
Chair for Network Architectures and Services
Department of Informatics
TU München – Prof. Carle

Network Security
Chapter 10

Application Layer Security

with friendly support by
P. Laskov, Ph.D.,

University of Tübingen

Network Security, WS 2010/11, Chapter 10 2

Application Layer Security

� 10.1: WWW Security

� 10.2: Web Service Security

� 10.1: WWW Security

� 10.2: Web Service Security

Network Security, WS 2010/11, Chapter 10 3

Recap: Internet Protocol Suite

� TCP/IP stack has no specific representation for OSI layers 5, 6, 7
(„session“, „representation“, „application“):
the Application Layer is responsible for all three

Application Layer

Transport Layer

Network Layer

Data Link Layer
Interface to physical media

Routing between networks

End-to-end connectivity between
processes (port concept)

Application protocols:
e. g. HTTP, SIP, Instant Messengers, …

Physical Layer

Network Security, WS 2010/11, Chapter 10 4

Why Application Layer Security?

� So far, we were concerned with layers below the application layer:
� Cryptography (mathematics)
� Link Layer security
� Crypto protocols: IPSec, SSL, Kerberos…
� Firewalls
� Intrusion Detection

� There are attacks where these defenses do not work:
� Cross-Site Scripting, Buffer Overflows, …

� Possible because
� These attacks are not detectable on lower layers

(Æ cf. WWW Security), or
� The mechanisms do not secure the correct communication end-points

(Æ cf. Web Service Security, next lecture)
� In general, many applications need to provide their own security

mechanisms
� E. g. authentication, authorization



Network Security, WS 2010/11, Chapter 10 5

Part I: Introduction to the WWW

� Part I: Introduction to the WWW and
Security Aspects

� Part II:  Internet Crime

� Part III:  Vulnerabilities and Attacks

� Part I: Introduction to the WWW and
Security Aspects

� Part II:  Internet Crime

� Part III:  Vulnerabilities and Attacks

Network Security, WS 2010/11, Chapter 10 6

Introduction to the World Wide Web

� You all know it – but what is it exactly?
� Conceived in 1989/90 by Tim Berners-Lee at CERN

� Hypermedia-based extension to the Internet on the
Application Layer
� Any information (chunk) or data item can be referenced by a

Uniform Resource Identifier (URI)
� URI syntax (defined in RFCs) : 

<scheme>://<authority><path>?<query>#<fragment>
� Special case: URL (“Locator”)

http://www.net.in.tum.de/de/startseite/
� Special case: URN (“Name”)

urn:oasis:names:specification:docbook:dtd:xml:4.1.2

� Probably the best-known application of the Internet
� Currently, most vulnerabilities are found in Web applications

Network Security, WS 2010/11, Chapter 10 7

HTML and Content Generation

� HTML is the lingua franca of the Web
� Content representation: structured hypertext documents
� HTML documents – i. e. Web pages – may include:

• JavaScript: script that is executed in browser
• Java Applets: Java program, executed by Java VM
• Flash: multimedia application, executed (played) by Flash player

� Today, much (if not most) content is created dynamically by
server-side programs
� (Fast-)CGI: interface between Web server and

such a server-side program
� Possible: include programs directly as modules in Web server

(e.g. Apache)
� Often, dynamic Web pages also interact with the user

� Examples: searches, input forms Æ think of online banking
� Examples of server-side technology/languages:

� PHP, Python, Perl, Ruby, …
� Java (several technologies), ASP.NET
� Possible, but rare: C++ based programs

Network Security, WS 2010/11, Chapter 10 8

HTTP

� HTTP is the carrier protocol for HTML
� Conceived to be state-less: server does not keep state information about 

connection to client
� Mostly simple GET/POST semantics (PUT is possible)
� HTML-specific encoding options

� OK for the beginnings – but the Web became the most important 
medium for all kinds of purposes (e. g. e-commerce, forums, etc.)
Æ today: real work flows implemented with HTTP/HTML
Æ need to keep state between different pages
Æ sessions



Network Security, WS 2010/11, Chapter 10 9

Sessions Over HTTP

� Sessions: many work-arounds around the state-less property
� Cookies: small text files that the server makes the browser store

• Client authenticates to server Æ receives cookie with a
“secret” value Æ use this value to keep the session alive (re-transmit)

� Session-IDs (passed in HTTP header)
� Parameters in URL
� Hidden variables in input forms (HTML-only solution)

� Session information is a valuable target
� E. g., online banking: credit card or account information

Network Security, WS 2010/11, Chapter 10 10

A Few More Aspects

� Cookies can be exploited to work against privacy
� User tracking: identify user and store information about browsing habits
� 3rd party cookies: cookies that are not downloaded from the site you are 

visiting, but from another one
• Can be used to track users across sites

� Cookies can be set without the user knowing
(there are reasonably safe standard settings)

� Security trade-off: many Web pages require cookies to work,
disabling them completely may not be an option

� Cookies may also contain confidential session information
� Attacker may try to get at such information (Æ Cross-Site Scripting)

Network Security, WS 2010/11, Chapter 10 11

A Few More Aspects

� Session IDs in the URL can also be a weakness
� Can be guessed or involuntarily compromised (e. g. sending a link)
Æ “session hijacking”

� GET command may encode parameters in the URL
� Can be a weakness:
� Some URLs are used to trigger an action, e.g.

http://www.example.org/update.php?insert=user
� Attacker can craft certain URLs (Æ Cross-Site Request Forgery)

Network Security, WS 2010/11, Chapter 10 12

HTTP Authentication

� HTTP Authentication
� Basic Authentication: not intended for security

• Server requests username + password
• Browser answers in plain text Æ relies on underlying SSL for security
• No logout! Browser keeps username and password in cache

� Digest Authentication: protects username + password
• Server also sends a nonce
• Browser reply is MD5 hash: md5(username,password,nonce)
• No mutual authentication – only client authentication
• More secure and avoids replay attacks, but MD5 is known

to have weaknesses
• SIP uses a similar method

� HTTP authentication often replaced with other methods
� Requires session management
� Complex task



Network Security, WS 2010/11, Chapter 10 13

JavaScript

� Script language that is executed on client-side (not only in browsers!)
� Originally developed by Netscape; today more or less a standard
� Object-oriented with C-like syntax, but multi-paradigm
� Allows dynamic content for the WWW Æ AJAX etc.
� Allows a Web site to execute programs in the browser

� The Web is less attractive without JavaScript – but anything that is 
downloaded and executed by a client may be a security risk

Network Security, WS 2010/11, Chapter 10 14

JavaScript

� Security Issues:
� Allows authors to write malicious code
� Allows cross-site attacks (we look at these a bit later in this lecture)

� Defenses:
� Sandboxing of JavaScript execution

• Difficult to implement
� Same-origin policy: script may only access other resources on the Web

if it comes from the same origin
� Same-origin policy can be violated with Cross-Site Scripting

Network Security, WS 2010/11, Chapter 10 15

Part II: Internet Crime

� Part I: Introduction to the WWW and
Security Aspects

� Part II:  Internet Crime

� Part III:  Vulnerabilities and Attacks

� Part I: Introduction to the WWW and
Security Aspects

� Part II:  Internet Crime

� Part III:  Vulnerabilities and Attacks

Network Security, WS 2010/11, Chapter 10 16

Vulnerabilities: some numbers

� 3,462 vs 2,029 web/non-web application vulnerabilities were 
discovered by Symantec in 2008

� Average exposure time: 60 days
� 12,885 site-specific XSS vulnerabilities submitted to XSSed

in 2008 alone
� Only 3% of site-specific vulnerabilities were fixed by the end of 2008

� The bad guys are not some hackers who “want to know how it works”
� These days, it’s a business!
� “Symantec Underground Economy Report 2008”:

“Moreover, considerable evidence exists that organized crime is 
involved in many cases …“
[ed.: referring to cooperation between groups]



Network Security, WS 2010/11, Chapter 10 17

From the Symantec Report 2008 (1/4)

Network Security, WS 2010/11, Chapter 10 18

From the Symantec Report 2008 (2/4)

Network Security, WS 2010/11, Chapter 10 19

From the Symantec Report 2008 (3/4)

Network Security, WS 2010/11, Chapter 10 20

From the Symantec Report 2008 (4/4)



Network Security, WS 2010/11, Chapter 10 21

Part III: Vulnerabilities and Attacks

� Part I: Introduction to the WWW and
Security Aspects

� Part II:  Internet Crime

� Part III:  Vulnerabilities and Attacks

� Part I: Introduction to the WWW and
Security Aspects

� Part II:  Internet Crime

� Part III:  Vulnerabilities and Attacks

Network Security, WS 2010/11, Chapter 10 22

Comparison: two classic vulnerabilities

Source: MITRE CVE trends

Network Security, WS 2010/11, Chapter 10 23

Classification of Attacks (incomplete)

� Web Server:
C++, Java

� Script languages

� C++ (e. g. Firefox)
� XULRunner
� Java

Common 
implementation 
languages

� Defacement
� Loss of private data
� Loss of corporate 

secrets

� Malware installation
� Computer

manipulation
� Loss of private data

Result of attack

� Cross-Site scripting
� Code Injection
� SQL Injection
� (DoS and the like)

� Drive-by downloads
� Buffer overflows

Common attack 
types

Server-sideClient-side

Network Security, WS 2010/11, Chapter 10 24

One Step Back: why is the WWW so vulnerable?

� Many important business transactions take place
� Much functionality, much complexity in software
Æ many attack vectors, huge attack surface

� Even though we may implement protocols like TCP/IP really well, any (Web) 
application that interacts with the outside world must be open by definition and 
reachable even across a firewall



Network Security, WS 2010/11, Chapter 10 25

Application (Browser)

Informal Definition: Contexts

� Context (in general): collection of information that belongs to a particular session or process
� Useful abstraction that helps us to classify the target of an attack
� Here: not a formal definition, nor a model of actual implementation

� User Context (in a browser):
� Collection of all information that “belongs” to a given session
� Cookies, session state variables, plugin-specific information…
� JavaScripts: downloaded and executed Æ obey same-origin policy!
� Information from session A should not be accessible from Session B
� Client and server must remain synchronized w.r.t. state information

User Context A User Context B User Context C

Cookies

Scripts

Plugin info

Etc…

Cookies

Scripts

Plugin info

Etc…

Cookies

Scripts

Plugin info

Etc…

Network Security, WS 2010/11, Chapter 10 26

Attack 1: Session Variables

� Target of attack:
Synchronization of state information between client and server
(in other words: the session management is attacked)

� Typical scenario:
Exchange between client and server that takes
several steps to complete

� Typical approach of attack:
Swap state information during one step

� Cause of vulnerability:
Server (or client) relies on information sent by the other party
instead of storing it itself

� Best explained by example. Here:
Server: a CA that can issue X.509 certificates
Client: a Web browser that wants to acquire such a certificate

Network Security, WS 2010/11, Chapter 10 27

Attack 1: How the Work-Flow Should Be

A: Request cert for domain xyz.de

2) Background:
Ownership verification

State:

AÆCA

xyz.de

Offer 
for 
xyz.de 
by CA

Has 
cert

State:

AÆCA

xyz.de

A owns 
xyz.de

(A pays
for 
xyz.de)

CA: Offer cert for domain xyz.de

A: Acknowledge request: cert for domain xyz.de

CA: Issue cert for domain xyz.de

Question: where do you keep the session information?
If your answer is “in the cookie”: serious mistake.

In fact, the CA must NOT trust information by the browser. We show you why now.

Browser = client CA = server

Network Security, WS 2010/11, Chapter 10 28

Attack 1:
How to Attack the Synchronization of State Information

A: Request cert for domain xyz.de

2) Background:
Ownership verification

State:

AÆCA

xyz.de

Offer 
for 
xyz.de 
by CA

Has 
cert!!!

State:

AÆCA

xyz.de

A owns 
xyz.de

(A pays
for 
xyz.de)

CA: Offer cert for domain xyz.de

A: Acknowledge request: cert for domain mozilla.com

CA: Issue cert for domain 
mozilla.com

Browser = client CA = server

Swap variables on the fly

In this example, all state information is stored on client-side and retransmitted in 
each step (e. g. by reading from a cookie). The server does not store state.



Network Security, WS 2010/11, Chapter 10 29

Why Was the Attack Possible?

� In our example, all state information was kept on client-side in a cookie
� All the attacker did was to swap mozilla.com for xyz.de in the

second HTTP request
� The server issued a cert for the wrong domain because it failed to notice that 

the domain name in the first request was not the same as the name in the 
second request.

� That was possible because the relevant information was not stored
on server-side

� Do you think this is too easy and will not happen “in the real world”?
� In fact, something like this may have happened in the

beginning of 2009 to a CA that is included in Firefox’s root store.
� Background info:

• The attack did not succeed – because there was a second line of defense:
all “high-value” domain names are double-checked by human personnel.

� The CA publicly acknowledged there was an intrusion.
• The CA described an attack pattern that hinted at what we have just seen.
• The CA contacted the attacker – it was a White Hat

Network Security, WS 2010/11, Chapter 10 30

Defense / Mitigation

� Guideline 1: For each entity in the protocol:
� Everything that is relevant for the correct outcome must be stored locally
� It can be difficult to identify this information if you have

complex work-flows…
� Guideline 2: All Input Is Evil

� Always treat all input as untrusted
� Never use it without verification

� Nota bene: what if the server uses Javascript/Java to “force” browser 
to behave correctly? Æ just use a HTTP proxy Æ NOT a defense!

� This was just a simple attack because an entity failed to obey these
rules.

� In particular, Guideline 1 was violated.
� However, in the following, we show you that attacks are possible even 

if state is stored correctly and only Guideline 2 is violated.

Network Security, WS 2010/11, Chapter 10 31

Cross-Site Scripting (XSS)

� Target of attack:
Attempt to access user context from outside the session
Goal is to obtain confidential information from the user context

� Typical scenario:
User surfing the Web and accessing a Web site
while having (Java)script enabled

� Typical approach to attack:
Attacker plants a malicious script on a Web page;
the script is then executed by the user’s browser

� Cause of vulnerability: two-fold
1) Attacker is able to plant malicious script on a Web page
Æ flaw in Web software needed
2) User browser executes script from a Web page
Æ user’s “trust” in Web site is exploited

� XSS is one of the most common attacks today

Network Security, WS 2010/11, Chapter 10 32

Cross-Site Scripting: Typical Attack

� Stage 1: Attacker injects malicious script
� Here: in a Web forum where you can

post messages
� In addition to normal text, the attacker writes:

<script>[malicious function]</script>
� The server accepts and stores this input

� Stage 2: Unaware user accesses Web forum
� Here: reads poisoned message from attacker
� User receives:

<p>Hello, this is a harmless message
<script>[malicious function]</script> 
</p>

� Everything within <script> is executed by 
browser in the user’s context

� Possible Consequences:
� Script reads information from cookies etc.

and sends it to attacker’s server
� Script redirects to other site
Æ download trojan etc.

.js



Network Security, WS 2010/11, Chapter 10 33

Cross-Site Scripting: Why Does it Work?

� Why was the attack possible?
� Reason 1: The Web application did not sanitize input it received

� Remember: all input is evil; and the attacker can choose his input
� If the Web app had just dropped all HTML input, there would be no script uploaded 
Æ and none executed in the browser

� Unfortunately, many Web sites allow users to post at least some HTML
Æ a nice feature, but dangerous

� Reason 2:
The user had trusted the Web site and did not assume
malicious content could be downloaded and executed
Æ abuse of trust

� Nota bene: none of the mechanisms you know so far is a defense!
� Crypto protocols: encrypting/signing does not help here
� Firewalls: work on TCP/IP level
� XSS is a particularly useful example to show why there is a need

for application layer security

Network Security, WS 2010/11, Chapter 10 34

Cross-Site Request Forgery

� Target of attack:
User-Server context: session of client A with a server B

� Typical scenario:
Authenticated user on a Web page on B which is OK and trusted;
then the user surfs to server M which is malicious

� Typical approach to attack:
� Attacker knows that user is logged in
Æ crafts a URL to server B that executes an action

� Attacker causes victim to call that URL
� Cause of vulnerability:

� Attacker URL is called by user; within his user context
Æ abuse of server’s trust into requests from 

� Browser cannot recognise that request to the URL is malicious
Æ it seems to be in the correct context
Æ instance of “Confused Deputy” problem (browser is deputy):

authority of deputy (login to B) is abused

Network Security, WS 2010/11, Chapter 10 35

Cross-Site Request Forgery

� Stage 1: user logs into Web site
� Authenticated user
� Session with server B
� User keeps this session open

� Stage 2: attacker tricks user to surf
to his own site, server M. Methods:
� Phishing
� XSS

� Stage 3: user surfs to malicious server M
� In the HTML he receives, a malicious

link is embedded
<p>harmless text</p>
<img
src=“https://www.serverb.com/
myApp?cmd=sell&item=f450&
price=1eur” />
<p>more harmless text</p>

Server B

Server M

Æ undesired action executed

Network Security, WS 2010/11, Chapter 10 36

SQL Injection

� Target of attack:
Server context

� Typical scenario:
Web server runs with an SQL database in the background;
attacker wants to extract or inject information to/from the database

� Typical approach to attack:
Attacker writes SQL code into an input form, which is then passed to 
the SQL database; evaluated and output returned

� Cause of vulnerability:
Web server does not sanitize the input and accepts SQL code

� SQL Injection is a real classic attack



Network Security, WS 2010/11, Chapter 10 37

SQL Injection

� Attacker injects SQL into search form:

� The author of the Web page may have intended to execute:
SELECT author,book FROM books WHERE book = ‘$title’;

� Through the SQL injection, this has become something like:
SELECT author,book FROM books
WHERE book = ‘’; SELECT * FROM CUSTOMERS; DROP TABLE 
books;

� You just lost your catalogue and compromised your customers data
� Amazon, of course, is too clever not too sanitize their input – but it is 

amazing how many other Web sites fail to do so!

Network Security, WS 2010/11, Chapter 10 38

Sanitize or Be Sorry

Network Security, WS 2010/11, Chapter 10 39

Defenses For XSS, XSRF, SQL Injection

� Some options on client-side against XSS/XSRF:
� JavaScript is often a must for many “good” Web pages
Æ turning it off is not an option
Æ better sandboxing? Æ very complex

� Turning on some security settings can provide some security
Æ unfortunately, these are often not activated by default

� Better protection can be achieved on server-side:
� Treat all input as untrusted
� Sanitize your input and output: proper escaping

• Escape (certain) HTML tags and JavaScript
• Exceedingly difficult and complex task!
• Whitelisting is better than blacklisting – the black list may grow

� Do not write your own escaping routines
� Modern script languages offer this functionality

Network Security, WS 2010/11, Chapter 10 40

Buffer Overflows

� Target of attack:
Running process on a server (process has a context!)

� Typical scenario:
An application that is accessible on the Internet and
has a certain built-in flaw
Vulnerable C(++)-based application on the Internet

� Typical approach to attack:
� Attacker sends byte stream to vulnerable application;

either causing it to crash or to execute attacker code in the
process context of the application

� Cause of vulnerability: two-fold
� Buffer overflow in application Æ serious programming mistake

(root cause: von Neumann machine)
� Application does not check its input



Network Security, WS 2010/11, Chapter 10 41

Buffer Overflows

� von Neumann machine:
program and data share memory

� Applies to all kinds of software
� Memory segments:

� .text – program code
� .data – initialized static data
� .bss – unitialized static data
� heap – dynamically allocated memory
� stack – program call stack

� The vulnerability is in the code:
� Programmer creates buffer on the stack and does not 

check its size when writing to it
char* buffer; readFromInput(buffer);

� Exploit:
� Because of the way the stack is handled, you can 

overwrite the return address

Network Security, WS 2010/11, Chapter 10 42

Buffer Overflows

� Stack is composed of frames
� Frames are pushed on the stack

during function invocation, and
popped back after returning

� Each frame comprises
� functions arguments
� return address
� frame pointer: the address of the

start of the previous frame
� local variables

� Without proper bound checking, a buffer content 
can overspill into adjacent area

� Attacker:
� Find out the offset to the return address
� Write data to the buffer: overwrite return address,

add your own code
� Application continues to run from the new address, 

executing the new code
� Essentially, you take over the control flow

Network Security, WS 2010/11, Chapter 10 43

Simple Code Example

#include <stdio.h>
#include <string.h>
int vulnerable(char* param)
{

char buffer[100];
strcpy(buffer, param);

}

int main(int argc, char* argv[] )
{

vulnerable(argv[1]);
printf(“Everything's fine\n”);

}

(from [ISec2010])

Network Security, WS 2010/11, Chapter 10 44

Buffer Overflows

� Buffer overflows are mostly a problem for applications written in 
languages with direct control over memory (like C++)

� These are becoming less frequent on Web servers, and checks have
become better: correspondingly, we observe a switch to other attacks

� Mitigation of this kind of exploit:
� Data execution protection:

mark certain areas in memory as non-executable
� Address space layout randomization: choose stack memory

allocation at random (“hardened kernels” do this)
Æ Support by operating system helps

� Canaries: preceed the return value with a special value:
before following the return value, check if is still the same

� Be careful when writing in C/C++ etc. and/or do not
trade (perceived) speed-ups for clean code



Network Security, WS 2010/11, Chapter 10 45

Summary

� Web applications have a natural attack surface:
they must accept input from outside

� Very complex interactions between protocols, client+server:
� Difficult to find all weaknesses in advance
� In part due to the many mechanisms for session management

� Typical attacks:
� Cross-Site Scripting (XSS): violation of user context, abuse of user trust
� Cross-Site Request Forgery: confused deputy
� SQL injection
� Buffer overflows

� Defenses:
� Most important defense is to sanitize and validate input data
� All input is evil
� Also, be aware of your {user,server,process} contexts
� Conventional defenses like cryptography or firewalls are no protection

Network Security, WS 2010/11, Chapter 10 46

Application Layer Security

� 10.1: WWW Security

� 10.2: Web Service Security

� 10.1: WWW Security

� 10.2: Web Service Security

Network Security, WS 2010/11, Chapter 10 47

Part I: Introduction to Web Services

� Part I: Introduction to
XML and Web Services

� Part II:  Securing Web Services

� Part III:  Identity Federation

� Part I: Introduction to
XML and Web Services

� Part II:  Securing Web Services

� Part III:  Identity Federation

Network Security, WS 2010/11, Chapter 10 48

Recap: Internet Protocol Suite

� TCP/IP stack has no specific representation for OSI layers 5, 6, 7
(„session“, „representation“, „application“):
the Application Layer is responsible for all three

Application Layer

Transport Layer

Network Layer

Data Link Layer
Interface to physical media

Routing between networks

End-to-end connectivity between
processes (port concept)

Application protocols:
e. g. HTTP, SIP, Web Services

Physical Layer



Network Security, WS 2010/11, Chapter 10 49

Web Services: loose definition

� No consensus on a precise definition “in the community”
� Loose definition: a collection of technologies that employ HTTP technology and 

enable application interoperation over the Internet.
� Examples:

� Web APIs (e. g. Google Maps, …)
Æ often used for mashups: Web application
that combines data from different sources

� XML-driven Web Services using a variety of XML-based
protocols like SAML, WSDL, UDDI
Æ often used for Service-Oriented Architectures

� RESTful services (recent development, out of scope)

� The distinguishing trademarks seem to be:
� Use of HTTP
� Application interoperation – not human users

Network Security, WS 2010/11, Chapter 10 50

Web Services: Contributors

� We will mostly (but not exclusively) focus on the latter:
XML-driven technologies.

� These technologies have been defined in a (large) number of
standards and by several committees

� Standardization Committees:
� OASIS: Organization for the Advancement of Structured Information Standards

• Large number of members of different membership classes,
including many global players like IBM, Microsoft, SUN

• Responsible for, e.g., many WS-* standards, SAML, UDDI
• Offers an Identity Federation standard

� W3C: World Wide Web Consortium
• Defines WWW standards: “W3C Recommendations”
• Responsible for, e.g., HTML, XML, XSL-*, SOAP, WSDL

� Liberty Alliance
• Offers an Identity Federation Standard

� Many standards were first developed by companies and then brought to the attention 
of a standardization committee.

Network Security, WS 2010/11, Chapter 10 51

Recap: XML

� XML = Extensible Markup Language
� A generic “meta-language”, designed as a set of syntax rules to encode documents. Ideas:

� Separate document content from its representation
� Machine-readable, but accessible for humans
� XML is practically a subset of SGML (Standard Generalized Markup Language) from the 1980s

� Representation rules are stored in different documents
Æ allows to define different representations for all kinds of output formats (HTML browsers, PDF, 
audio…)

� XML is used to define many markup languages you know:
� HTML Æ called XHTML
� XSL-T: transformation into other (markup) languages
� XML Schema: used to define a markup language (!)

� Many related standards:
� XPath: access parts of documents
� XSL-FO: representation for a rendering device, e.g. PDF renderer

(ironically, defined in prose: XML Schema is not powerful enough…)

� XML is used in the definition of practically all Web Services Standards!
� E.g. SOAP, WSDL

Network Security, WS 2010/11, Chapter 10 52

Example: XML Fragment

� XML documents can be highly complex:
� Tree structured
� Can be deeply nested
� White spaces etc. have no semantics Æ only structure counts

� This makes parsing XML computationally very intensive
� Example (a kind of policy document that we wrote once):

<accessControl>
<policy id="0">

<requirement>
<dataItem name="CERTIFICATE_VERIFICATION" />

</requirement>
<control>

<action id="VERIFY_CERT" retType="BOOL"/>
<argument position="4" type="LIST">

<item>7831fd24756d1c645843c9016c6bae2d20f476bc</item>
<item>ff3fa9d8c509b254c3fa185bd4b85b3c9eb84a3d</item>
<item>6dbd654eae4bd8b8a1151d8b4b5d197a275efdf3</item>

</argument>
</control>
<nextStateOnPositiveEvaluation id="1"/>
<nextStateOnNegativeEvaluation id="NACK"/>

</policy>
</accessControl>

Important concepts:
• Element ordering

does not matter!
• White spaces do not

matter!



Network Security, WS 2010/11, Chapter 10 53

Web Services as a Middleware

� In many respects, Web Services are similar to Remote Procedure Calls (RPC)
� Used like a local function:

• Parameter marshalling
• Call to remote process with parameters
• result is returned by remote process

� Middleware can abstract over the particularities of the communication over the network
� Loose coupling (asynchronous)
� Web Services are generally more complex than a simple RPC
� But there is also a standard for RPC: XML-RPC ☺

� Web Services are realized with with HTTP and XML

Local process Remote process

RPC stub RPC stub

Simplified RPC example

Network Security, WS 2010/11, Chapter 10 54

Web Services as a Middleware

� Why HTTP?
� Because HTTP technology is around, well-supported

and well-accepted Æ easy to win support
� But state-less property is not in favour of HTTP

as Web Services realize complex work flows
� Why XML?

� Already well-accepted: easy to win support from vendors
� XML is often already a company-internal format: no conversion necessary
� Easy to define your own, domain-specific language (e. g. B2B)
� Relatively easy to define service composition and orchestration

� Why not XML?
� Parsing very slow
� White spaces and element ordering: have impact

on encryption and signing
� On the whole, the advantages of HTTP/XML outweighed the drawbacks

ÆWeb Services are, after all, a very industry-relevant concept

Network Security, WS 2010/11, Chapter 10 55

Original Vision of Web Services

� Building blocks: a classic architecture
� Service description

WSDL: Web Services Description Language
� Service discovery: via a registry

(possibly UDDI = Universal Description, Discovery and Integration)
� Interaction: carrier protocol: SOAP

(SOAP used to be an acronym, now it’s just a name)

1 ) uploads service
description

2) search for
service

4) return service
locator

3) service lookup

WSDL
SOAP

WSDL
SOAP

5) access Web Service

SOAP

Requestor Provider

Registry

Network Security, WS 2010/11, Chapter 10 56

More Web Services Visions

� Service composition:
� A service is composed of many sub-services,

all defined in WSDL
� Business-process orchestration:

� Model business processes with Web Services
� WS-BPEL: Business Process Execution Language

� Service-Oriented Architecture:
� Paradigm of software architecture
� Realize functionality as a composition of services
� Can be done with Web Services (other frameworks possible)

� We will not go into more detail here
� The idea you should get is: Web Services can be very complex
� Complexity means attack surface and room for mistakes

… especially if:
� Self-designed interactions are possible
� Self-designed security mechanisms are possible



Network Security, WS 2010/11, Chapter 10 57

Web Services: Our Focus

� There are a large number of Web Service standards
� Many complement each other, some are competitors

� Just browse oasis-open.org
� We will mostly discuss:

� SOAP + XML Encryption + XML Signature
� SAML: Security Assertion Markup Language
� Identity Federation standards

� It is almost impossible to discuss all aspects of Web Services and their 
security
� There are whole lectures just on this topic (use Google)

� “The nice thing about standards is that there are so many to choose from. And if you 
really don't like all the standards you just have to wait another year until the one 
arises you are looking for.”

- A. Tanenbaum

Network Security, WS 2010/11, Chapter 10 58

Part II: Securing Web Services

� Part I: Introduction to
XML and Web Services

� Part II:  Securing Web Services

� Part III:  Identity Federation

� Part I: Introduction to
XML and Web Services

� Part II:  Securing Web Services

� Part III:  Identity Federation

Network Security, WS 2010/11, Chapter 10 59

Securing Web Services

� Security Challenges
� Securing Identities
� Securing Messages

(Web Service communication is always message-based)
� Securing multi-hop message flows

• In particular important for Service Oriented Architectures

� Web Service security and other protocols are not mutually exclusive:
� You can use SSL to create a secure pipe between hosts
� Interoperate well with, e. g.

• X.509 certificates (if you have a PKI)
• Kerberos tokens

� Question: why not just use SSL?
� SSL secures an underlying TCP/IP connection (“bit pipe”)

Æ SSL is point-to-point between hosts
� The identity of a Web Service is not the identity of the bit pipe:

different end-point (service, not host)
� SSL is no help in multi-hop scenarios

Network Security, WS 2010/11, Chapter 10 60

Securing Web Services

� Web Service documents may be business-relevant:
may need legally binding signatures
Æ SSL would secure the wrong endpoint
Æ Same reason why you encrypt e-mails:

the endpoint is not the host, but the (human) user

� Web Service documents may pass intermediaries
(e. g. SOA, service orchestration):
these may inspect & change documents en route

Æ SSL provides only end-to-end semantics
Æ Need for cryptographics mechanisms that allow such modifications

Requestor Intermediate Service

Web Service security mechanisms: end-points are services

SSL SSL

TCP/IP

SOAP (addressing)

HTTP

Web Service



Network Security, WS 2010/11, Chapter 10 61

Security-relevant Standards

� A number of standards address security for Web Services
� XML Encryption (XML-Enc, W3C)

� Defines how to encrypt XML content
� XML Digital Signature (XML DSig, W3C)

� Defines how to sign XML content
� WS-Security (OASIS):

� Describes how to use XML Encryption and XML Digital Signature to secure SOAP 
messages

� SAML: Security Assertion Markup Language (OASIS)
� Describes how to create and exchange authentication and authorization tokens 

(“assertion”)
� Designed for interaction between an Identity Provider and an Service Provider
� Uses XML-Enc and XML Dsig

� We will first look at XML Dsig

Network Security, WS 2010/11, Chapter 10 62

XML Signature (XML DSig)

� Idea: sign an XML document
� Stated goals:

� Message Integrity
� Origin Authenticity (sender)
� Non-repudiation

• This is remarkable as meaningful non-repudiation needs secure time-stamping

� Supports the usual cryptographic mechanisms:
� HMACs (shared key cryptography)
� Signatures with public-key cryptography

� An XML signature is an XML fragment itself
� However, the signature mechanism has been modified to work with XML’s 

pecularities

Network Security, WS 2010/11, Chapter 10 63

XML Signature

� Designed to:
� Sign anything that can be referenced by a URI
� Even if the URI points to a location outside of

the XML document (!)
� Thus, can be applied to a part of the document or the whole document, or also some 

external document
� Multiple signatures on a document are allowed

(business uses, multi-party agreement etc.)
� Pitfalls: because you sign XML, you need to take care of:

� White spaces (tabs vs. spaces)
� Line endings (Windows world vs. UNIX world…)
� Character-set encoding (UTF-8? ISO-8859-1?)
� Escape sequences
� etc.

� XML Signature thus needs to canonicalize the document
prior to signing

Network Security, WS 2010/11, Chapter 10 64

Canonicalization (C14N) rules

� Steps to take:
� Encode in UTF-8
� Normalize line breaks
� Normalize attribute values
� Replace character and parsed entities
� Replace CDATA sections
� Remove XML declaration and DTD definition
� Normalize <element /> to <element></element>
� Normalize whitespaces outside the document and outside elements
� But retain it within character content
� Set attribute value delimiters to double quotes
� Replace special characters in attribute values and character content with character references
� Remove superfluous namespace declarations
� Add default attributes to each element
� Order lexicographically on namespace declarations and attributes of each element

� Question: how fast, do you think, did programmers come up with interoperable implementations? 
(it took a while)



Network Security, WS 2010/11, Chapter 10 65

Transformations

� XML DSig allows to apply five different types of transformations when 
signing
� Base64 (not a concern)
� XPath Filtering (selection of elements)
� Enveloped Signature transform (Æ type of signature)
� XSL-T transform (Æ change document tree)
� Canonicalization

� The transformations are referenced from within the signature
� They need to be reversed before the signature

can be validated

Network Security, WS 2010/11, Chapter 10 66

Three Kinds of Signature

� Enveloping signature
� <signature> element wraps around 

whole document
� Signature is stored and referenced inside 

the document
� Enveloped signature

� <somexml> element wraps around 
document

� Signature stored inside the document, but 
reference points to <somexml> (parent 
element)

� Detached signature
� Reference points to element outside the 

<signature> element’s hierarchy
� Can be inside the XML document, or 

outside

<signature>

signed

<reference>

<somexml>

<signature>
<reference>

XML doc

signed

<signature>

<reference>

External file <reference>

Network Security, WS 2010/11, Chapter 10 67

Code Example

� Simplified enveloping signature (not a correct document)

<Signature xmlns=http://www.w3.org/2000/09/xmldsig#>
<SignedInfo>

<CanonicalizationMethodAlgorithm=http://www.w3.org/TR/2000...” />
<SignatureMethod Algorithm=http://www.w3.org...” />
<Reference URI=“#important”>

<DigestMethod Algorithm=http://www.w3.org/...” />
<DigestValue>60nvZ+TB7...</DigestValue>

</Reference>
</SignedInfo>
<SignatureValue>ae5fb6fc3e…</SignatureValue>

<KeyInfo>FAE6C...
<KeyValue>

<RSAKeyValue>
<Modulus>uCiu...</Modulus>

</RSAKeyValue>
</KeyValue>

</KeyInfo>
[...]

<Object>
<SignedItem id=“important”>Secret stuff</SignedItem>

</Object>
</Signature>

Network Security, WS 2010/11, Chapter 10 68

Discussion of XML Signature

� Performance:
� Signed documents become very large
� Parsing, canonicalization and transformation are slow
� Inclusion of external documents allows to design malicious documents that keep 

referencing more documents (DoS on the parser)
� Complexity:

� Three different kinds of signature
� Five kinds of transformations that can be applied before signing
� Complex canonicalisation rules
� Nonsensical possibilities to signed data and signatures are not explicitly forbidden: 

signature before signed data etc.
� Makes analysis of the standard very difficult

� Correct and comprehensive implementation is difficult
Æ interoperability is easily threatened



Network Security, WS 2010/11, Chapter 10 69

Discussion of XML Signature

� If applied in a sane manner, the standard does provide security
� But you need to be very careful what transformations etc. you allow
� If you want to preserve all XML features, you probably need such a complex 

mechanism
Æ XML Signature is often called a semantic signatures, because it does not just read 
in the whole document and sign that

� It should be noted that other mechanisms for signatures have been developed:
� XML-RSig: Really Simple XML Signature:

“read the BLOB and sign it”
� XMPP (Jabber): MIME body parts Æ easier

� Complex overhead is a trade-off usefulness vs. feasibility

Network Security, WS 2010/11, Chapter 10 70

Some opinions on XML Signature

� XML Signature has drawn both praise and severe
criticism for its flexibility

� Some quotes:
� “XML Digital Signature is the latest and greatest technology for you to ensure 

integrity and non-repudiation. Its remarkable flexibility allows you to sign parts or 
all of XML documents as well as binary and remote objects.”

- J. Rosenberg, D. Remy in [RoRe2004]

� “They reinvented the wheel in XML, but made it square to avoid accusations that 
they'd just reinvented the wheel.”

� “Secure XML, the definitive reference on the topic, spends fully half of its 500-odd 
pages trying to come to grips with XML and its canonicalisation problems.”

- P. Gutmann, University of Auckland [Gu2004]

Network Security, WS 2010/11, Chapter 10 71

XML Encryption (XML-Enc)

� Idea: encrypt XML content
� Goal: Confidentiality
� Just like XML Digital Signature, XML-Enc is agnostic to crypto algorithms

� You can use it with, e. g.
• Shared-key cryptography (3DES, AES, …)
• Public-key cryptography (RSA, …)

� Usual pattern with public-key cryptography:
• Generate a symmetric key K
• Encrypt only K with public key
• Use K to encrypt the real content

� XML Encryption shares many features with XML Signature

Network Security, WS 2010/11, Chapter 10 72

XML Encryption

� Uses <EncryptedData> element
� Either points to encrypted content
� Or replaces unencrypted content

(if content is within same document)
� XML-Enc and XML DSig are designed to be used together



Network Security, WS 2010/11, Chapter 10 73

Code Example

� Simplified again

<MyDoc>
<EncryptedData Id=“encdata” xmlns=“http://…”>
<EncryptionMethod Algorithm=http://... /”>
<CipherData>

<CipherValue>…</CipherValue>
</CipherData>
<EncryptionProperties>

<EncryptionProperty Target=“encdata”>
<EncryptionDate>2010-01-01</EncryptionDate>

</EncryptionProperty>
<Object id=“encdata”>...</Object>
<Signature>

…
</Signature>

</MyDoc>

Network Security, WS 2010/11, Chapter 10 74

Towards a Web Services “Stack”

� TCP/IP stack has no specific representation for OSI layers 5, 6, 7
(„session“, „representation“, „application“):
the Application Layer is responsible for all three

HTTP

Transport Layer

Network Layer

Data Link Layer
Interface to physical media

Routing between networks

End-to-end connectivity between
processes (port concept)

Application Layer

Physical Layer

SOAP

Web Services
Protocols

„Transport Layer“ for Web Services

Message Exchange between
Web Services; SAML; …

Network Security, WS 2010/11, Chapter 10 75

Use Cases For XML DSig/XML Encryption

� You know XML Digital Signature and XML Encrytion now
� These standards form the foundation of many Web Service security protocols:

� SOAP
� WS-Security
� SAML
� WS-Federation
� ID-FF (Identity Federation by Liberty Alliance)
� …

Network Security, WS 2010/11, Chapter 10 76

A Closer Look At SOAP

� Defines how to send structured XML over a network
� Follows paradigm of state-less, one-way messages
� But applications can create complex communication patterns from this by supplying 

additional application-specific information
� Thus, SOAP is agnostic to what it conveys
� Used as a foundation layer for Web Service protocols

� Simple message format:

Envelope

Header

Body

<soap:Envelope xmlns:soap="http://...">
<soap:Header>

<app-specific:requestor id=“…” />
</soap:Header>

<soap:Body>
<app-specific:request item=“…” />

</soap:Body>

</soap:Envelope>



Network Security, WS 2010/11, Chapter 10 77

SOAP

� SOAP defines bindings: important specifications how to use SOAP with underlying protocols
� HTTP + (SSL +) TCP
� SMTP

� Some criticism:
� May lead to abuse of HTTP semantics
� Firewalls are often configured to accept HTTP Æ must now inspect

XML content Æ increases attack surface
� However, HTTP is a core element in Web Services anyway

� Information in SOAP can be cryptographically secured with
XML Signature and Encryption

� However, there are many ways to get this wrong!
Æ self-designed crypto protocols are often flawed

Network Security, WS 2010/11, Chapter 10 78

Security Issues To Think About

� Web Services are a valuable target for attackers
Æ business-relevant data = money

� We have seen that XML Signature and XML Encryption can provide security, but 
at the price of high complexity

� Designing a crypto protocol and protocol handlers must thus be done with extra 
great care here
� Simple example: first verify that the signature is from a known key, then do the 

signature check
� Otherwise, you leave yourself open to complexity or DoS attacks

� Some further attacks to think of:
� SQL injection
� XPath and XQuery injection
� Complexity and DoS attacks on parsers
� More are listed on owasp.org

Network Security, WS 2010/11, Chapter 10 79

Example of Parser DoS: Entity Expansion

� The following may expand to 2 GB when parsed
(note: we did not try it; it probably depends on the parser)

Source: [iSec2010]

Network Security, WS 2010/11, Chapter 10 80

Securing SOAP: WS-Security

� Framework that defines how XML Signature and XML Encryption can be employed safely for 
SOAP and XML-based application protocols

� WS-Security does not define new mechanisms
Æ “standardizing the standards”

� Some WS-Security Features:
� Signatures with XML Signature (sane methods)
� Encryption with XML Encryption (sane methods)
� Transports Security Tokens:

• X.509 certificates
• Kerberos Tokens
• SAML Tokens (more about SAML shortly)
• Passwords
• Password digests

� Timestamps
� Also describes alternatives for use cases where only host-to-host security is required: simpler, 

uses SSL/TLS



Network Security, WS 2010/11, Chapter 10 81

WS-I BSP

� WS-Interoperability Basic Security Profile
� A standard by the Web Services Interoperability Organization
� Defines comprehensively how to use the mechanisms in Web Services security safely

� Intent is clarificationÆ improve ease of use
� Some remarkable points:

� Prohibits the use of some protocols with flaws, like older SSL versions (SSL 2.0 
disallowed!)

� Defines ciphersuites to use
� Restrictions on SOAP envelope, header and processing
� Enveloping XML Signature disallowed, enveloped signature discouraged Æ emphasis 

on detached signature!
� Rules for transforms
� Rules to facilitate encryption processing

Network Security, WS 2010/11, Chapter 10 82

Security Assertion Markup Language (SAML)

� Motivation for SAML:
� Web Services may cross organisational boundaries

Æ need for authentication and authorization for access control
Æ convey “security attributes” between organisations

� Portable (shared) “identities” with attributes between organisations
� SAML works with assertions. We speak of:

� Subject: an entity that is asserting its identity
� Assertion: a claim about a subject that must be proved

� SAML can be used to exchange assertions between organisations
� SAML consists of three parts:

� Assertions
� Protocol: XML schema and request/response protocol
� Bindings: e. g. to SOAP/HTTP

� So-called SAML Profiles specify use patterns for SAML, i.e. how
assertions are embedded, extracted and processed
� E. g. a profile for use with Web Browsers

Network Security, WS 2010/11, Chapter 10 83

SAML Assertions

� Three types of assertions:
� Authentication: states that an authority has authenticated the subject of the assertion
� Authorization:  states that an authority has granted or denied access to the subject of the assertion
� Attributes: qualifying information about an authentication or authorization

� Some elements that are common to all assertions:
� Issuer
� Timestamp
� Subject
� Conditions on assertion (e. g. “not valid after…”)
� Intended audience
� Signatures

Network Security, WS 2010/11, Chapter 10 84

Example: SAML Authentication Response
<samlp:Response xmlns:samlp="urn:..." InResponseTo=“...” Version="2.0" IssueInstant="2007-12-10T11:39:48Z" Destination=“...">

<saml:Issuer>the-issuer</saml:Issuer>
<samlp:Status xmlns:samlp=“...">

<samlp:StatusCode xmlns:samlp=“..." Value="urn:oasis:names:tc:SAML:2.0:status:Success“ />
</samlp:Status>
<saml:Assertion xmlns:saml="urn:..." Version="2.0" ID=“..." IssueInstant="2007-12-10T11:39:48Z">

<saml:Issuer>the-issuer</saml:Issuer>
<Signature xmlns=“...">
...

</Signature>
<saml:Subject>

<saml:NameID>...</saml:NameID>
<saml:SubjectConfirmation Method=“...">

<saml:SubjectConfirmationData>...</saml:SubjectConfirmationData>
</saml:SubjectConfirmation>

</saml:Subject>
<saml:Conditions NotBefore="2007-12-10T11:29:48Z" NotOnOrAfter="2007-12-10T19:39:48Z">
... e. g. audience restrictions

</saml:Conditions>
<saml:AuthnStatement AuthnInstant="2007-12-10T11:39:48Z" SessionIndex=“...">

<saml:AuthnContext>
<saml:AuthnContextClassRef>urn:...Password</saml:AuthnContextClassRef>

</saml:AuthnContext>
</saml:AuthnStatement>
<saml:AttributeStatement>

<saml:Attribute Name="givenName">
<saml:AttributeValue xmlns:saml=“...">...</saml:AttributeValue>

</saml:Attribute>
... more attributes ...

</saml:AttributeStatement>
</saml:Assertion>

</samlp:Response>



Network Security, WS 2010/11, Chapter 10 85

Bringing It All Together

Source: [iSec2010]

Network Security, WS 2010/11, Chapter 10 86

Recap: Security Guidelines for Web Services

� Recommendations in several standards
� WS-Security
� WS-I Basic Security Profile
� Following these recommendations is strongly encouraged

� Decrease attack surface:
� Always use SSL/TLS for host-to-host communication
� Complexity is (one) enemy of security
� Where you can, reduce the complexity of your protocol

� Do not create/use protocols that you do not actually need
� Even SAML Profiles have been found to have weaknesses

� Do not forget attacks outside cryptography:
� DoS
� Injection attacks

� Conclusion: Security for Web Services can be much work and should be addressed 
with great care.

Network Security, WS 2010/11, Chapter 10 87

Further Pointers

� There are more security-relevant standards, which we will not discuss further here
� Have a look yourself, if you want, at:

� WS-SecureConversation
Æ establishes security contexts, SSL-like pattern

� WS-Reliability
• Reliable communication for, e.g., transactions

� WS-Trust
� WS-Policy
� WS-Interoperability

Network Security, WS 2010/11, Chapter 10 88

Part III: Identity Federation

� Part I: Introduction to
XML and Web Services

� Part II:  Securing Web Services

� Part III:  Identity Federation

� Part I: Introduction to
XML and Web Services

� Part II:  Securing Web Services

� Part III:  Identity Federation



Network Security, WS 2010/11, Chapter 10 89

Rental Cars Inc.

Identity Federation As Shared Authentication

� Entity Bob wishes to do business:
� Bob wants to reserve a flight from Flights Inc.
� Bob also wants to rent a car from Rental Cars Inc.

� On booking the flight, Bob consents to federate an identity
� A pseudonym for use with Rental Cars Inc. is generated
� Bob is redirected to Rental Cars Inc. with a security token that proves his membership with Flights Inc. (with the 

pseudonym!)
Assertion: “pseudo_bob is a member of domain Flights Inc.“

� Identity Federation: propagation of trust / authentication  across organizational boundaries

Flights Inc. Trust
relationship

Network Security, WS 2010/11, Chapter 10 90

Identity Provider

� Example may be extended by having a third party acting as the Identity Provider
for Bob

� Bob authenticates with credential from Identity Provider

Rental Cars Inc.Flights Inc.

Trust relationships:
“Circle of Trust”

Network Security, WS 2010/11, Chapter 10 91

Identity Federation: Concepts

� Concept is not new: sharing of Identities between organisations
� Portability of an identity
� You know similar concepts, e. g. Kerberos

� Use-cases:
� Allows users (or Web Services) to access services

outside their own administrative domain
� Most common example: Single Sign-On

� Several standards implement Identity Federation,
also with Web Service technology, esp. SAML:
� WS Federation (OASIS), part of the Web Services suite
� ID-FF by Liberty Alliance: large consortium to establish open standards for Identity Federation
� Shibboleth (Internet2)
� OpenID: decentralized, more “community-oriented” and

simpler standard

Network Security, WS 2010/11, Chapter 10 92

Identity Federation: Concepts

� The basic schema is always the same
� An entity has an Identity Provider (IdP) vouching for its identity
� In order to access a service, the entity requests a credential from IdP

• May be explicitly for the service or generic
� Entity presents this credential to the Service Provider

� Participants in an Identity Federation form a “Circle of Trust”
� Within this circle of trust, an entity may use its federated identity to

authenticate, access services etc.
� Any organisation may act as an Identity Provider

(if it is trusted by reyling participants)

� Nota bene: concepts like Identity Management that (may) build on Identity Federation require 
much more than the pure security concepts we present here
� Validity between domains
� Expiry
� Secure administration
� Roles & Access Control
� Etc.



Network Security, WS 2010/11, Chapter 10 93

Identity Federation: Relationships 1

� Simple model: direct trust between organisations
� Each organisation has an Identity Provider
� Requester asks for a credential from his Identity Provider and presents it to the STS of the Service Provider 

he wishes to access
� That STS may then grant access to the service

� Each participant may follow his own policies in this process

Note:
STS = Security 
Token Service

Network Security, WS 2010/11, Chapter 10 94

Identity Federation: Relationships 2

� Extended model: trust between organisations is mediated
by a Trusted Third Party

Note:
STS = Security 
Token Service

Network Security, WS 2010/11, Chapter 10 95

Identity Federation: Relationships 3

� Extended model with delegation:
� In order to fulfill a request, a resource accesses another (third-party) resource first
� First resource acts “on behalf” of requestor

Note:
STS = Security 
Token Service

Network Security, WS 2010/11, Chapter 10 96

OpenID

� OpenID is a “more decentralized” system for Identity Federation
� No a priori trust relationships envisaged Æ no Circles of Trust
� Idea is that you login with an identity you registered with

an OpenID provider
� It is left to the Service Provider to decide whether to accept

authentication with an unknown OpenID provider

� Some features:
� XML-based
� Supports Discovery mechanisms for OpenID providers
� More aimed at a Web scenario: less comprehensive and generic in comparison with Web 

Services standards
� Allows delegation: you can host your own identity and delegate each authentication 

process to your OpenID provider
� OpenID is well supported on the Web



Network Security, WS 2010/11, Chapter 10 97

References WWW Security

[RFC3986] Uniform Resource Identifier (URI): Generic Syntax.
RFC 3986. http://tools.ietf.org/html/rfc3986

[RFC2965] HTTP State Management Mechanism. RFC 2965.
http://tools.ietf.org/html/rfc2965

[ECMA262] ECMAScript Language Specification.
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf

[Sym2009] Symantec. Symantec Report on the Underground Economy. Symantec. 2009.
http://www.symantec.com

[HoEnFr2008] T. Holz, M. Engelberth, F. Freiling. Learning More About the Underground
Economy: a Case Study of Keyloggers and Dropzones. Technical Report TR-
2008-006. Universität Mannheim. 2008.

[HoLe2002] M. Howard, D. LeBlanc. Writing Secure Code. Microsoft Press. 2002.
[Wil2009] T. Wilhelm. Professional Penetration Testing. Syngress Media. 2009.
[ISec2010] International Secure Systems Lab. http://www.iseclab.org. 2010.
[Mo2010] Timothy D. Morgan. Weaning the Web off of Session Cookies: Making Digest

Authentication Viable.
http://www.vsecurity.com/download/papers/WeaningTheWebOffOfSessionCookies.pdf

Network Security, WS 2010/11, Chapter 10 98

References Web Service Security

[XMLEnc] W3C. XML Encryption.
http://www.w3.org/standards/techs/xmlenc.

[XMLDSig] W3C. XML Signature.
http://www.w3.org/standards/techs/xmlsig

[Gu2004] P. Gutmann. Why XML Security is Broken.
http://www.cs.auckland.ac.nz/~pgut001/pubs/xmlsec.txt. 2004.

[RoRe2004] J. Rosenberg, D. Remy. Securing Web Services with
WS-Security. SAMS Publishing. 2004.

[XMPPSig] RFC 3923. End-to-End Signing and Object Encryption for the
Extensible Messaging and Presence Protocol (XMPP).

[iSecAttack] iSEC Partners. Attacking XML Security.
http://www.isecpartners.com/files/iSEC_HILL_AttackingXMLSecurity_bh07.pdf

[SAML2010] OASIS. OASIS Security Services (SAML) TC.
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

[OWASP] Open Web Application Security Project. 2010.
http://www.owasp.org

[WSI] Web Services Interoperability Organization. Basic Security
Profile Version 1.0. 2010.
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html

[OpenID] OpenID Foundation Web Site. http://openid.net/
[iSec2010] iSEC Partners. Attacking XML Security.

http://www.isecpartners.com/files/iSEC_HILL_AttackingXMLSecurity_bh07.pdf


