider the bitstring to represent a polynomial.

 E.g. 1011 = x^3 + x +1

 As a consequence Galois Field Multiplication is based on polynomial

multiplication modulus the polynomial of the field.

 Example: In GF(2^128) based on polynomial g(x) = x^128 + x^7 + x^2 + x+1

 P(x) = x^127+x^7

 Q(x) = x^5 + 1

 P(x)*Q‘(x) = x^132 + x^127 + x^12 + x^7

 To compute the modulus, we have to compute a polynomial division P(x)*Q(x)/g(x).

 We can see that x^4 * g(x) removes the x^132, so P(x)*Q(x)-x^4*g(x) = x^127 +

x^12 + x^11 + x^7 + x^6 + x^5 + x^4

 Since this polynomial fits into the 128 bit, this is the remainder of the division, thus

the result, in bits: 1000…01100011110000.

Network Security, WS 2013/14, Chapter 2.3 52

References

[Bell95] M. Bellare and P. Rogaway, Provably Secure Session Key
Distribution - The Three Party Case, Proc. 27th STOC, 1995, pp
57--64

[Boyd03] Colin Boyd, Anish Mathuria, “Protocols for Authentication and Key
Establishment”, Springer, 2003

[Bry88a] R. Bryant. Designing an Authentication System: A Dialogue in
Four Scenes. Project Athena, Massachusetts Institute of
Technology, Cambridge, USA, 1988.

[Diff92] W. Diffie, P. C. van Oorschot, and M. J. Wiener. Authentication
and authenticated key exchanges. Designs, Codes, and
Cryptography, 1992

[Dol81a] D. Dolev, A.C. Yao. On the security of public key protocols.
Proceedings of IEEE 22nd Annual Symposium on Foundations of
Computer Science, pp. 350-357, 1981.

[Fer00] Niels Ferguson, Bruce Schneier, “A Cryptographic Evaluation of
IPsec”. http://www.counterpane.com/ipsec.pdf 2000

[Fer03] Niels Ferguson, Bruce Schneier, „Practical Cryptography“, John
Wiley & Sons, 2003

[Gar03] Jason Garman, “Kerberos. The Definitive Guide”, O'Reilly Media,
1st Edition, 2003

Network Security, WS 2013/14, Chapter 2.3 53

References

[Kau02a] C. Kaufman, R. Perlman, M. Speciner. Network
 Security. Prentice Hall, 2nd edition, 2002.

[Koh94a] J. Kohl, C. Neuman, T. T'so, The Evolution of the
 Kerberos Authentication System. In Distributed Open
 Systems, pages 78-94. IEEE Computer Society Press,
 1994.

[Mao04a] W. Mao. Modern Cryptography: Theory & Practice.
 Hewlett-Packard Books, 2004.

[Nee78] R. Needham, M. Schroeder. Using Encryption for
 Authentication in Large Networks of Computers.
 Communications of the ACM, Vol. 21, No. 12, 1978.

[Woo92a] T.Y.C Woo, S.S. Lam. Authentication for distributed
 systems. Computer, 25(1):39-52, 1992.

[Lowe95] G. Lowe, „An Attack on the Needham-Schroeder
 Public-Key Authentication Protocol”, Information
 Processing Letters, volume 56, number 3, pages 131-
 133, 1995.

Network Security, WS 2013/14, Chapter 2.3 54

References

[OCB] T.Krovetz, P. Rogaway, „The OCB Authenticated-

 Encryption Algorithm“

 http://tools.ietf.org/html/draft-irtf-cfrg-ocb-03

[RFC 4106] The Use of Galois/Counter Mode (GCM) in IPsec

 Encapsulating Security Payload (ESP)

[RFC 5288] AES Galois Counter Mode (GCM) Cipher Suites for TLS.

Network Security, WS 2013/14, Chapter 2.3 55

Additional references from the IETF

[RFC2560] M. Myers, et al., “X.509 Internet Public Key Infrastructure

 Online Certificate Status Protocol – OCSP”, June 1999

[RFC3961] K. Raeburn, “Encryption and Checksum Specifications

 for Kerberos 5”, February 2005

[RFC3962] K. Raeburn, “Advanced Encryption Standard (AES)

 Encryption for Kerberos 5”, February 2005

[RFC4757] K. Jaganathan, et al., “The RC4-HMAC Kerberos

 Encryption Types Used by Microsoft Windows ”,

 December 2006

[RFC4120] C. Neuman, et al., “The Kerberos Network Authentication

 Service (V5)”, July 2005

[RFC4537] L. Zhu, et al, “Kerberos Cryptosystem Negotiation

 Extension”, June 2006

[RFC5055] T. Freeman, et al, “Server-Based Certificate Validation

 Protocol (SCVP)”, December 2007

