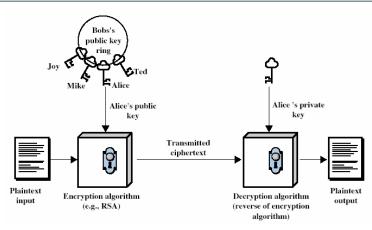


Network Security

Chapter 2 – Basics 2.2 Public Key Cryptography

Encryption/Decryption using Public Key Cryptography



General Idea: encrypt with a publicly known key, but decryption only possible with a secret = private key

Network Security, WS 2010/11, Chapter 2.2

.

Public Key Cryptography

- General idea:
 - Use two different keys
 - a private key K_{priv}
 - a public key K_{pub}
 - Given a ciphertext $c = E(K_{pub}, m)$ and K_{pub} it should be *infeasible* to compute the corresponding plaintext without the private key K_{priv} : $m = D(K_{priv}, c) = D(K_{priv}, E(K_{pub}, m))$
 - It must also be infeasible to compute K_{priv} when given K_{pub}
 - The key K_{priv} is only known to the owner entity A
 → called A's private key K_{priv-A}
 - The key K_{pub} can be publicly known and is called A's *public key* K_{pub-A}

Public Key Cryptography

- Applications:
 - Encryption: If B encrypts a message with A's public key K_{pub-A} , he can be sure that only A can decrypt it using K_{priv-A}
 - Integrity check and digital signatures:
 - If B encrypts a message with his private key K_{priv-B} , everyone knowing B's public key K_{pub-B} can read the message and know that B has sent it.
- Important:
 - If B wants to communicate with A, he needs to verify that he really knows
 A's public key and does not accidentally use the key of an adversary
 - Known as the "binding of a key to an identity"
 - Not a trivial problem so-called Public Key Infrastructures are one "solution"
 - X.509
 - · GnuPG Web of Trust

Network Security, WS 2010/11, Chapter 2.2

3

Public Key Cryptography

- Ingredients for a public key crypto system:
 - One-way functions: It is believed that there are certain functions that are easy compute, while the inverse function is very hard to compute
 - · Real-world analogon: phone book
 - When we speak of easy and hard, we refer to certain complexity classes → more about that in crypto lectures and complexity theorey
 - For us: Hard means "infeasible on current hardware"
 - We know candidates, but have no proof for the existence of such functions
 - Existence would imply P != NP
- Special variant: Trap door functions
 - Same as one-way functions, but if a second ("secret") information is known, then the inverse is easy as well
- □ Blueprint: use a trap-door function in your crypto system
- Candidates:
 - Factorization problem: basis of the RSA algorithm
 - · Complexity class unknown, but assumed to be outside P
 - Discrete logarithm problem: basis of Diffie-Hellman and ElGamal
 - No polynomial algorithms known, assumed to be outside P

Network Security, WS 2010/11, Chapter 2.2

5

The RSA Public Key Algorithm

 The RSA algorithm was described in 1977 by R. Rivest, A. Shamir and L. Adleman [RSA78]

Secretary of the second

Note: Clifford Cocks in the UK came up with the same scheme in 1973 – but he worked for the government and it was treated classified and thus remained unknown to the scientific community.

Leonard Adlemar

Network Security, WS 2010/11, Chapter 2.2

6

X

Some Mathematical Background

□ Definition: Euler's Φ Function:

Let $\Phi(n)$ denote the number of positive integers m < n, such that m is relatively prime to n.

- \rightarrow "m is relatively prime to n" = the greatest common divisor (gcd) of m and n is one.
- \Box Let p be prime, then $\{1,2,\ldots,p-1\}$ are relatively prime to $p,\Rightarrow\Phi(p)=p-1$
- \Box Let p and q be distinct prime numbers and $n = p \times q$, then

$$\Phi(n) = (p-1) \times (q-1)$$

□ Euler's Theorem:

Let *n* and *a* be positive and relatively prime integers,

- $\Rightarrow a^{\Phi(n)} \equiv 1 \text{ MOD } n$
 - Proof: see [Niv80a]

X

The RSA Public Key Algorithm

- RSA Key Generation:
 - Randomly choose p, q distinct and large primes (really large: hundreds of bits = 100-200 digits each)
 - Compute $n = p \times q$, calculate $\Phi(n) = (p-1) \times (q-1)$ (Euler's Φ Function)
 - Pick e ∈ Z such that 1 < e < Φ(n) and e is relatively prime to Φ(n),
 i.e. gcd(e,Φ(n)) = 1
 - Use the extended Euclidean algorithm to compute d such that
 e × d ≡ 1 MOD Φ(n)
 - The public key is (n, e)
 - The private key is d this is the "trap door information"

The RSA Public Key Algorithm

- Definition: RSA function
 - Let p and q be large primes; let n = p × q.
 Let e ∈ N be relatively prime to Φ(n).
 - Then RSA(e,n) := $x \rightarrow x^e \text{ MOD } n$
- Example:
 - Let M be an integer that represents the message to be encrypted, with M positive, smaller than n.
 - Example: Encode with <blank> = 99, A = 10, B = 11, ..., Z = 35
 So "HELLO" would be encoded as 1714212124.
 If necessary, break M into blocks of smaller messages: 17142 12124
 - To encrypt, compute: $C = M^e \text{ MOD } n$
- Decryption:
 - To decrypt, compute: $M' \equiv C^d \text{ MOD } n$

Network Security, WS 2010/11, Chapter 2.2

9

The RSA Public Key Algorithm

- Why does RSA work:
 - As $d \times e = 1 \text{ MOD } \Phi(n)$

$$\Rightarrow \exists k \in Z$$
: $(d \times e) = 1 + k \times \Phi(n)$

We sketch the "proof" for the case where M and n are relatively prime

$$M' \equiv C^d MOD n$$

- $\equiv (M^e)^d MOD n$
- $\equiv M^{(e \times d)} MOD n$
- $\equiv M^{(1+k \times \Phi(n))} MOD n$
- $\equiv M \times (M^{\Phi(n)})^k MOD n$
- $\equiv M \times 1^k \text{MOD n}$ (Euler's theorem*)
- $\equiv M MOD n = M$
- In case where M and n are not relatively prime, Euler's theorem can not be applied.
- See [Niv80a] for the complete proof in that case.

Network Security, WS 2010/11, Chapter 2.2

40

Using RSA

- All public-key crypto systems are much slower and more resourceconsuming than symmetric cryptography
- □ Thus, RSA is usually used in a hybrid way:
 - Encrypt the actual message with symmetric cryptography
 - Encrypt the symmetric key with RSA
- Using RSA requires some precautions
 - Careful with choosing p and q: there are factorization algorithms for certain values that are very efficient
 - Generally, one also needs a padding scheme to prevent certain types of attacks against RSA
 - E.g. attack via Chinese remainder theorem: if the same clear text message
 is sent to e or more recipients in an encrypted way, and the receivers share
 the same exponent e, it is easy to decrypt the original clear text message
 - Padding also works against a Meet-in-the-middle attack
 - OAEP (from PKCS#1) is a well-known padding scheme for RSA

On the Security of RSA

- □ The security of the RSA algorithm lies in the presumed difficulty of factoring $n = p \times q$
- It is known that computing the private key from the public key is as difficult as the factorization
- □ It is unknown if the private key is really needed for efficient decryption (there might be a way without, only no-one knows it yet)
- □ RSA is one of the most widely used and studied algorithms
- We need to increase key length regularly, as computers become more powerful
 - 633 bit keys have already been factored
 - Some claim 1024 bits may break in the near future (others disagree)
 - Current recommendation is 2048 bit, should be on the safe side
 - More is better, but slower

Alternatives to RSA

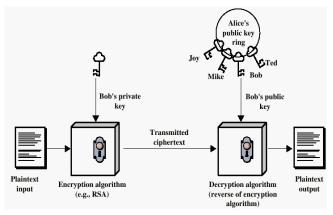
□ ElGamal (by Tahar El Gamal)

- Can be used for encryption and digital signatures
- □ ElGamal is based on another important "difficult" computational problem: Discrete logarithm (DLog)
- □ We discuss DLog soon
- □ We don't discuss ElGamal in detail here, but it has practical relevance:
 - ElGamal is a default in GnuPG
 - Digital Signature Algorithm (DSA) is based on ElGamal
 - As such, ElGamal/DSA is also part of Digital Signature Standard (another NIST standard)

Network Security, WS 2010/11, Chapter 2.2

13

Digital Signatures



 $\ \square$ Signing = adding a proof of who has created a message, and that it has not been altered on the way

Who: authenticity

Not altered: integrity

Network Security, WS 2010/11, Chapter 2.2

4.4

Digital Signatures

- □ A wants to sign a message. General idea:
 - A computes a cryptographic hash value of her message: h(m)
 - Hashes are one-way functions, i.e. given h(m) it's infeasible to obtain m
 - · We'll discuss hash functions soon
 - A encrypts h(m) with her *private* key $K_{priv-A} \rightarrow \text{Sig} = E_{K priv}(h(m))$
 - Given m, everyone can now
 - compute h(m)
 - Decrypt signature: D(E(h(m))) = h(m) and check if hash values are the same
 - If they match, A must have been the creator as only A knows the private key

The Discrete Logarithm: DLog

- In the following, we will discuss another popular one-way / trap-door function: the discrete logarithm
- DLog is used in a number of ways
 - Diffie-Hellman Key Agreement Protocol
 - "Can I agree on a key with someone else if the attacker can read my messages?"
 - ElGamal
 - DLog problems can be transformed to Elliptic Curve Cryptography
 - · We'll discuss this later
- Now: more mathematics

Some Mathematical Background

- □ Theorem/Definition: primitive root, generator
 - Let p be prime. Then \exists g \in {1,2,...,p-1} such that $\{g^a \mid 1 \le a \le (p-1)\} = \{1,2,...,p-1\}$ if everything is computed MOD p

i.e. by exponentiating g you can obtain all numbers between 1 and (p-1)

- For the proof see [Niv80a]
- g is called a primitive root (or generator) of {1,2,...,p-1}
- □ Example: Let p = 7. Then 3 is a primitive root of $\{1,2,...,p-1\}$

 $1\equiv 3^6~MOD~7,~2\equiv 3^2~MOD~7,~3\equiv 3^1~MOD~7,~4\equiv 3^4~MOD~7,$

 $5 \equiv 3^5 \text{ MOD } 7, 6 \equiv 3^3 \text{ MOD } 7$

Network Security, WS 2010/11, Chapter 2.2

17

DLog: Some Mathematical Background

- □ Definition: discrete logarithm
 - Let p be prime, g be a primitive root of {1,2,...,p-1} and c be any element of {1,2,...,p-1}. Then ∃ z such that: g^z ≡ c MOD p
 z is called the discrete logarithm of c modulo p to the base g
 - Example: 6 is the discrete logarithm of 1 modulo 7 to the base 3 as $3^6 \equiv 1 \text{ MOD } 7$
 - The calculation of the discrete logarithm *z* when given *g*, *c*, and *p* is a computationally difficult problem and the asymptotical runtime of the best known algorithms for this problem is exponential in the bit-length of p

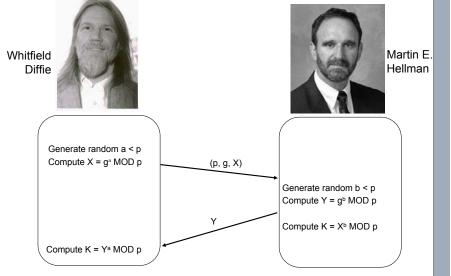
Network Security, WS 2010/11, Chapter 2.2

18

Diffie-Hellman Key Exchange (1)

- □ The Diffie-Hellman key exchange was first published in the landmark paper [DH76], which also introduced the fundamental idea of asymmetric cryptography
- □ The DH exchange in its basic form enables two parties A and B to agree upon a *shared secret* using a public channel:
 - Public channel means, that a potential attacker can read all messages exchanged between A and B
 - It is important that A and B can be sure that the attacker is not able to alter messages as in this case he might launch a man-in-the-middle attack
 - The mathematical basis for the DH exchange is the problem of finding discrete logarithms in finite fields
 - The DH exchange is not an encryption algorithm.

Diffie-Hellman Key Exchange (2)



Network Security, WS 2010/11, Chapter 2.2

20

Diffie-Hellman Key Exchange (3)

- If Alice (A) and Bob (B) want to agree on a shared secret K and their only means of communication is a public channel, they can proceed as follows:
- \Box A chooses a prime p, a primitive root g of $\{1,2,...,p-1\}$ and a random number x
- □ A and B can agree upon the values p and g prior to any communication, or A can choose p and g and send them with his first message
- □ A chooses a random number a:
- \Box A computes $X = g^a MOD p$ and sends X to B
- B chooses a random number b
- \Box B computes $Y = a^b MOD p$ and sends Y to A
- □ Both sides compute the common secret:
 - A computes K = Y^a MOD p
 - B computes K = X^b MOD p
 - As $g^{(a \cdot b)} \text{ MOD } p = g^{(b \cdot a)} \text{ MOD } p$, it holds: K = K'
- An attacker Eve who is listening to the public channel can only compute the secret K, if she is able to compute either a or b which are the discrete logarithms of X and Y modulo p to the base q.
- In essence, A and B have agreed on a key without ever sending the key over the channel
- This does not work anymore if an attacker is on the channel and can replace the values with his own ones

Network Security, WS 2010/11, Chapter 2.2

21

Elliptic Curve Cryptography (ECC)

- Motivation: RSA is probably the most widely implemented algorithm for Public Key Cryptography
 - Does public key cryptography need long keys with 1024-8192 bits?
 - Also, it is good to think of alternatives due to the developments in the area of primality testing, factorization and computation of discrete logarithms
 - → Elliptic Curve Cryptocraphy (ECC)
- ECC is based on a finite field of points.
- □ Points are presented within a 2-dimensional coordinate system: (x,y)
- All points within the elliptic curve satisfy an equation of this type:

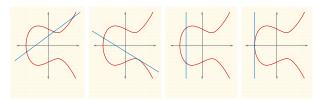
$$y^2 = x^3 + ax + b$$

Network Security, WS 2010/11, Chapter 2.2

22

Elliptic Curve Cryptography (ECC)

□ Given this set of points an additive operator can be defined



A multiplication of a point P by a number n is simply the addition of P to itself n times

$$O = nP = P + P + ... + P$$

- □ The problem of determining n, given P and Q, is called the elliptic curve's discrete logarithm problem (ECDLP)
- □ The ECDLP is believed to be hard in the general class obtained from the group of points on an elliptic curve over a finite field

R

Elliptic Curve Cryptography (ECC)

- □ Any DLog-based algorithm can be turned into an ECC-based algorithm
- ECC problems are generally believed to be "harder" (though there is a lack of mathematic proofs)
- □ Allows us to have shorter key sizes
 - → good for storage and transmission over networks
- □ ECC is still "a new thing" → but there are more implementations now

Key Length (1)

- It is difficult to give good recommendations for appropriate and secure key lengths
- Hardware is getting faster
- □ So key lengths that might be considered as secure this year, might become insecure in 2 years
- Adi Shamir published in 2003 [Sham03] a concept for breaking 1024 bits RSA key with a special hardware within a year (hardware costs were estimated at 10 Millions US Dollars)
- □ Bruce Schneier recommends in [Fer03] a minimal length of 2048 bits for RSA "if you want to protect your data for 20 years"
- □ He recommends also the use of 4096 and up to 8192 bits RSA keys

Network Security, WS 2010/11, Chapter 2.2

2

Key Length (2)

- Comparison of the security of different cryptographic algorithms with different key lengths
 - Note: this is an informal way of comparing the complexity of breaking an encryption algorithm
 - So please be careful when using this table
 - Note also: a symmetric algorithm is supposed to have no significant better attack that breaks it than a brute-force attack

Symmetric	RSA	ECC
56	622	105
64	777	120
74	1024	139
103	2054	194
128	3214	256
192	7680	384
256	15360	512

Source [Bless05] page 89

Network Security, WS 2010/11, Chapter 2.2

Pitfall: Public key cryptography is not "symmetric"

- In contrast to symmetric cryptography, sender and receiver do not form a closed group with shared knowledge.
 - Public Key Cryptography
 - Encrypt with private key → everyone can read
 - Encrypt with a public key → only owner of key (receiver) can read
 - Symmetric Cryptography
 - Encrypt with shared key → only sender and receiver can read
- Problem: How to combine encryption and signature to protect messages m?
 - Case 1: A → B : E_{kpub-B}(m), Sig_{kpriv-A}(E_{kpub-B}(m)) = sign encrypted data only
 - Attack: $C \rightarrow B$: $E_{kpub-B}(m)$, $Sig_{kpriv-C}(E_{kpub-B}(m))$
 - Attacker C can just strip signature and replace it with his own and receiver cannot determine who
 has sent the message. Note that attacker C cannot read plaintext m, yet he can sign it!
 - Recommendation: sign plaintext instead of ciphertexts, e.g.: A → B: E_{knub,B}(m),Sig_{knriv,A}(m)
 - Case 2: A \rightarrow B: $E_{kpub-B}(m, Sig_{kpriv-A}(m))$
 - Attack if destination B was not included in M: B → C: E_{koub-C}(m, Sig_{konv-A}(m))
 - This attack is called "Surreptitious forwarding": receiver B can decrypt, re-encrypt and replace receiver with some entity C and claim message was always for C.
 - Recommendation: always include receiver (and all other relevant entities like sender, etc.) in signature: A → B: E_{koubb}(B,m,Sig_{koriv-A}(B,m))

Summary

- Public key cryptography allows to use two different keys for:
 - Encryption / Decryption
 - Digital Signing / Verifying
- Some practical algorithms that are still considered to be secure:
 - RSA, based on the difficulty of factoring
 - Diffie-Hellman (a key agreement protocol)
- As their security is entirely based on the difficulty of certain number theory problems, algorithmic advances constitute their biggest threat
- Practical considerations:
 - Public key cryptographic operations are magnitudes slower than symmetric ones
 - Public cryptography is often just used to exchange a symmetric session key securely, which is on turn will be used for to secure the data itself.

[Bless05]	R. Bless, S. Mink, EO. Blaß, M. Conrad, HJ. Hof, K. Kutzner, M. Schöller: "Sichere Netzwerkkommunikation", Springer, 2005, ISBN: 3-540-21845-9
[Bre88a]	D. M. Bressoud. Factorization and Primality Testing. Springer, 1988.
[Cor90a]	T. H. Cormen, C. E. Leiserson, R. L. Rivest. <i>Introduction to Algorithms</i> . The MIT Press, 1990.
[DH76]	W. Diffie, M. E. Hellman. <i>New Directions in Cryptography</i> . IEEE Transactions on Information Theory, IT-22 , pp. 644-654, 1976.
[DSS]	National Institute of Standards and Technology (NIST). FIPS 1863, DRAFT Digital Signature Standard (DSS), March 2006.
[EIG85a]	T. ElGamal. A Public Key Cryptosystem and a Signature Scheme based on Discrete Logarithms. IEEE Transactions on Information Theory, Vol.31, Nr.4, pp. 469-472, July 1985.
[Ferg03]	Niels Ferguson, B. Schneier: "Practical Cryptography", Wiley, 1st edition, March 2003
[Kob87a]	N. Koblitz. A Course in Number Theory and Cryptography. Springer, 1987.
[Men93a]	A. J. Menezes. <i>Elliptic Curve Public Key Cryptosystems</i> . Kluwer Academic Publishers, 1993.
[Niv80a]	I. Niven, H. Zuckerman. <i>An Introduction to the Theory of Numbers</i> . John Wiley & Sons, 4 th edition, 1980.
[Resc00]	Eric Rescorla, "SSL and TLS: Designing and Building Secure Systems", Addison-Wesley, 2000
[RSA78]	R. Rivest, A. Shamir und L. Adleman. A Method for Obtaining Digital Signatures and Public Key Cryptosystems. Communications of the ACM, February 1978.
[Sham03]	Adi Shamir, Eran Tromer, "On the cost of factoring RSA-1024", RSA Cryptobytes vol. 6, 2003

Network Security, WS 2010/11, Chapter 2.2

29