Network Security

Chapter 2 Basics

2.4 Random Number Generation for Cryptographic Protocols

Motivation

- It is crucial to security that cryptographic keys are generated with a truly random or at least a pseudo-random generation process (see subsequently)
- Otherwise, an attacker might reproduce the key generation process and easily find the key used to secure a specific communication
- Generation of pseudo-random numbers is required in cryptographic protocols for the generation of
- Cryptographic keys
- Nonces (Numbers Used Once)
- Example usages
- Key generation and peer authentication in IPSec and SSL
- Authentication with challenge-response-mechanism, e.g. GSM and UMTS authentication

Random Number Generators

- Definition:

A random bit generator is a device or algorithm which outputs a sequence of statistically independent and unbiased binary digits.

- Remark:
- A random bit generator can be used to generate uniformly distributed random numbers
- e.g. a random integer in the interval $[0, n]$ can be obtained by generating a random bit sequence of length $\left\lfloor\lg _{2} \mathrm{n}\right\rfloor+1$ and converting it into a number.
- If the resulting integer exceeds n it can be discarded and the process is repeated until an integer in the desired range has been generated.

Entropy

(c.f. Niels Ferguson, Bruce Schneier: Practical Cryptography, pp. 155ff)

- The measure for „randomness" is called „entropy"
- Let X a random variable which outputs a sequence of n bits
- The Shannon information entropy is defined by:

$$
H(X)=-\sum_{x} P(X=x) \ln _{2}(P(X=x))
$$

- E.g. if all possible outputs are equally probable, then

$$
H(X)=-\sum_{i=0}^{2^{n}-1}\left(\frac{1}{2^{n}}\right) \ln _{2}\left(\frac{1}{2^{n}}\right)=-2^{n} * \frac{1}{2^{n}} *(-n)=n
$$

- A secure cryptographic key of length n bits should have n bits of entropy.
- If k from the n bits become known to an attacker and the attacker has no information about the remaining $(n-k)$ bits, then the key has an entropy of ($n-k$) bits
- A bits sequence of arbitrary large length that takes only 4 different values has only 2 bits of entropy
- Passwords that can be remembered by human beings have usually a much lower entropy than their length.
- Entropy can be understood as the average number of bits required to specify a bit-sequence if an ideal compression algorithm is used.

Pseudo-Random Number Generators (1)

- Definition:
- A pseudo-random bit generator (PRBG) is a deterministic algorithm which, given a truly random binary sequence of length k ("seed"), outputs a binary sequence of length $m \gg k$ which "appears" to be random.
- The input to the PRBG is called the seed and the output is called a pseudo-random bit sequence.
- Remarks:
- The output of a PRBG is not random, in fact the number of possible output sequences of length m with 2^{k} sequences is at most a small fraction of 2^{m}, as the PRBG produces always the same output sequence for one (fixed) seed
- The motivation for using a PRBG is that it is generally too expensive to produce true random numbers of length m, e.g. by coin flipping, so just a smaller amount of random bits is produced and then a pseudo-random bit sequence is produced out of the k truly random bits
- In order to gain confidence in the "randomness" of a pseudo-random sequence, statistical tests are conducted on the produced sequences

Pseudo-Random Number Generators (2)

- Example:
- A linear congruential generator produces a pseudo-random sequence of numbers y_{1}, y_{2}, \ldots According to the linear recurrence

$$
y_{i}=a \times y_{i-1}+b \text { MOD } q
$$

with a, b, q being parameters characterizing the PRBG

- Unfortunately, this generator is predictable even when a, b and q are unknown, and should, therefore, not be used for cryptographic purposes

Random and Pseudo-Random Number Generation (3)

- Security requirements of PRBGs for use in cryptography:
- As a minimum security requirement the length k of the seed to a PRBG should be large enough to make brute-force search over all seeds infeasible for an attacker
- The output of a PRBG should be statistically indistinguishable from truly random sequences
- The output bits should be unpredictable for an attacker with limited resources, if he does not know the seed
- Definition:

A PRBG is said to pass all polynomial-time statistical tests, if no polynomial-time algorithm can correctly distinguish between an output sequence of the generator and a truly random sequence of the same length with probability significantly greater than 0.5

- Polynomial-time algorithm means, that the running time of the algorithm is bound by a polynomial in the length m of the sequence

Random and Pseudo-Random Number Generation (4)

- Definition:
- A PRBG is said to pass the next-bit test, if there is no polynomial-time algorithm which, on input of the first m bits of an output sequence s, can predict the $(m+1)^{\text {st }}$ bit s_{m+1} of the output sequence with probability significantly greater than 0.5
- Theorem (universality of the next-bit test):

A PRBG passes the next-bit test
\Leftrightarrow
it passes all polynomial-time statistical tests

- For the proof, please see section 12.2 in [Sti95a]
- Definition:
- A PRBG that passes the next-bit test - possibly under some plausible but unproved mathematical assumption such as the intractability of the factoring problem for large integers - is called a cryptographically secure pseudo-random bit generator (CSPRBG)

Hardware-Based Random Number Generation

- Hardware-based random bit generators are based on physical phenomena, as:
- elapsed time between emission of particles during radioactive decay,
- thermal noise from a semiconductor diode or resistor,
- frequency instability of a free running oscillator,
- the amount a metal insulator semiconductor capacitor is charged during a fixed period of time,
- air turbulence within a sealed disk drive which causes random fluctuations in disk drive sector read latencies, and
- sound from a microphone or video input from a camera
- A hardware-based random bit generator should ideally be enclosed in some tamper-resistant device and thus shielded from possible attackers

Software-Based Random Number Generation

- Software-based random bit generators, may be based upon processes as:
- the system clock,
- elapsed time between keystrokes or mouse movement,
- content of input- / output buffers
- user input, and
- operating system values such as system load and network statistics
- Ideally, multiple sources of randomness should be "mixed", e.g. by concatenating their values and computing a cryptographic hash value for the combined value, in order to avoid that an attacker might guess the random value
- If, for example, only the system clock is used as a random source, than an attacker might guess random-numbers obtained from that source of randomness if he knows about when they were generated
- Usually, such generators are used to initialize PRNGs, i.e. to set their seed.

De-skewing

- Consider a random generator that produces biased but uncorrelated bits, e.g. it produces 1 's with probability $p \neq 0.5$ and 0 's with probability $1-p$, where p is unknown but fixed
- The following technique can be used to obtain a random sequence that is uncorrelated and unbiased:
- The output sequence of the generator is grouped into pairs of bits
- All pairs 00 and 11 are discarded
- For each pair 10 the unbiased generator produces a 1 and for each pair 01 it produces a 0
- Another practical (although not provable) de-skewing technique is to pass sequences whose bits are correlated or biased through a cryptographic hash function such as MD-5 or SHA-1

Statistical Tests for Random Numbers

- The following tests allow to check if a generated random or pseudorandom sequence inhibits certain statistical properties:
- Monobit Test: Are there equally many 1's as 0's?
- Serial Test (Two-Bit Test): Are there equally many 00-, 01-, 10-, 11-pairs?
- Runs Test: Are the numbers of runs (sequences containing only either 0's or 1's) of various lengths as expected for random numbers?
- Autocorrelation Test: Are there correlations between the sequence and (non-cyclic) shifted versions of it?
- Maurer's Universal Test: Can the sequence be compressed?
- The above descriptions just give the basic ideas of the tests. For a more detailed and mathematical treatment, please refer to sections 5.4.4 and 5.4.5 in [Men97a]

Examples for PRNGs

- Linear Congruential Generator
- $X_{n+1}=\left(a X_{n}+b\right) \bmod m$
- Very fast, but not suitable for cryptography!
- Suitable for cryptography
- Blum Blum Shub
- On the basis of symmetric encryption
- Output of block cipher in OFB or CTR mode
- Output of a stream cipher (e.g. RC4)
- Stream cipher = symmetric cipher that produces a random bitstream to be XORed with the plaintext
- On the basis of a cryptographic hash function
- Iterate using hash function and seed, e.g.
- $X_{0}=$ seed
- $X_{i+1}=H\left(X_{i} \mid\right.$ seed $)$

Addtional References

[Ferg03]
Niels Ferguson, Bruce Schneier, „Practical Cryptography", John Wiley \& Sons, 2003
[Sti95a] A. J. Menezes, P. C. Van Oorschot, S. A. Vanstone. Handbook of Applied Cryptography. CRC Press Series on Discrete Mathematics and Its Applications, Hardcover, 816 pages, CRC Press, 1997.
D. R. Stinson. Cryptography: Theory and Practice (Discrete Mathematics and Its Applications). Hardcover, 448 pages, CRC Press, 1995.

