Chair for Network Architectures and Services Department of Informatics TU München – Prof. Carle

Network Security

Chapter 1
Introduction

- Who is studying?
 - Bachelor Informatics? / Information Sciences (Wirtschaftsinformatik)?
 - Master Informatics? / Information Sciences (Wirtschaftsinformatik)?
 - English track master?
 - New at TUM?
 - Diploma?
- □ Background?
 - Grundlagen Rechnernetze und Verteilte Systeme?
 - What else?
 - Cryptography, etc?
- Who wants to participate in the exercises?

Course organization

- Lecture
 - Wednesday, 14:15-15.45, MI 00.13.009A
 - Thursdays, 14:15-15.45, MI 00.13.009A
- Exercises
 - Apon announcement instead of thursday.lecture.
- ☐ Grading
 - Written exam at the end of semester
 - Exercises → 0.3 bonus if
 - 50 % points are reached and solutions for 4 exercise sheets are handed in
- Teaching Goals
 - Learn to take responsibility for yourself
 - Think about the topics, do not repeat content of theses slides without deeper understanding
 - Learn to formulate and present technical problems
 - Understand basics and theory, be prepared for application, be aware of risks and counter-measures

Course organization

- Questions and Answers / Office hours
 - Prof. Dr. Georg Carle, carle@net.in.tum.de
 - After the course and upon appointment
 - Dr. Heiko Niedermayer, <u>niedermayer@net.in.tum.de</u>
 - Dipl.-Inform. Ralph Holz, <u>holz@net.in.tum.de</u>
- Course Material
 - All slides are available online. Slides may be updated during the course.
 - This course is based to a significant extend on slides provided by Prof. Günter Schäfer, author of the book "Netzsicherheit - Algorithmische Grundlagen und Protokolle" by Günter Schäfer, available in German from dpunkt Verlag. (An English version is also available.) We gratefully acknowledge his support.
 - We will add further reading material throughout the course.

Chapter 1 Introduction

- Motivation
- Threats in communication networks
- Security goals & requirements
- Network security analysis
- Security measures
- Bibliography

What are we doing?

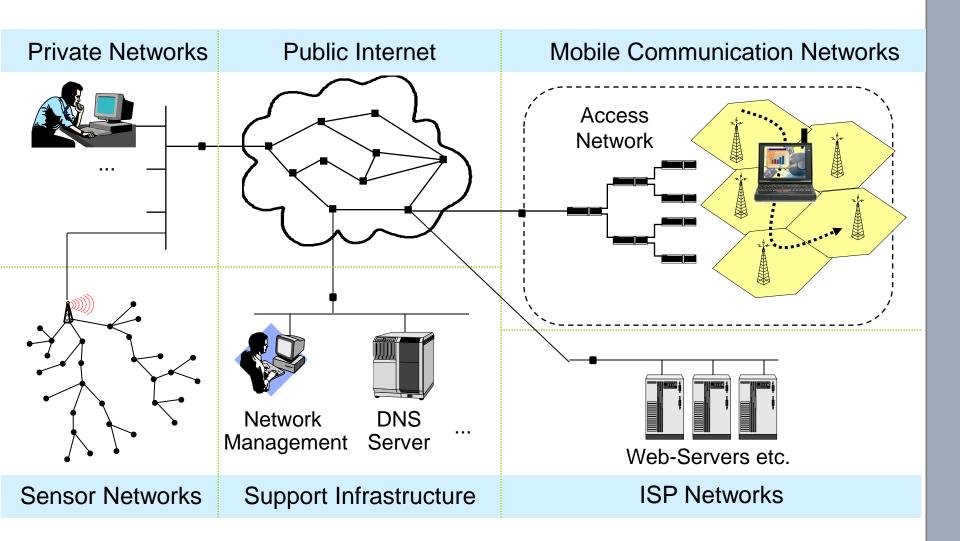
- Situation
 - □ "Hello, I am Alice."
 - □ What to do now?
- Identity / Authentication

How do we achieve this?

Security by Policy

Security by Architecture

- Mobile communication networks and ubiquitous availability of the global Internet have already changed dramatically the way we
 - communicate,
 - conduct business, and
 - organize our society
- With current research and developments in sensor networks and pervasive computing, we are even creating a new networked world
- However, the benefits associated with information and communication technology imply new vulnerabilities



Motivation: A Changing World

- Mobile communication networks and ubiquitous availability of the global Internet have already changed dramatically the way we
 - communicate,
 - conduct business, and
 - organize our society
- With current research and developments in sensor networks and pervasive computing, we are even creating a new networked world
- However, the benefits associated with information and communication technology imply new vulnerabilities
 - Increasing dependence of modern information society on availability and secure operation of communication services

A High Level Model for Internet-Based IT-Infrastructure

What is a Threat in a Communication Network?

- Abstract Definition:
 - A threat in a communication network is any possible event or sequence of actions that might lead to a violation of one or more security goals
 - The actual realization of a threat is called an attack
- Examples for threats:
 - A hacker breaking into a corporate computer
 - Disclosure of emails in transit
 - Someone changing financial accounting data
 - A hacker temporarily shutting down a website
 - Someone using services or ordering goods in the name of others
 - ...
- What are security goals?
 - Security goals can be defined:
 - depending on the application environment, or
 - in a more general, technical way

Security goals depending on the application environment (1)

- □ Banking:
 - Protect against fraudulent or accidental modification of transactions
 - Identify retail transaction customers
 - Protect PINs from disclosure
 - Ensure customers privacy
- Electronic trading:
 - Assure integrity of transactions
 - Protect corporate privacy
 - Provide legally binding electronic signatures on transactions
- Government:
 - Protect against disclosure of sensitive information
 - Provide electronic signatures on government documents

Security goals depending on the application environment (2)

- Public Telecommunication Providers:
 - Restrict access to administrative functions to authorized personnel
 - Protect against service interruptions
 - Protect subscribers privacy
- Corporate / Private Networks:
 - Protect corporate / individual privacy
 - Ensure message authenticity
- All Networks:
 - Prevent outside penetrations (who wants hackers?)
- Security goals are also called security objectives

Security Goals Technically Defined

- Confidentiality ("Vertraulichkeit"):
 - Data transmitted or stored should only be revealed to an intended audience
 - Confidentiality of entities is also referred to as anonymity
- Data Integrity ("Datenintegrität"):
 - It should be possible to detect any modification of data
- Accountability ("Zurechenbarkeit"):
 - It should be possible to identify the entity responsible for any communication event
 - Accountability directly supports non-repudiation ("Nicht-Abstreitbarkeit"), and also deterrence, intrusion prevention, security monitoring, and others
- □ Availability ("Verfügbarkeit"):
 - Services should be available and function correctly
- □ Controlled Access ("kontrollierter Zugang"):
 - Only authorized entities should be able to access certain services or information

Threats Technically Defined (1)

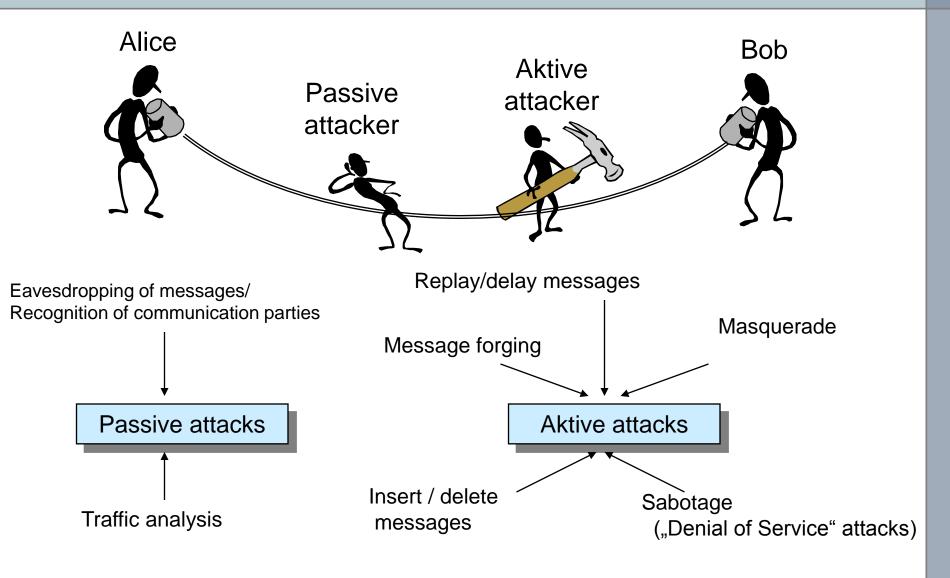
- Masquerade:
 - An entity claims to be another entity (also called "Impersonation")
- □ Eavesdropping:
 - An entity reads information it is not intended to read
- □ Loss or Modification of (transmitted) Information:
 - Data is being altered or destroyed
- □ Denial of Communication Acts (Repudiation):
 - An entity falsely denies its participation in a communication act
- Forgery of Information:
 - An entity creates new information in the name of another entity
- □ Sabotage/Denial of Service
 - Any action that aims to reduce the availability and / or correct functioning of services or systems
- □ Authorization Violation:
 - An entity uses a service or resources it is not intended to use

Threats and Technical Security Goals

□ The realization of a threat (attack) will try to break one or more security goals:

х	General Threats						
Technical Security Goals	Masquer- ade	Eaves- dropping	Authori- sation Violation	Loss or Modification of (transmitted) information	Denial of Communi- cation acts	Forgery of Infor- mation	Sabotage (e.g. by overload)
Confidentiality	Х	х	х				
Data Integrity	Х		Х	Х		X	
Accountability	Х		Х	Х		X	
Availability	Х		Х	Х	Х		X
Controlled Access	Х		х			х	

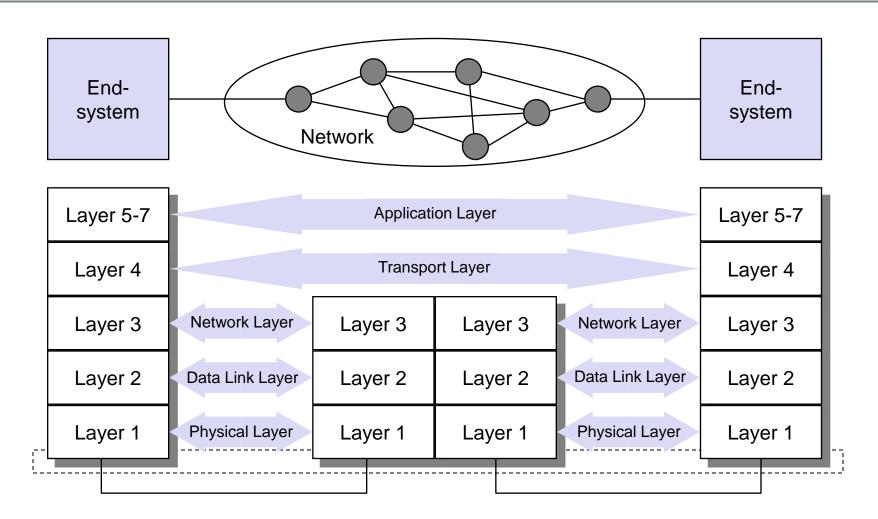
These threats are often combined in order to perform an attack!



Network Security Analysis

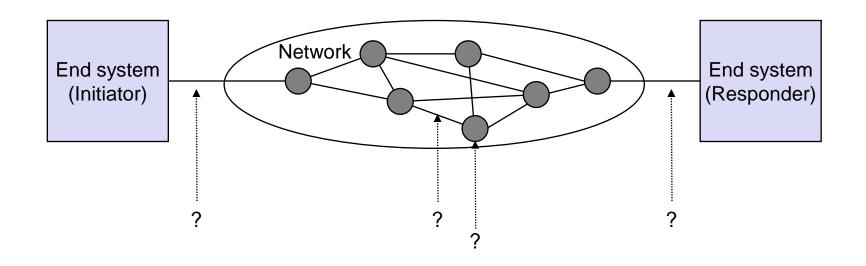
- In order to take appropriate countermeasures against threats, these have to be evaluated appropriately for a given network configuration.
- □ Therefore, a detailed *network security analysis* is needed that:
 - evaluates the potential risk of the threats to the entities using a network,
 and
 - estimates the expenditure (resources, time, etc.) needed to perform known attacks.
 - → Attention: *It is generally impossible to assess unknown attacks!*
- A detailed security analysis of a given network configuration / a specific protocol architecture:
 - may be required to convince financially controlling entities in an enterprise to grant funding for security enhancements
 - can be structured according to the more fine grained attacks on the message level.

Attacks on Communication Networks

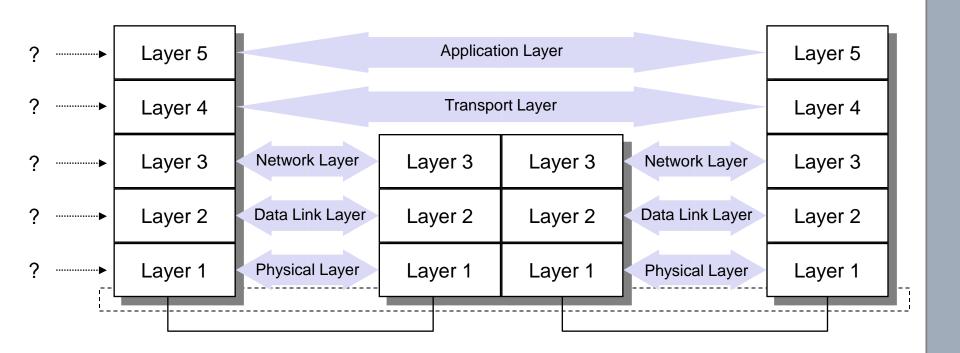


Attacking Communications on the Message Level

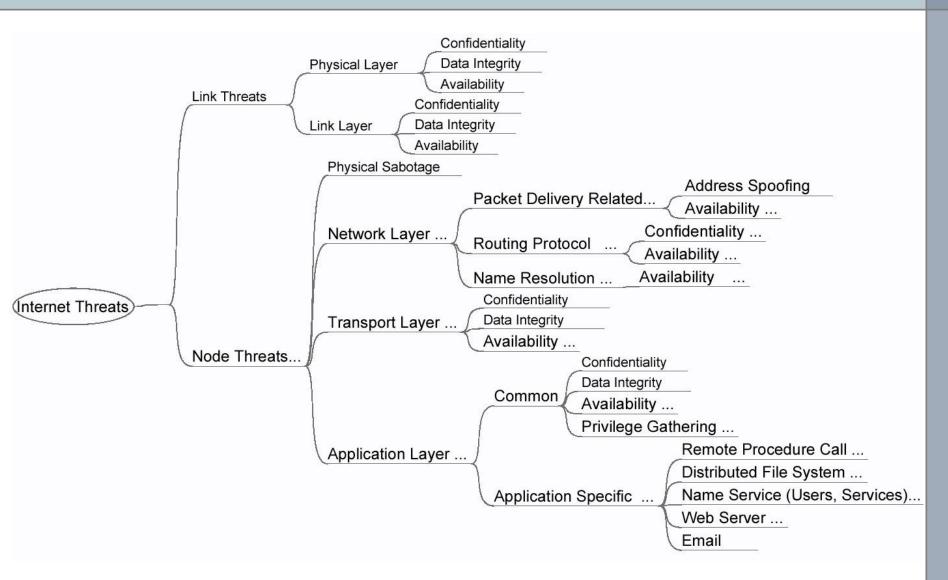
- Passive attacks:
 - Eavesdropping of messages
- Active attacks:
 - Delay of messages
 - Replay of messages
 - Deletion of messages
 - Modification of messages
 - Insertion of messages
- A security analysis of a protocol architecture has to analyse these attacks according to the architecture's layers



Communication in Layered Protocol Architectures


Security Analysis of Layered Protocol Architectures (1)

Dimension 1: At which interface does the attack take place?


Security Analysis of Layered Protocol Architectures (2)

Dimension 2: In which layer does the attack take place?

A High Level Threat Tree for Internet-Based IT-Infrastructure

Measures against Information Security Threats (1)

- Physical Security:
 - Locks or other physical access control
 - Tamper-proofing of sensitive equipment (c.f. Tamper resistance and tamper-evident systems)
- Personnel Security:
 - Identification of position sensitivity
 - Employee screening processes
 - Security training and awareness
- □ Administrative Security:
 - Controlling import of foreign software
 - Procedures for investigating security breaches
 - Reviewing audit trails
 - Reviewing accountability controls
- Emanations Security:
 - Radio Frequency and other electromagnetic emanations controls

Measures against Information Security Threats (2)

- Media Security:
 - Safeguarding storage of information
 - Controlling marking, reproduction and destruction of sensitive information
 - Ensuring that media containing sensitive information are destroyed securely
 - Scanning media for viruses
- Lifecycle Controls:
 - Trusted system design, implementation, evaluation and endorsement
 - Programming standards and controls
 - Documentation controls
- Computer Security:
 - Protection of information while stored / processed in a computer system
 - Protection of the computing devices itself
- Communications Security: (the main subject of this course)
 - Protection of information during transport from one system to another
 - Protection of the communication infrastructure itself

Communications Security: Some Terminology

Security Service:

- An abstract service that seeks to ensure a security goal
- A security service can be realised with the help of cryptographic algorithms and protocols as well as with conventional means:
 - One can keep an electronic document on a floppy disk confidential by storing it on the disk in an encrypted format as well as locking away the disk in a safe
 - Usually a combination of cryptographic and other means is most effective
- Fundamental security services:
 - Confidentiality
 - Entity authentication
 - Message authentication
 - Access control
 - Intrusion detection

Security Services – Overview

- Confidentiality
 - The most popular security service, ensuring the secrecy of protected data
- Entity Authentication
 - The most fundamental security service which ensures that an entity has in fact the identity it claims to have
- Message Authentication
 - This service ensures that the source of a message can be verified (data origin authentication) and that data can not be modified without detection (data integrity)
- Access Control
 - Controls that each identity accesses only those services and information it is entitled to
- Intrusion detection

Cryptographic Algorithm and Cryptographic Protocol

- Cryptographic Algorithm:
 - A mathematical transformation of input data (e.g. data, key) to output data
 - Cryptographic algorithms are used in cryptographic protocols
- Cryptographic Protocol:
 - A series of steps and message exchanges between multiple entities in order to achieve a specific security objective
- Security Supporting Mechanism:
 - Security relevant functionality which is part of a cryptographic protocol or of a security procedure

Security Supporting Mechanisms

- General mechanisms:
 - Key management: All aspects of the lifecycle of cryptographic keys
 - Random number generation: Generation of cryptographically secure random numbers
 - Event detection / security audit trail: Detection and recording of events that might be used in order to detect attacks or conditions that might be exploited by attacks
 - Intrusion detection: Analysis of recorded security data in order to detect successful intrusions or attacks
 - Notarization: Registration of data by a trusted third party that can confirm certain properties (content, creator, creation time) of the data later on
- Communication specific mechanisms:
 - Traffic Padding: Creation of bogus traffic in order to prevent traffic flow analysis
 - Routing Control: Influencing the routing of messages in a network

Course Overview (to be updated during the course)

- 2. Basics
 - 1. Symmetric cryptography
 - 2. Asymmetric cryptography
 - 3. Modification check values
 - 4. Random numbers for cryptographic protocols
- 3. Cryptographic protocols
- The IPSec architecture for the Internet Protocol
- 5. Security protocols of the transport layer

- 6. Link Layer Security (also Wireless LAN Security)
- 7. Middleboxes
- 8. System Vulnerabilities and Denial of Service Attacks
- 9. Intrusion Prevention, Detection and Response
- 10. Application Layer Security

Bibliography

- Main books:
 - [Bless05] R. Bless, S. Mink, E.-O. Blaß, M. Conrad, H.-J. Hof, K. Kutzner, M. Schöller: "Sichere Netzwerkkommunikation", Springer, 2005, ISBN: 3-540-21845-9
 - [Ferg03] Niels Ferguson, B. Schneier: "Practical Cryptography", Wiley, 1st edition, March 2003
 - [Sch03] G. Schäfer. Netzsicherheit Algorithmische Grundlagen und Protokolle. Soft cover, 422 pages, dpunkt.verlag, 2003.

 Additional references will be provided for each chapter depending on the topic.