

Network Architectures and Services, Georg Carle Faculty of Informatics Technische Universität München, Germany

Network Security

Chapter 10

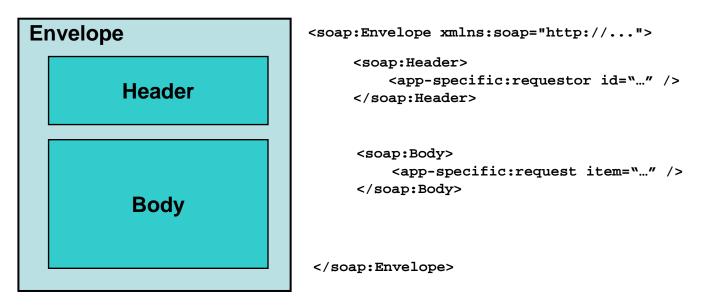
Application Layer Security: Web Services (Part 2)

Part I: Introduction to XML and Web Services Dest II: Securing Web Services

- Part II: Securing Web Services
- □ Part III: Identity Federation

Web Services Protocols	Message Exchange between Web Services; SAML;
SOAP	"Transport Layer" for Web Services
HTTP	Application Layer
Transport Layer	End-to-end connectivity between processes (port concept)
Network Layer	Routing between networks
Data Link Layer	Interface to physical media
Physical Layer	

Use Cases For XML DSig/XML Encryption


- □ You know XML Digital Signature and XML Encrytion now
- These standards form the foundation of many Web Service security protocols:
 - SOAP
 - WS-Security
 - SAML
 - WS-Federation
 - ID-FF (Identity Federation by Liberty Alliance)
 - ...

Defines how to send structured XML over a network

- Follows paradigm of state-less, one-way messages
- But applications can create complex communication patterns from this by supplying additional application-specific information
- Thus, SOAP is agnostic to what it conveys
- Used as a foundation layer for Web Service protocols

□ Simple message format:

- □ SOAP defines **bindings**: important specifications how to use SOAP with underlying protocols
 - HTTP + (SSL +) TCP
 - SMTP
- Some criticism:
 - May lead to abuse of HTTP semantics
 - Firewalls are often configured to accept HTTP → must now inspect XML content → increases attack surface
 - However, HTTP is a core element in Web Services anyway
- Information in SOAP can be cryptographically secured with XML Signature and Encryption
- ❑ However, there are many ways to get this wrong!
 → self-designed crypto protocols are often flawed

Security Issues To Think About

- ❑ Web Services are a valuable target for attackers
 → business-relevant data = money
- We have seen that XML Signature and XML Encryption can provide security, but at the price of high complexity
- Designing a crypto protocol and protocol handlers must thus be done with extra great care here
 - Simple example: *first* verify that the signature is from a known key, *then* do the signature check
 - Otherwise, you leave yourself open to complexity or DoS attacks
- □ Some further attacks to think of:
 - SQL injection
 - XPath and XQuery injection
 - Complexity and DoS attacks on parsers
 - More are listed on owasp.org

Example of Parser DoS: Entity Expansion

The following may expand to 2 GB when parsed (note: we did not try it; it probably depends on the parser)

```
<!DOCTYPE foo [
<!ENTITY a "1234567890" >
<!ENTITY b "&a;&a;&a;&a;&a;&a;&a;&a;
<!ENTITY c "&b;&b;&b;&b;&b;&b;&b;
<!ENTITY d "&c;&c;&c;&c;&c;&c;&c;
<!ENTITY e "&d;&d;&d;&d;&d;&d;&d;&d;
<!ENTITY f "&e;&e;&e;&e;&e;&e;&e;
<!ENTITY h "&g;&g;&g;&g;&g;&g;&g;
<!ENTITY i "&h;&h;&h;&h;&h;&h;&h;&h; * >
<!ENTITY j "&i;&i;&i;&i;&i;&i;&i;&i;
<!ENTITY k "&j;&j;&j;&j;&j;&j;&j;
<!ENTITY 1 "&k;&k;&k;&k;&k;&k;&k;&k;
<!ENTITY m "&l;&l;&l;&l;&l;&l;&l;&l;&l;
1>
< foo> fooo &m; bar </ foo>
                               Source: [iSec2010]
```


- Framework that defines how XML Signature and XML Encryption can be employed safely for SOAP and XML-based application protocols
- □ WS-Security does not define new mechanisms
 - \rightarrow "standardizing the standards"
- □ Some WS-Security Features:
 - Signatures with XML Signature (sane methods)
 - Encryption with XML Encryption (sane methods)
 - Transports Security Tokens:
 - X.509 certificates
 - Kerberos Tokens
 - SAML Tokens (more about SAML shortly)
 - Passwords
 - Password digests

Timestamps

Also describes alternatives for use cases where only host-to-host security is required: simpler, uses SSL/TLS

□ WS-Interoperability Basic Security Profile

- A standard by the Web Services Interoperability Organization
- Defines comprehensively how to use the mechanisms in Web Services security *safely*
- $\Box \quad \text{Intent is clarification} \rightarrow \text{improve ease of use}$

□ Some remarkable points:

- Prohibits the use of some protocols with flaws, like older SSL versions (SSL 2.0 disallowed!)
- Defines ciphersuites to use
- Restrictions on SOAP envelope, header and processing
- Enveloping XML Signature disallowed, enveloped signature discouraged → emphasis on detached signature!
- Rules for transforms
- Rules to facilitate encryption processing

Security Assertion Markup Language (SAML)

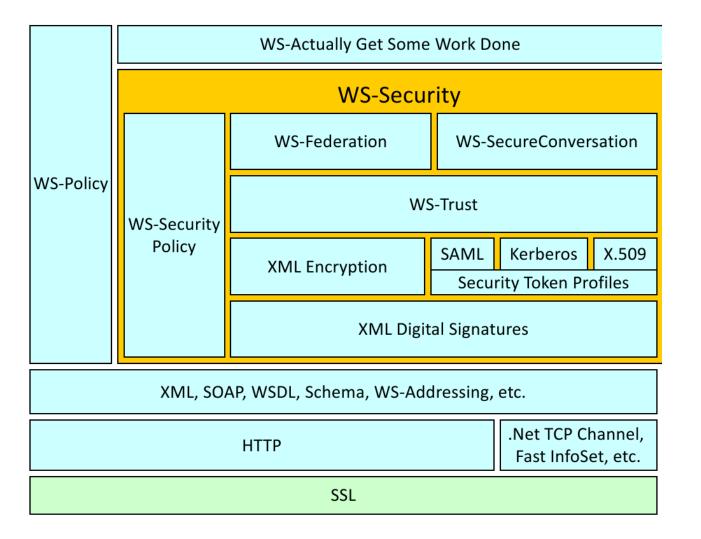
Motivation for SAML:

- Web Services may cross organisational boundaries
 → need for authentication and authorization for access control
 → convey "security attributes" between organisations
- Portable (shared) "identities" with attributes between organisations
- □ SAML works with assertions. We speak of:
 - Subject: an entity that is asserting its identity
 - Assertion: a claim about a subject that must be proved
- □ SAML can be used to exchange assertions between organisations
- □ SAML consists of three parts:
 - Assertions
 - Protocol: XML schema and request/response protocol
 - Bindings: e. g. to SOAP/HTTP
- So-called SAML Profiles specify use patterns for SAML, i.e. how assertions are embedded, extracted and processed
 - E. g. a profile for use with Web Browsers

□ Three types of assertions:

- Authentication: states that an authority has authenticated the subject of the assertion
- Authorization: states that an authority has granted or denied access to the subject of the assertion
- Attributes: qualifying information about an authentication or authorization
- □ Some elements that are **common to all assertions**:
 - Issuer
 - Timestamp
 - Subject
 - Conditions on assertion (e. g. "not valid after...")
 - Intended audience
 - Signatures

\mathbf{X}


Example: SAML Authentication Response

```
<samlp:Response xmlns:samlp="urn:..." InResponseTo="..." Version="2.0" IssueInstant="2007-12-</pre>
      10T11:39:48Z" Destination="...">
    <saml:Issuer>the-issuer</saml:Issuer>
    <samlp:Status xmlns:samlp="...">
        <samlp:StatusCode xmlns:samlp="..." Value="urn:oasis:names:tc:SAML:2.0:status:Success" />
    </samlp:Status>
    <saml:Assertion xmlns:saml="urn:..." Version="2.0" ID="..." IssueInstant="2007-12-</pre>
      10T11:39:48Z">
        <saml:Issuer>the-issuer</saml:Issuer>
        <Signature xmlns="...">
          . . .
        </Signature>
        <saml:Subject>
            <saml:NameID>...</saml:NameID>
            <saml:SubjectConfirmation Method="...">
                <saml:SubjectConfirmationData>...</saml:SubjectConfirmationData>
            </saml:SubjectConfirmation>
        </saml:Subject>
        <saml:Conditions NotBefore="2007-12-10T11:29:48Z" NotOnOrAfter="2007-12-10T19:39:48Z">
          ... e. g. audience restrictions
        </saml:Conditions>
        <saml:AuthnStatement AuthnInstant="2007-12-10T11:39:48Z" SessionIndex="...">
            <saml:AuthnContext>
                <saml:AuthnContextClassRef>urn:...Password</saml:AuthnContextClassRef>
            </saml:AuthnContext>
        </saml:AuthnStatement>
        <saml:AttributeStatement>
            <saml:Attribute Name="givenName">
                <saml:AttributeValue xmlns:saml="...">...</saml:AttributeValue>
            </saml:Attribute>
              ... more attributes ...
        </saml:AttributeStatement>
    </saml:Assertion>
```

</samlp:Response>

Network Security, WS 2009/10, Chapter 10

Source: [iSec2010]

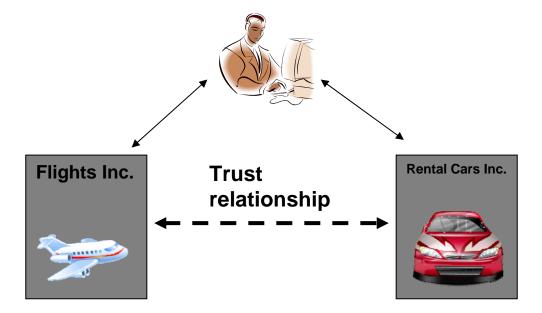
- Recommendations in several standards
 - WS-Security

- WS-I Basic Security Profile
- Following these recommendations is strongly encouraged
- **Decrease attack surface:**
 - Always use SSL/TLS for host-to-host communication
 - Complexity is (one) enemy of security
 - Where you can, reduce the complexity of your protocol
- □ Do not create/use protocols that you do not actually need
 - Even SAML Profiles have been found to have weaknesses
- **Do not forget attacks outside cryptography**:
 - DoS
 - Injection attacks
- □ **Conclusion**: Security for Web Services can be much work and should be addressed with great care.

- □ There are more security-relevant standards, which we will not discuss further here
- □ Have a look yourself, if you want, at:
 - WS-SecureConversation
 → establishes security contexts, SSL-like pattern
 - WS-Reliability
 - Reliable communication for, e.g., transactions
 - WS-Trust
 - WS-Policy
 - WS-Interoperability

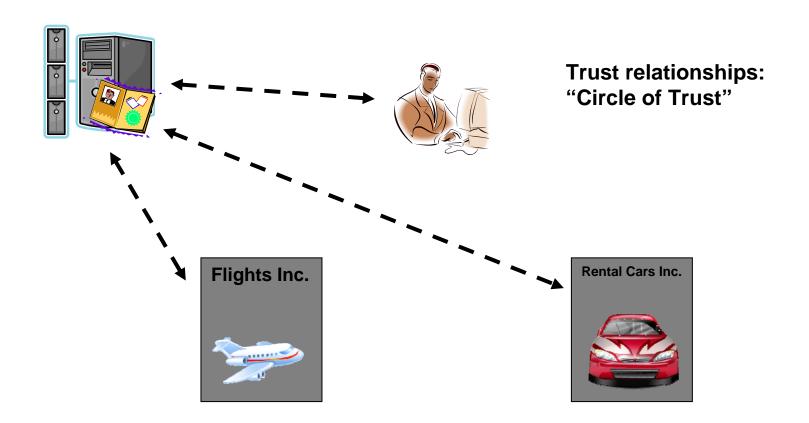
Part I: Introduction to XML and Web Services Part II: Securing Web Services Part III: Identity Federation

Identity Federation As Shared Authentication


□ Entity Bob wishes to do business:

- Bob wants to reserve a flight from Flights Inc.
- Bob also wants to rent a car from Rental Cars Inc.

□ On booking the flight, Bob consents to federate an identity


- A pseudonym for use with Rental Cars Inc. is generated
- Bob is redirected to Rental Cars Inc. with a security token that proves his membership with Flights Inc. (with the pseudonym!) Assertion: "pseudo_bob is a member of domain Flights Inc."

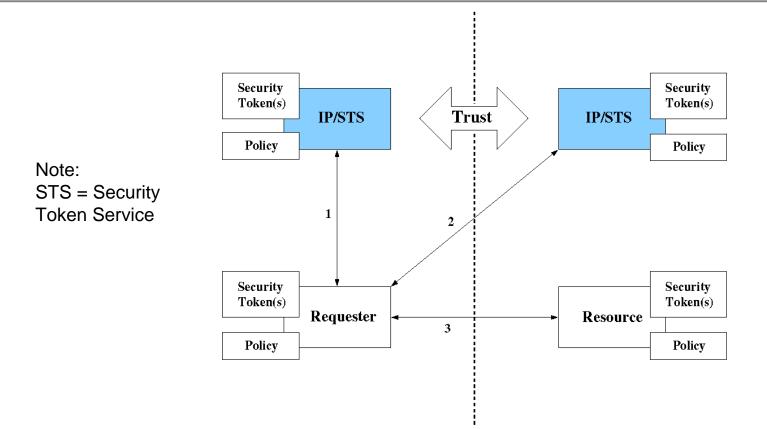
□ Identity Federation: propagation of trust / authentication across organizational boundaries

- Example may be extended by having a third party acting as the Identity Provider for Bob
- □ Bob authenticates with credential from Identity Provider

Identity Federation: Concepts

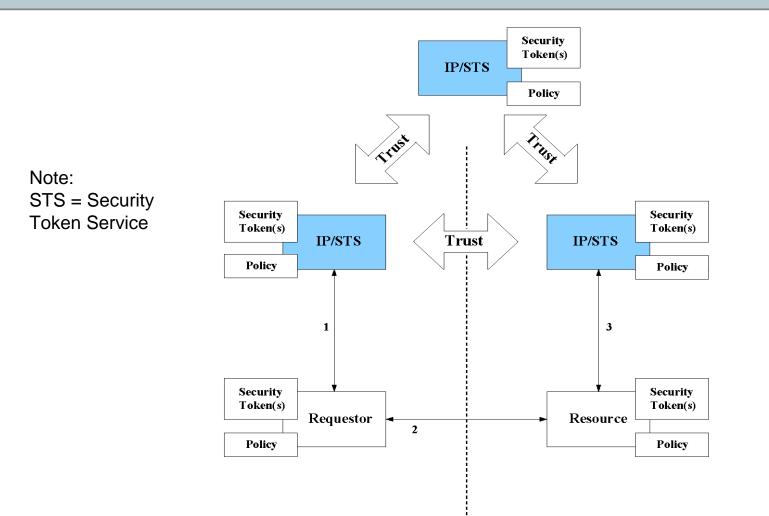
Concept is not new: sharing of Identities between organisations

- Portability of an identity
- You know similar concepts, e. g. Kerberos

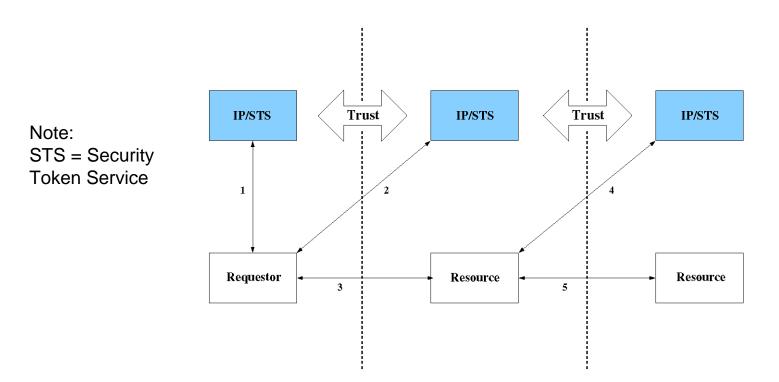

Use-cases:

- Allows users (or Web Services) to access services outside their own administrative domain
- Most common example: Single Sign-On
- Several standards implement Identity Federation, also with Web Service technology, esp. SAML:
 - WS Federation (OASIS), part of the Web Services suite
 - ID-FF by Liberty Alliance: large consortium to establish open standards for Identity Federation
 - Shibboleth (Internet2)
 - OpenID: decentralized, more "community-oriented" and simpler standard

- □ The **basic schema** is always the same
 - An entity has an Identity Provider (IdP) vouching for its identity
 - In order to access a service, the entity **requests a credential from IdP**
 - May be explicitly for the service or generic
 - Entity presents this credential to the Service Provider
- D Participants in an Identity Federation form a "Circle of Trust"
 - Within this circle of trust, an entity may use its federated identity to authenticate, access services etc.
 - Any organisation may act as an Identity Provider (if it is trusted by reyling participants)
- Nota bene: concepts like Identity Management that (may) build on Identity Federation require much more than the pure security concepts we present here
 - Validity between domains
 - Expiry
 - Secure administration
 - Roles & Access Control
 - Etc.


Identity Federation: Relationships 1

□ Simple model: direct trust between organisations


- Each organisation has an Identity Provider
- Requester asks for a credential from his Identity Provider and presents it to the STS of the Service Provider he wishes to access
- That STS may then grant access to the service
- Each participant may follow his own policies in this process

Extended model: trust between organisations is mediated by a Trusted Third Party

Extended model with delegation:

- In order to fulfill a request, a resource accesses another (thirdparty) resource first
- First resource acts "on behalf" of requestor

- OpenID is a "more decentralized" system for Identity Federation
 - No a priori trust relationships envisaged → no Circles of Trust
 - Idea is that you login with an identity you registered with an OpenID provider
 - It is left to the Service Provider to decide whether to accept authentication with an unknown OpenID provider

Some features:

- XML-based
- Supports **Discovery** mechanisms for OpenID providers
- More aimed at a Web scenario: less comprehensive and generic in comparison with Web Services standards
- Allows delegation: you can host your own identity and delegate each authentication process to your OpenID provider
- OpenID is well supported on the Web

[XMLEnc]	W3C. XML Encryption. http://www.w3.org/standards/techs/xmlenc.
[XMLDSig]	W3C. XML Signature. http://www.w3.org/standards/techs/xmlsig
[SAML2010]	OASIS. OASIS Security Services (SAML) TC. http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
[RoRe2004]	J. Rosenberg, D. Remy. <i>Securing Web Services with</i> WS-Security. SAMS Publishing. 2004.
[OWASP]	Open Web Application Security Project. 2010. http://www.owasp.org
[WSI]	Web Services Interoperability Organization. <i>Basic Security Profile Version 1.0</i> . 2010.
	http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
[OpenID]	OpenID Foundation Web Site. http://openid.net/
[iSec2010]	iSEC Partners. Attacking XML Security.
	http://www.isecpartners.com/files/iSEC_HILL_AttackingXMLSecurity_bh07.pdf