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Problem Statement (1) 

Alice Bob Eve 

(c.f. Niels Ferguson, Bruce Schneier: Practical Cryptography, Ch 8,  

pp. 111ff) 

 Goal 

 This chapter illustrates the functionality of a “secure channel” between two 

parties Alice and Bob, provided by a simple security protocol, the so-called 

secure channel algorithm. 

 The functionality of this secure channel is a good start for understanding 

the functionality of common security protocols such as IPSec and SSL. 
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Problem Statement (2) 

 Assumptions 

 The channel is bi-directional, i.e. Alice sends messages to Bob and Bob 

sends messages to Alice (almost all communications are bi-directional). 

 Eve tries to attack the secure channel in any possible way. 

• Eve can read all of the communication between Alice and Bob and arbitrarily 

manipulate exchanged messages. 

• Particularly, Eve can delete, insert, or modify exchanged messages. 

 

 Requirement 

 Alice and Bob share a secret session key K that is known only to both of 

them.  

 The way how this key is established is discussed in the next Chapter. 
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What should Alice and Bob keep secret? 

 Kerckhoff’s Principle (short version): “A cryptosystem should be secure 

even if everything about the system, except the key, is public 

knowledge.” 

 

 Now, is this a true fact? 

 No, it is a guideline for good design, but not a universal truth. 

 The assumption is that you gain more from making the system design 

public and publicly scrutinized than from hiding a system design where 

flaws at first may be unknown to attackers, but overlooked by designers. 

 Kerckhoff’s principle is widely accepted in cryptography. 

 So only the shared key is secret. 

 

 Does all security technology follow this principle? 

 Well, it is about cryptography. 

 But philosophically, does a …. obey it? Firewall? NAT? IDS? 

• Some technologies are more an arms race between defender and attacker. 

 



Network Security, WS 2013/14, Chapter 2.3   7 

Security Properties 

 Processing 

 Alice needs to send a sequence of messages (Service Data Units: SDU) 

m1, m2, …  

 These messages are processed by the secure channel algorithm (i.e. the 

security protocol), which generates PDUs (Protocol Data Units) and sends 

them to Bob. 

 Bob processes the received PDUs using the corresponding secure 

channel algorithm and ends up with a sequence of messages m1‘, m2‘, …  

 In the ideal case {m1‘, m2‘, … } = {m1, m2, … } 
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Security Properties 

 Security properties of the secure channel algorithm 

 Eve does not learn anything about the messages mi  except for their timing 

and size. 

 {m1‘, m2‘, … } ≤ {m1, m2, … } 

 Bob can not prevent Eve from deleting a message in transit  

 (and Bob can not prevent message loss either). 

 The messages received are in the correct order. 

 There are no duplicate messages, no modified messages and no bogus 

messages sent by someone else other than Alice. 

 Bob knows exactly which messages he has missed. 
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General Remark 

 Some protocols have some acknowledgement mechanisms for 

recovering from message loss.  

 However, this is not handled by the secure channel, since it would 

make it more complicated. 
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Alice (A) Bob (B) 

MAC(k,m)  

Enc(k,MAC(k,m)) 

Enc(MAC(k,m),m)  

MAC(k, Enc(k,MAC(k,m))) 

We know  

 Symmetric ciphers  

 Encryption modes 

 MAC 

 

How shall we combine them? 

MAC-then-Enc/Enc-then-MAC – design guidelines? 

ENC 

MAC 
P 

C 

k 
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Horton Principle vs Encrypt-then-MAC 

 Horton principle: “Authenticate what you mean, not what you say” 

 

 Typical conclusion: this means that the plaintext should be 

authenticated and not the ciphertext. 

 

 So, in our secure channel, we should do MAC-then-Encrypt 

 Because then the MAC protects the plaintext 

 

 However, for secure channel symmetric encryption state-of-art in 

cryptography for symmetric encryption suggests that Encrypt-then-

MAC is better. 

 Security proofs for Encrypt-then-MAC can be shown in more security 

models (~ succeed against a slightly stronger attacker) 
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Encrypt-then-MAC, MAC-then-Encrypt, MAC&Encrypt 

What are the options? 

 

 MAC-then-Encrypt („SSL“) 

 Proposed by Horton Principle 

 Protects MAC, but not ciphertext C 

 Ciphertext can be interfered with 

 

 MAC&Encrypt („SSH“) 

 Also follows Horton Principle 

 MAC and ciphertext not protected 

 Assumed to be the weakest of the three 

 

 Encrypt-then-MAC („IPSec“) 

 Most supported by research (for secure 

channel) 

 Protects ciphertext C 

P MAC(P) 
C 

P 
MAC(C) 

C 

P 
MAC(P) 

C 
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Horton Principle (philosophic) 

 Horton principle: “Authenticate what you mean, not what you say” 

 

 But what is the meaning of a data transport channel? 

 Isn‘t it naive to think of the plaintext as what you mean? 

 

 When we say the meaning is the data unit of the higher layer protocol, 

then it is the plaintext. 

 When we say the meaning is the transport of bits, then we might also  

be able to think of the ciphertext as the meaning. 

 Logically it is not forbidden by the sentence that meaning and saying is the 

same. 

 

 Whatever you might think about the philosophic question above, the 

main message is that the mechanisms of one layer are not about 

meanings of other layers. The Secure Channel has no semantics for 

application-specific data.  
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Secure Channel Toy Example  

 The message processing in the secure channel consists of 

 Message numbering 

 Authentication 

 Encryption 

 There are two approaches for the order of applying the authentication 
and the encryption to a message 

(1) One may either encrypt the message first, and then authenticate the 
obtained cipher text 

(2) Or one might authenticate first and then encrypt the message with the 
MAC value together  
(this approach is used subsequently) 

 Both approaches have advantages and disadvantages 

 If encryption is applied first (1), Bob can discard bogus messages before 
spending CPU resources on decrypting them 

 If authentication is applied first (2), the MAC value will be also protected. 

 Also, the Horton principle: “Authenticate what you mean, not what you 
say”  (2) 

 See [Fer03] for further details on this discussion 
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Message Numbering 

 Message numbers allow Bob to reject replayed messages. 

 They tell Bob which messages got lost in transit. 

 They ensure that Bob receives the messages in their correct order. 

 Messages numbers increase monotonically,  

 i.e. later messages have a greater message number. 

 Message numbers have to be unique; 

 i.e. no two messages may have the same message number. 

 A simple message numbering scheme functions as follow: 

 Alice numbers the first message as 1, the second message as 2, etc. 

 Bob keeps track of the last message number he has received. 

 Any new message must have a message number that is larger than the 

message number of the previous message. 

 If the message number overflows,  

 e.g. message number is an 32-bit integer and the current message is  

 232 -1, then Alice needs to stop using the current session key K before it 

can wrap back to 0. 
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Authentication/ Encryption 

 For the data authentication, we need a MAC function,  

 e.g. HMAC-SHA-256 

 With a hash-value of 256 bits the collision rate is extremely low. 

 The input to the MAC consists of 

 the message number i 

 the message mi  

 extra authentication data xi that is required by Bob to interpret mi ,  

 e.g., protocol version number, negotiated field size, etc.  

 Note: the length of xi  must be fix 

 Let ai := MAC (i || xi || mi ) 

 The way how xi is interpreted is out-of-scope and not a part of the functionality of the 

secure channel algorithm. The secure channel algorithm just considers it as a string. 

 However, the secure channel assures the integrity of xi 

 For encryption, we need an encryption algorithm,  

 e.g. AES in CTR mode with 256 bits (since it is pretty fast and secure) 

 Frame Format 

 the message that Alice finally sends to Bob consists of  

message number i, followed by E(mi || ai ). 
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Initialization of the Secure Channel (1) 

 The initialization procedure of the secure channel generates 4 different 

keys from the existing shared session key K: 

 An encryption key and an authentication key to send messages from Alice 

to Bob. 

 An encryption key and an authentication key to send messages from Bob 

to Alice. 

 It is strongly recommended not to reuse the same key for different 

purposes. 

 Moreover, the initialization procedure sets the initial message 

numbers. 
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Possible Attacks on Secure Channels 

 If the same key K is used for different purposes, different attacks become possible. 

 E.g. If K is used for encryption in both directions, then known-plain-text attacks 

become possible: 

 Since encryption is done with AES in CTR mode 

 and assuming that Alice and Bob initialize the counter for the generation of the key 

streams ki in the same way (starting with 0 and incrementing by 1 for each 

message) 

 The key stream ki generated for each message mi  depends only on K and the 

sequence number i  

 Therefore, for each sequence number i the same key stream ki will be generated on 

both sides. 

 If an attacker can guess a plain text mi   

 then, it can decrypt m’i  

  m’i || a’i = ci  c’i  (mi || ai) 
 

 Note: Eve does not need to guess ai  

 for this attack, since it can perform  

 the xor operation only on the first bits 

 that include mi. 

 

Alice Bob 

ci = ( mi || ai )  ki  

c’i = ( m’i || a’i )  ki  

Eve 
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Initialization of an Example Secure Channel (2) 

Function InitializeSecureChannel 

Input: K  Key of the channel 

   R Role: Specified if this party is Alice or Bob 

Output S State for the secure channel 

 

// First compute the 4 keys that are needed 

KeySendEnc    SHA-256 (K || „Enc Alice to Bob“) 

KeyRecEnc      SHA-256 (K || „Enc Bob to Alice“) 

KeySendAuth   SHA-256 (K || „Auth Alice to Bob“) 

KeyRecAuth    SHA-256 (K || „Auth Bob to Alice“) 

// The strings „Enc Alice to Bob“, „Enc Bob to Alice“, etc. are simply used to generate different 

   (uncorrelated) keys.They can be also substitued by other strings, e.g. „A“, „B“, „C“ and „D“. 

 

// Swap the encryption and decryption keys if this party is Bob 

If R = „Bob“ then  { SWAP (KeySendEnc, KeyRecEnc ) 

   SWAP (KeySendAuth, KeyRecAuth ) 

                     } 

// Set the send and receive counters to zero. The send counter is the number of the last sent 

   message. The receive counter is the number of the last received message 

(MsgCNTSend, MsgCNTRec )  (0,0) 

 

// Package the state 

S  (KeySendEnc, KeyRecEnc, KeySendAuth, KeyRecAuth, MsgCNTSend, MsgCNTRec ) 

return S 
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Example – Sending a Message 

Function SendMessage 

Input: S  Secure session state 

   m message to be sent 

  x  addtional data to be authenticated 

Output t data to be transmitted to the receiver 

// First check the number and update it 

if (MsgCNTSend >= MAX_MSG_NUMBER){ 

 print „MsgCNTSend overflow; re-keying is required“ 

 exit 

} 

MsgCNTSend  MsgCNTSend + 1 

i  MsgCNTSend  
 

// Compute the authentication 

a  HMAC-SHA-256 (KeySendAuth , i || x || m ) 

// Generate key stream k 

k  E(KeySendEnc, nonce || 0 ) || E(KeySendEnc, nonce || 1 ) || ...            

// the message number i can be used as nonce as this would garantee  

// that (nonce || block-number) will be unique each time E is applied 
 

// Form the final text (i is an integer of 4 bytes length) 

ma m||a 
 

t  i || (ma   first-lenght(ma)-bytes(k) ) 

return t 
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Example – Receiving a Message 

Function ReceiveMessage 

Input: S  Secure session state 

   t text received from transmitter 

  x  addtional data to be authenticated 

Output m message that was sent 

// Split t into i and the encrypted message plus authenticator.  

// This split is unambiguous since i is an integer of 4 bytes length 

i || t‘  t 

// Generate the key stream, just as the sender did 

k  E(KeyRecEnc, nonce || 0 ) || E(KeyRecEnc, nonce || 1 ) || ...            

// Decrypt the message and MAC field, and split.  

// This split is also unambiguous since length of MAC value a is known (in this case 256 bits) 

m || a   t‘   first-length(t‘)-bytes(k) 

// Recompute the authentication 

a’  HMAC-SHA-256 (KeyRecAuth, i || x || m ) 

if (a‘ ≠ a) { 

destroy k, m  

return MsgAuthenticationFailure } 

else if ( i <= MsgCNTRec ) { 

    destroy k, m 

    return MessageOrderError } 

MsgCNTRec  i 
 

return m 
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Message Reordering during Transmission 

 The presented algorithm for processing received messages 

guarantees that no message is received twice. 

 However, messages that are re-ordered during transmission, 

otherwise perfectly valid, will be lost. 

 In some situations this can be inefficient, e.g. with IP packets, since 

they can be reordered during transport. 

 We will see that IPSec, the IP security protocol that encrypts and 

authenticate IP packets, deals with this problem by maintaining a 

replay protection window instead of a single counter. 
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Further Design Criteria for a Secure Channel 

 Negotiation of cryptographic algorithms 

 AES-256 and SHA-256 are just examples in this secure channel 

 Most security protocols support the negotiation of the cryptographic 

algorithms to be used. 

 This is the case, e.g., for IPSec and SSL 
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Further Design Criteria for a Secure Channel 

 Multiple communication partners simultaneously 

 In many cases, Alice wishes to communicate with several partners 

simultaneously, e.g. with Bob and Carol. 

 Bob and Carol may use different cryptographic algorithms. 

 Therefore, Alice needs to know how to handle a message received from 

Bob or from Carol. 

 Each message needs to include a unique identifier for the connection in 

order to facilitate this task. 

 E.g.  

• In IPSec, this identifier is called the Security Parameter Index (SPI) 

• In SSL/TLS, there is a so-called Session Identifier (SessionID)  

• (Both IPSec and SSL/TLS will be explained in subsequent chapters of this 

lecture) 
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Secure Channels - Conclusions 

 

 The secure channel is one of the most useful application of 

cryptography. 

 Given good encryption and authentication primitives, it is possible to 

construct a secure channel. 

 However, there are a lot of small details to pay attention to. 

 Some applications require encryption. 

 However, in most cases, authentication is more important. 

 In fact Eve can cause a lot more damage if she manipulates messages 

and sends bogus messages, than by just listening to the message sent 

by Alice. 

 Secure channel does not work without 

 Establishing the shared secret 

 Knowing to whom you are talking to  Entity authentication 
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Overview 
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 Part I:   The Secure Channel 

 Part II:   Attacks against Secure Channel 

 Attacks against Secure Channel with Stream Cipher 

 Part III:  Authenticated Encryption 

Attacks against Secure Channel with Stream 

Ciphers 
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Re-use of Initialization Vector 

 

 Re-use of Initialization Vector (IV) 

 
IV 

k 
1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 1 0 1 

0 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 

xor 

P1 =  

C1 =  1 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 

IV 

k 
1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 1 0 1 

1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 

xor 

P2 =  

C2 =  0 1 1 1 0 0 0 1 0 1 0 0 0 1 1 1 1 1 0 

Then some time later the same IV is used again: 



Network Security, WS 2013/14, Chapter 2.3   29 

Re-use of Initialization Vector 

 Re-use of Initialization Vector (IV) continued 

 

0 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 P1 =  

C1 =  1 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 

1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 P2 =  

C2 =  0 1 1 1 0 0 0 1 0 1 0 0 0 1 1 1 1 1 0 

C1+C2 =  1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 

P1+P2 =  1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 

 P1+P2=C1+C2 

 As we see from the example, the attacker can computer C1+C2 

because he observes C1 and C2, but that means he knows also 

P1+P2.  

 Known Plaintext (e.g. P1)  attacker can compute other plaintext 

 Statistical properties of plaintext can be used if plaintext is not 

random-looking. That means if entropy of P1+P2 is low. 

= = = = = = = = = = = = … 
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Weak Integrity Check, Linearity of Stream Cipher 

 

 No integrity check or weak integrity check, e.g. CRC in WEP 

 To simplify example, we use the last bit as parity bit to check integrity. 

 
IV 

k 
1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 1 0 1 

0 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 

xor 

P =  

C =  1 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 

1 1 1 0 0 0 1 0 1 1 1 1 0 1 0 1 0 1 1 P∆ =  

C∆ =  0 1 0 1 0 0 1 1 1 0 1 0 1 1 0 1 1 1 0 

1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 ∆ =  

8 „1“s 

 0 

11 „1“s 

 1 

 ok 
 Attacker can target individual bits, plaintext and checksum are  

linear in ciphertext. Thus, checksum can be overcome and targeted 

edits in a text could be done (e.g. change price information). 
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Same issues with block cipher modes? 

 

 The attacks from the previous slides would not have worked that way 

against a block cipher mode like CBC. 

 The re-use of an IV can give hints about identical first blocks, but plaintext 

cannot be calculated from it.  

• The plaintext is not linear in the ciphertext. Thus, such trivial attacks won‘t work. 

 Weak checksums cannot be attacked directly, since single individual bits 

cannot be controlled by an attacker modifying the cipher text, again due to 

the fact that the plaintext is sent through the encrpytion algorithm. 

 However, the attacks resulted from severe usage errors and not from 

proper use. 

 Moreover, integrity is not the goal of encryption and, thus, the weak 

checksum algorithm should be blamed. 

 Block cipher modes can also fail when used badly.  

 

 We will learn about attacks against block cipher modes next! 



Network Security, WS 2013/14, Chapter 2.3   32 

 

 Part I:   The Secure Channel 

 Part II:   Attacks against Secure Channel 

 Padding Oracle Attack against bad combination of 
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 Part III:  Authenticated Encryption 

Attacks against Secure Channel with Stream 

Ciphers 
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Guessing a secret (revisited) 

 

 Passwords 

 N: size of alphabet (number of different characters) 

 L: length of password in characters 

 Complexity of guessing a randomly-generated password / secret 

 The assumption is, we generate a password and then we test it. 

  O(N^L) 

 Complexity of guessing a randomly-generated password character by 

character 

 The assumption is that we can check each character individually for 

correctness. 

 For each character it is N/2 (avg) and N (worst case) 

 So, overall L*N/2 (avg) 

 In the subsequent slides we will show an attack that reduces the 

decryption of a blockcipher in CBC mode to byte-wise decryption 

(under special assumptions). 
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MAC-then-Encrypt Issues 

 Operation 

 P and MAC are encrypted and hidden in the ciphertext. 

 Receiver 

• Decrypts P 

• Decrypts MAC 

• Computes and checks MAC MAC error or success 

 Consequence 

 MAC does not protect the ciphertext. 

 Integrity check can only be done once everything is decrypted. 

 As a consequence, receiver will detect malicious messages at the end of 

the secure channel processing and not earlier. 

 But is that more than a performance issue? Well, yes. 

P MAC 
Ciphertext 
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MAC-then-Encode-then-Encrypt 

 If we use a block cipher, we have to ensure that the message 

encoding fits to the blocksize of the cipher. 

 

 Encode-then-MAC-then-Encrypt: 

 Format P so that with the MAC  

added  the encryption sees  the right size. 

 Needs that we know the size of the MAC and blocksize of cipher when 

generating P | Padding. 

 MAC-then-Encode-then-Encrypt 

 Used in TLS/SSL 

 Here, we add the MAC first  

and then pad the P | MAC to the correct size. 

 How do we know what is padding and what not? Padding in TLS/SSL: 

• If size of padding is 1 byte, the padding is 1. 

• If size of padding is 2 bytes, the padding is 2 2. 

• If size of padding is 3 bytes, the padding is 3 3 3. 

• …. 

 

 

 

P MAC 
Ciphertext 

Pad 

P MAC 
Ciphertext 

Pad 
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Oracles and Side Channels 

 In ancient times, people asked oracles for guidance. 

 

 In computer science, oracles are functions that give as cheaply access 

to information that would otherwise hard to compute. 

 E.g. O(1) cost to ask specific NP-complete question  polynomial 

hierarchy 

 

 In cryptography, an attacker can trigger some participant O in a 

protocol or communication to leak information that might or might not 

be useful. 

 Participant O may re-encrypt some message fragment 

 Participant O responds with an error message explaining what went wrong 

 Response time of participant O may indicate where error happened 

 Response time may leak information about key if processing time depends 

(enough) on which bits are set to 1.  

• More obvious for the computationally expensive public key algorithms, but 

implementations of symmetric ciphers have also been attacked. 
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Side Channels and Padding Oracles 

 

 Side Channel Attacks  

 A general class of attacks where the attacker gains information from 

aspects of the physical implementation of a cryptosystem. 

 Can be based on: Timing, Power Consumption, Radiation, … 

 

 

 

 

 

 Padding Oracle 

 The oracle tells the attacker if the padding in the message was correct. 

 This may be due to a message with the information. 

 It can also be due to side channel like the response time. 

 

 

P 
Ciphertext 

Pad 

ok 
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Concept of Padding Oracle Attack (against CBC) 

 

 Attacker sees unknown ciphertext C = 

that was sent from Alice to Bob  

 

 To decrypt the ciphertext, the attacker modifies C and sends it to Bob.  

 

 

 

 

 

 

 It is unlikely that the MAC and padding are correct. So, Bob will send 

an error back to Alice (and the attacker). 

 In earlier versions of TLS, Bob sent back different error messages for 

padding errors and for MAC errors. 

P MAC 
Ciphertext 

Pad 

P∆ MAC∆ 

Ciphertext∆ 
Pad∆ 
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Padding Oracle Attack – CBC mode decryption 

(revisited) 

 Encryption and Decryption in CBC mode 

Time = 1 Time = 2 Time = n 

Encrypt 

C1 

K 

P2 

Encrypt 

C2 

K 

Pn 

Encrypt 

Cn 

K Encrypt ... 

... 

C1 

Decrypt 

P1 

K 

C2 

Decrypt 

P2 

K 

Cn 

Decrypt 

Pn 

K Decrypt ... 

P1 

+ IV + + Cn-1 

+ IV + + Cn-1 

CBC 
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Padding Oracle Attack against CBC 

 We have n blocks and N bytes per block. The attacker first wants to decrypt 

the last block Cn.   

 In order to do so, he starts with the last byte Cn-1,N of the block Cn-1. If he 

changes this byte (blue bytes are changed bytes) 

Cn-1 

Decrypt 

Pn-1 

K 

Cn 

Decrypt 

Pn 

K 

+ … + 

Cn-1,N 

Pn,N 

 the MAC will most likely be invalid (chance 1 in 2^m for MAC length m) 

 the padding will be invalid unless Cn-1,N xor Pn,N= 1 (chance 1 in 256) 

After testing the 256 values for Cn-1,N all of them produced padding errors 

except for one that matches Cn-1,N xor Pn,N= 1.  

We know Pn,N .  
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Padding Oracle Attack against CBC (2) 

 Now, the byte Pn,N-1. For that we produce a padding of length 2. 

 Since we know Pn,N we can calculate Cn-1,N so that Cn-1,N xor Pn,N= 2 

 Now, we have to find the Cn-1,N-1 that satisfies Cn-1,N-1 xor Pn,N-1= 2 

 Cn-1 

Decrypt 

Pn-1 

K 

Cn 

Decrypt 

Pn 

K 

+ … + 

Cn-1,N 

Pn,N 

 With the same argument as before, we need to try up to 256 values, all values 

except for the correct one will generate a padding error. The correct one will 

produce a MAC errror. 

We know Pn,N-1 .  
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Padding Oracle Attack against CBC (3) 

 To completely decrypt Cn we have to repeat the procedure until all 

bytes of the block are decrypted. In the figure with 8 bytes per block, 

the last padding we generate is 8 8 8 8 8 8 8 8. 

 To decrypt Cn-1 we can cut off Cn and repeat the same procedure with 

Cn-1 as last block. For decrypting C1  we can use the IV as ciphertext 

for the attack modifications. 

Cn-2 

Decrypt 

Pn-2 

K 

Cn-1 

Decrypt 

Pn-1 

K 

+ … + 

Cn-2,N 

Pn-1,N 

C1 

Decrypt 

P1 

K 

+ 
P1,N 

IV 
IVn 
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Final Remarks  

 

 The attack was against CBC mode used in MAC-then-Encode-then-

Encrypt mode. 

 Padding Oracle attack known long in cryptography. 

 Mode still used in SSL / TLS. Hacks have utilized that. However, defenses 

have been added. 

 

 CBC with Encode-then-Encrypt-then-MAC does not have this 

vulnerability. 

 Because MAC check would fail first, process would be aborted, and 

padding problems would then not be leaked. 
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Overview 
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Authenticated Encryption 

 

 Observations and Thoughts 

 Encryption  go over the data with some encryption mode 

 Integrity and authentication  go over the data with some MAC mode 

 Usually, both is needed.  Two passes over the data. 

 Difficult to do right.  Why not simplify process by providing both with one 

API call. 

 

 Authenticated Encryption (AE) 

 Block Cipher Mode that provides Confidentiality, Integrity, and Authenticity 

• Any combination (e.g. AES-CTR-SHA-1-HMAC) would fall into the category 

 Some modern authenticated encryption modes do not combine an 

encryption mode with a MAC mode, but they provide both in one mode. 

• Needs only one pass over the data.  

 Examples for AE modes are GCM (Galois/Counter Mode), OCB (Offset 

Codebook Mode), CCM (Counter with CBC-MAC). 
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Offset Codebook Mode (OCB) 

 

 Offset Codebook Mode 

 Authenticated Encryption Mode 

 Proposed by Rogaway in 2001, v3 in 2011. 

 Encryption 

• Modifies the Electronic Codebook Mode (ECB) by using block-dependent 

offsets to avoid ECB mode problems 

 

 

 

 

 MAC 

• Checksum = XOR over plaintext, length- and key-dependent variables 

• MAC = (Encryption of checksum with shared key k) XOR (hash(k,a)) 

– „a“ is non-encrypted data to be authenticated 

– hash operates similar to main function of OCB  

 

Encrypted using  

ECB mode 

Encrypted also using  

OCB 

Source: http://www.wikipedia.org/ 
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Offset Codebook Mode (OCB) 
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Offset Codebook  Mode 

 L_*, L_$, L_0, L_1, L_2, …  are variables depending on the key 

 L_*=Enc(k,0) 

 The other „L“s are computed by left-shift and addition of constant 

 

 ntz(m) is function that returns the number of 0 bits at the end 

 number of trailing zeros 

 

 Hash(k,a) is a function similar to the basic OCB operation, except that 

the checksum is over non-encrypted data „a“. 

 This is used to include data that OCB shall protect, but not encrypt. Maybe 

because it is sent as plaintext. 

 

 Question: XOR plaintext and then encrypt, that sounds like the weak 

MAC example from Chapter 2.2. Why is OCB more secure than the 

easy-to-break example? 
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Galois/Counter Mode (GCM) 

 

 Galois/Counter Mode (GCM) 

 Developed by John Viega and David A. McGrew 

 Standardized by NIST in 2007, IETF standards for cipher suites with AES-

GCM for TLS (SSL) and IPSec exist. 

 Follows the Encrypt-then-MAC concept 

 Combines concept of Counter Mode for encryption with Galois Field 

Multiplication to compute MAC on the ciphertext 

 GF(2^128) based on polynomial x^128 + x^7 + x^2 + x+1 

 

 Definitions 

 H is Enc(k,0) 

 Auth Data is data not to be encrypted. GCM generates check value by 

XOR and GF multiplication with H for each block. 

 For the MAC, this process continues on the ciphertext and a length field in 

the end. 
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Galois/Counter Mode (GCM) 

 

Image from Wikipedia, Author 

from NIST. 

MAC 

Starts with IV,  

not with 0. 
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Galois Field Multiplication 

 In a Galois Field we consider the bitstring to represent a polynomial. 

 E.g. 1011 =  x^3 + x +1  

 As a consequence Galois Field Multiplication is based on polynomial 

multiplication modulus the polynomial of the field. 

 

 Example: In GF(2^128) based on polynomial g(x) = x^128 + x^7 + x^2 + x+1 

 P(x) = x^127+x^7 

 Q(x) = x^5 + 1 

 P(x)*Q‘(x) = x^132 + x^127 + x^12 + x^7 

 To compute the modulus, we have to compute a polynomial division P(x)*Q(x)/g(x). 

 We can see that x^4 * g(x) removes the x^132, so P(x)*Q(x)-x^4*g(x) = x^127 + 

x^12 + x^11 + x^7 + x^6 + x^5 + x^4 

 Since this polynomial fits into the 128 bit, this is the remainder of the division, thus 

the result, in bits: 1000…01100011110000. 
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