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Motivation 

 It is crucial to security that cryptographic keys are generated with a 

truly random or at least a pseudo-random generation process  

(see subsequently) 

 Otherwise, an attacker might reproduce the key generation process 

and easily find the key used to secure a specific communication 

 Generation of pseudo-random numbers is required in cryptographic 

protocols for the generation of 

 Cryptographic keys 

 Nonces (Numbers Used Once) 

 Example usages 

 Key generation and peer authentication in IPSec and SSL 

 Authentication with challenge-response-mechanism, e.g. GSM and UMTS 

authentication 
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Random Number Generators 

 Definition: 

 A random bit generator is a device or algorithm which outputs a 

sequence of statistically independent and unbiased binary digits. 

 Remark: 

 A random bit generator can be used to generate uniformly distributed 

random numbers 

 e.g. a random integer in the interval [0, n] can be obtained by generating a 

random bit sequence of length lg2 n + 1 and converting it into a number.  

 If the resulting integer exceeds n it can be discarded and the process is 

repeated until an integer in the desired range has been generated. 
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Entropy 

(c.f. Niels Ferguson, Bruce Schneier: Practical Cryptography, pp. 155ff) 

 The measure for „randomness“ is called „entropy“ 

 Let X a random variable which outputs a sequence of n bits 

 The Shannon information entropy is defined by: 

 
 

 E.g. if all possible outputs are equally probable, then 

 

 

 A secure cryptographic key of length n bits should have n bits of entropy. 

 If k from the n bits become known to an attacker and the attacker has no 
information about the remaining (n – k) bits, then the key has an entropy of  

 (n– k) bits 

 A bits sequence of arbitrary large length that takes only 4 different values has 
only 2 bits of entropy 

 Passwords that can be remembered by human beings have usually a much 
lower entropy than their length. 

 Entropy can be understood as the average number of bits required to specify a 
bit-sequence if an ideal compression algorithm is used. 
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Pseudo-Random Number Generators (1) 

 Definition: 

 A pseudo-random bit generator (PRBG) is a deterministic algorithm which, 

given a truly random binary sequence of length k (“seed”), outputs a binary 

sequence of length m >> k which “appears” to be random. 

 The input to the PRBG is called the seed and the output is called a 

pseudo-random bit sequence. 

 

 Remarks: 

 The output of a PRBG is not random, in fact the number of possible output 

sequences of length m with 2k sequences is at most a small fraction of 2m, 

as the PRBG produces always the same output sequence for one (fixed) 

seed 

 The motivation for using a PRBG is that it is generally too expensive to 

produce true random numbers of length m, e.g. by coin flipping, so just a 

smaller amount of random bits is produced and then a pseudo-random bit 

sequence is produced out of the k truly random bits 

 In order to gain confidence in the “randomness” of a pseudo-random 

sequence, statistical tests are conducted on the produced sequences 
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Pseudo-Random Number Generators (2) 

 Example: 

 A linear congruential generator produces a pseudo-random sequence of 

numbers y1, y2, ... According to the linear recurrence 

yi = a  yi-1 + b MOD q 

 with a, b, q being parameters characterizing the PRBG 

 Unfortunately, this generator is predictable even when a, b and q are 

unknown, and should, therefore, not be used for cryptographic purposes 
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Random and Pseudo-Random Number Generation (3) 

 Security requirements of PRBGs for use in cryptography: 

 As a minimum security requirement the length k of the seed to a PRBG 

should be large enough to make brute-force search over all seeds 

infeasible for an attacker 

 The output of a PRBG should be statistically indistinguishable from truly 

random sequences 

 The output bits should be unpredictable for an attacker with limited 

resources, if he does not know the seed 

 Definition: 

 A PRBG is said to pass all polynomial-time statistical tests, if no 

polynomial-time algorithm can correctly distinguish between an output 

sequence of the generator and a truly random sequence of the same 

length with probability significantly greater than 0.5 

 Polynomial-time algorithm means, that the running time of the algorithm is 

bound by a polynomial in the length m of the sequence 
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Random and Pseudo-Random Number Generation (4) 

 Definition: 

 A PRBG is said to pass the next-bit test, if there is no polynomial-time 

algorithm which, on input of the first m bits of an output sequence s, can 

predict the (m + 1)st bit sm+1 of the output sequence with probability 

significantly greater than 0.5 

 Theorem (universality of the next-bit test): 

 A PRBG passes the next-bit test  

  

it passes all polynomial-time statistical tests 

 For the proof, please see section 12.2 in [Sti95a]  

 Definition: 

 A PRBG that passes the next-bit test – possibly under some plausible but 

unproved mathematical assumption such as the intractability of the 

factoring problem for large integers – is called a cryptographically secure 

pseudo-random bit generator (CSPRBG)  

 



Network Security, WS 2012/13, Chapter 2.4   9 

Hardware-Based Random Number Generation 

 Hardware-based random bit generators are based on physical 

phenomena, as: 

 elapsed time between emission of particles during radioactive decay, 

 thermal noise from a semiconductor diode or resistor, 

 frequency instability of a free running oscillator, 

 the amount a metal insulator semiconductor capacitor is charged during a 

fixed period of time, 

 air turbulence within a sealed disk drive which causes random fluctuations 

in disk drive sector read latencies, and 

 sound from a microphone or video input from a camera 

 A hardware-based random bit generator should ideally be enclosed in 

some tamper-resistant device and thus shielded from possible 

attackers 
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Software-Based Random Number Generation 

 Software-based random bit generators, may be based upon processes 

as: 

 the system clock, 

 elapsed time between keystrokes or mouse movement, 

 content of input- / output buffers 

 user input, and 

 operating system values such as system load and network statistics 

 Ideally, multiple sources of randomness should be “mixed”, e.g. by 

concatenating their values and computing a cryptographic hash value 

for the combined value, in order to avoid that an attacker might guess 

the random value 

 If, for example, only the system clock is used as a random source, than an 

attacker might guess random-numbers obtained from that source of 

randomness if he knows about when they were generated 

 Usually, such generators are used to initialize PRNGs, i.e. to set their 

seed.  
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De-skewing 

 Consider a random generator that produces biased but uncorrelated 

bits, e.g. it produces 1’s with probability p  0.5 and 0’s with probability 

1 - p, where p is unknown but fixed 

 The following technique can be used to obtain a random sequence 

that is uncorrelated and unbiased: 

 The output sequence of the generator is grouped into pairs of bits 

 All pairs 00 and 11 are discarded 

 For each pair 10 the unbiased generator produces a 1 and for each pair 01 

it produces a 0 

 

 Another practical (although not provable) de-skewing technique is to 

pass sequences whose bits are correlated or biased through a 

cryptographic hash function such as MD-5 or SHA-1 
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Statistical Tests for Random Numbers 

 The following tests allow to check if a generated random or pseudo-

random sequence inhibits certain statistical properties: 

 Monobit Test: Are there equally many 1’s as 0’s? 

 Serial Test (Two-Bit Test): Are there equally many 00-, 01-, 10-, 11-pairs? 

 Runs Test: Are the numbers of runs (sequences containing only either 0’s 

or 1’s) of various lengths as expected for random numbers? 

 Autocorrelation Test: Are there correlations between the sequence and 

(non-cyclic) shifted versions of it? 

 Maurer’s Universal Test: Can the sequence be compressed? 

 The above descriptions just give the basic ideas of the tests. For a 

more detailed and mathematical treatment, please refer to sections 

5.4.4 and 5.4.5 in [Men97a] 
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Examples for PRNGs 

 

 Linear Congruential Generator 

 Xn+1 = (a Xn + b) mod m 

 Very fast, but not suitable for cryptography! 

 Suitable for cryptography 

 Blum Blum Shub  

 On the basis of symmetric encryption 

 Output of block cipher in OFB or CTR mode 

 Output of a stream cipher (e.g. RC4) 

• Stream cipher = symmetric cipher that produces a random bitstream to be 

XORed with the plaintext 

 On the basis of a cryptographic hash function 

 Iterate using hash function and seed, e.g. 

 X0 = seed 

 Xi+1 = H (Xi  | seed) 
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