
Chair for Network Architectures and Services
Department of Informatics
TU München – Prof. Carle

Network Security
Chapter 10

WWW and
Application Layer Security

with friendly support by
P. Laskov, Ph.D.,

University of Tübingen

Network Security, WS 2009/10, Chapter 10 2

Recap: Internet Protocol Suite

TCP/IP stack has no specific representation for OSI layers 5, 6, 7
(„session“, „representation“, „application“):
the Application Layer is responsible for all three

Application Layer

Transport Layer

Network Layer

Data Link Layer
Interface to physical media

Routing between networks

End-to-end connectivity between
processes (port concept)

Application protocols:
e. g. HTTP, SIP, Instant Messengers, …

Physical Layer

Network Security, WS 2009/10, Chapter 10 3

Why Application Layer Security?

So far, we were concerned with layers below the application layer:
Cryptography (mathematics)
Link Layer security
Crypto protocols: IPSec, SSL, Kerberos…
Firewalls
Intrusion Detection

There are attacks where these defenses do not work:
Cross-Site Scripting, Buffer Overflows, …

Possible because
These attacks are not detectable on lower layers
(cf. WWW Security), or
The mechanisms do not secure the correct communication end-points
(cf. Web Service Security, next lecture)

In general, many applications need to provide their own security
mechanisms

E. g. authentication, authorization

Network Security, WS 2009/10, Chapter 10 4

Part I: Introduction to the WWW

Part I: Introduction to the WWW and
Security Aspects

Part II: Internet Crime

Part III: Vulnerabilities and Attacks

Part I: Introduction to the WWW and
Security Aspects

Part II: Internet Crime

Part III: Vulnerabilities and Attacks

Network Security, WS 2009/10, Chapter 10 5

Introduction to the World Wide Web

You all know it – but what is it exactly?
Conceived in 1989/90 by Tim Berners-Lee at CERN

Hypermedia-based extension to the Internet on the
Application Layer

Any information (chunk) or data item can be referenced by a
Uniform Resource Identifier (URI)
URI syntax (defined in RFCs) :
<scheme>://<authority><path>?<query>#<fragment>

Special case: URL (“Locator”)
http://www.net.in.tum.de/de/startseite/

Special case: URN (“Name”)
urn:oasis:names:specification:docbook:dtd:xml:4.1.2

Probably the best-known application of the Internet
Currently, most vulnerabilities are found in Web applications

Network Security, WS 2009/10, Chapter 10 6

HTML and Content Generation

HTML is the lingua franca of the Web
Content representation: structured hypertext documents
HTML documents – i. e. Web pages – may include:

• JavaScript: script that is executed in browser
• Java Applets: Java program, executed by Java VM
• Flash: multimedia application, executed (played) by Flash player

Today, much (if not most) content is created dynamically by
server-side programs

(Fast-)CGI: interface between Web server and
such a server-side program
Possible: include programs directly as modules in Web server
(e.g. Apache)

Often, dynamic Web pages also interact with the user
Examples: searches, input forms think of online banking

Examples of server-side technology/languages:
PHP, Python, Perl, Ruby, …
Java (several technologies), ASP.NET
Possible, but rare: C++ based programs

Network Security, WS 2009/10, Chapter 10 7

HTTP

HTTP is the carrier protocol for HTML
Conceived to be state-less: server does not keep state information about
connection to client
Mostly simple GET/POST semantics (PUT is possible)
HTML-specific encoding options

OK for the beginnings – but the Web became the most important
medium for all kinds of purposes (e. g. e-commerce, forums, etc.)

today: real work flows implemented with HTTP/HTML
need to keep state between different pages
sessions

Network Security, WS 2009/10, Chapter 10 8

Sessions Over HTTP

Sessions: many work-arounds around the state-less property
Cookies: small text files that the server makes the browser store

• Client authenticates to server receives cookie with a
“secret” value use this value to keep the session alive (re-transmit)

Session-IDs (passed in HTTP header)
Parameters in URL
Hidden variables in input forms (HTML-only solution)

Session information is a valuable target
E. g., online banking: credit card or account information

Network Security, WS 2009/10, Chapter 10 9

A Few More Aspects

Cookies can be exploited to work against privacy
User tracking: identify user and store information about browsing habits
3rd party cookies: cookies that are not downloaded from the site you are
visiting, but from another one

• Can be used to track users across sites
Cookies can be set without the user knowing
(there are reasonably safe standard settings)
Security trade-off: many Web pages require cookies to work,
disabling them completely may not be an option

Cookies may also contain confidential session information
Attacker may try to get at such information (Cross-Site Scripting)

Network Security, WS 2009/10, Chapter 10 10

A Few More Aspects

Session IDs in the URL can also be a weakness
Can be guessed or involuntarily compromised (e. g. sending a link)

“session hijacking”
GET command may encode parameters in the URL

Can be a weakness:
Some URLs are used to trigger an action, e.g.
http://www.example.org/update.php?insert=user

Attacker can craft certain URLs (Cross-Site Request Forgery)

Network Security, WS 2009/10, Chapter 10 11

HTTP Authentication

HTTP Authentication
Basic Authentication: not intended for security

• Server requests username + password
• Browser answers in plain text relies on underlying SSL for security
• No logout! Browser keeps username and password in cache

Digest Authentication: protects username + password
• Server also sends a nonce
• Browser reply is MD5 hash: md5(username,password,nonce)
• No mutual authentication – only client authentication
• More secure and avoids replay attacks, but MD5 is known

to have weaknesses
• SIP uses a similar method

HTTP authentication often replaced with other methods
Requires session management
Complex task

Network Security, WS 2009/10, Chapter 10 12

JavaScript

Script language that is executed on client-side (not only in browsers!)
Originally developed by Netscape; today more or less a standard
Object-oriented with C-like syntax, but multi-paradigm
Allows dynamic content for the WWW AJAX etc.
Allows a Web site to execute programs in the browser

The Web is less attractive without JavaScript – but anything that is
downloaded and executed by a client may be a security risk

Network Security, WS 2009/10, Chapter 10 13

JavaScript

Security Issues:
Allows authors to write malicious code
Allows cross-site attacks (we look at these a bit later in this lecture)

Defenses:
Sandboxing of JavaScript execution

• Difficult to implement
Same-origin policy: script may only access other resources on the Web
if it comes from the same origin
Same-origin policy can be violated with Cross-Site Scripting

Network Security, WS 2009/10, Chapter 10 14

Part II: Internet Crime

Part I: Introduction to the WWW and
Security Aspects

Part II: Internet Crime

Part III: Vulnerabilities and Attacks

Part I: Introduction to the WWW and
Security Aspects

Part II: Internet Crime

Part III: Vulnerabilities and Attacks

Network Security, WS 2009/10, Chapter 10 15

Vulnerabilities: some numbers

3,462 vs 2,029 web/non-web application vulnerabilities were
discovered by Symantec in 2008
Average exposure time: 60 days
12,885 site-specific XSS vulnerabilities submitted to XSSed
in 2008 alone
Only 3% of site-specific vulnerabilities were fixed by the end of 2008

The bad guys are not some hackers who “want to know how it works”
These days, it’s a business!
“Symantec Underground Economy Report 2008”:

“Moreover, considerable evidence exists that organized crime is
involved in many cases …“
[ed.: referring to cooperation between groups]

Network Security, WS 2009/10, Chapter 10 16

From the Symantec Report 2008 (1/4)

Network Security, WS 2009/10, Chapter 10 17

From the Symantec Report 2008 (2/4)

Network Security, WS 2009/10, Chapter 10 18

From the Symantec Report 2008 (3/4)

Network Security, WS 2009/10, Chapter 10 19

From the Symantec Report 2008 (4/4)

Network Security, WS 2009/10, Chapter 10 20

Part III: Vulnerabilities and Attacks

Part I: Introduction to the WWW and
Security Aspects

Part II: Internet Crime

Part III: Vulnerabilities and Attacks

Part I: Introduction to the WWW and
Security Aspects

Part II: Internet Crime

Part III: Vulnerabilities and Attacks

Network Security, WS 2009/10, Chapter 10 21

Comparison: two classic vulnerabilities

Source: MITRE CVE trends

Network Security, WS 2009/10, Chapter 10 22

Classification of Attacks (incomplete)

Client-side Server-side

Common
implementation
languages

C++ (e. g. Firefox)
XULRunner
Java

Web Server:
C++, Java
Script languages

Common attack
types

Drive-by downloads
Buffer overflows

Cross-Site scripting
Code Injection
SQL Injection
(DoS and the like)

Result of attack Malware installation
Computer
manipulation
Loss of private data

Defacement
Loss of private data
Loss of corporate
secrets

Network Security, WS 2009/10, Chapter 10 23

One Step Back: why is the WWW so vulnerable?

Many important business transactions take place
Much functionality, much complexity in software

many attack vectors, huge attack surface
Even though we may implement protocols like TCP/IP really well, any (Web)
application that interacts with the outside world must be open by definition and
reachable even across a firewall

Network Security, WS 2009/10, Chapter 10 24

Application (Browser)

Informal Definition: Contexts

Context (in general): collection of information that belongs to a particular session or process
Useful abstraction that helps us to classify the target of an attack
Here: not a formal definition, nor a model of actual implementation

User Context (in a browser):
Collection of all information that “belongs” to a given session
Cookies, session state variables, plugin-specific information…
JavaScripts: downloaded and executed obey same-origin policy!
Information from session A should not be accessible from Session B
Client and server must remain synchronized w.r.t. state information

User Context A User Context B User Context C

Cookies

Scripts

Plugin info

Etc…

Cookies

Scripts

Plugin info

Etc…

Cookies

Scripts

Plugin info

Etc…

Network Security, WS 2009/10, Chapter 10 25

Attack 1: Session Variables

Target of attack:
Synchronization of state information between client and server
(in other words: the session management is attacked)
Typical scenario:
Exchange between client and server that takes
several steps to complete
Typical approach of attack:
Swap state information during one step
Cause of vulnerability:
Server (or client) relies on information sent by the other party
instead of storing it itself

Best explained by example. Here:
Server: a CA that can issue X.509 certificates
Client: a Web browser that wants to acquire such a certificate

Network Security, WS 2009/10, Chapter 10 26

Attack 1: How the Work-Flow Should Be

A: Request cert for domain xyz.de

2) Background:
Ownership verification

State:

A CA

xyz.de

A owns
xyz.de

(A pays
for
xyz.de)

CA: Offer cert for domain xyz.de

State:

A CA

xyz.de

Offer
for
xyz.de
by CA

Has
cert

A: Acknowledge request: cert for domain xyz.de

CA: Issue cert for domain xyz.de

Browser = client CA = server

Question: where do you keep the session information?
If your answer is “in the cookie”: serious mistake.

In fact, the CA must NOT trust information by the browser. We show you why now.

Network Security, WS 2009/10, Chapter 10 27

Attack 1:
How to Attack the Synchronization of State Information

A: Request cert for domain xyz.de

2) Background:
Ownership verification

State:

A CA

xyz.de

Offer
for
xyz.de
by CA

Has
cert!!!

State:

A CA

xyz.de

A owns
xyz.de

(A pays
for
xyz.de)

CA: Offer cert for domain xyz.de

A: Acknowledge request: cert for domain mozilla.com

CA: Issue cert for domain
mozilla.com

Browser = client CA = server

Swap variables on the fly

In this example, all state information is stored on client-side and retransmitted in
each step (e. g. by reading from a cookie). The server does not store state.

Network Security, WS 2009/10, Chapter 10 28

Why Was the Attack Possible?

In our example, all state information was kept on client-side in a cookie
All the attacker did was to swap mozilla.com for xyz.de in the
second HTTP request
The server issued a cert for the wrong domain because it failed to notice that
the domain name in the first request was not the same as the name in the
second request.
That was possible because the relevant information was not stored
on server-side
Do you think this is too easy and will not happen “in the real world”?

In fact, something like this may have happened in the
beginning of 2009 to a CA that is included in Firefox’s root store.
Background info:

• The attack did not succeed – because there was a second line of defense:
all “high-value” domain names are double-checked by human personnel.

The CA publicly acknowledged there was an intrusion.
• The CA described an attack pattern that hinted at what we have just seen.
• The CA contacted the attacker – it was a White Hat

Network Security, WS 2009/10, Chapter 10 29

Defense / Mitigation

Guideline 1: For each entity in the protocol:
Everything that is relevant for the correct outcome must be stored locally
It can be difficult to identify this information if you have
complex work-flows…

Guideline 2: All Input Is Evil
Always treat all input as untrusted
Never use it without verification

Nota bene: what if the server uses Javascript/Java to “force” browser
to behave correctly? just use a HTTP proxy NOT a defense!

This was just a simple attack because an entity failed to obey these
rules.
In particular, Guideline 1 was violated.
However, in the following, we show you that attacks are possible even
if state is stored correctly and only Guideline 2 is violated.

Network Security, WS 2009/10, Chapter 10 30

Cross-Site Scripting (XSS)

Target of attack:
Attempt to access user context from outside the session
Goal is to obtain confidential information from the user context
Typical scenario:
User surfing the Web and accessing a Web site
while having (Java)script enabled
Typical approach to attack:
Attacker plants a malicious script on a Web page;
the script is then executed by the user’s browser
Cause of vulnerability: two-fold
1) Attacker is able to plant malicious script on a Web page

flaw in Web software needed
2) User browser executes script from a Web page

user’s “trust” in Web site is exploited

XSS is one of the most common attacks today

Network Security, WS 2009/10, Chapter 10 31

Cross-Site Scripting: Typical Attack

Stage 1: Attacker injects malicious script
Here: in a Web forum where you can
post messages
In addition to normal text, the attacker writes:
<script>[malicious function]</script>

The server accepts and stores this input

Stage 2: Unaware user accesses Web forum
Here: reads poisoned message from attacker
User receives:
<p>Hello, this is a harmless message
<script>[malicious function]</script>
</p>

Everything within <script> is executed by
browser in the user’s context

Possible Consequences:
Script reads information from cookies etc.
and sends it to attacker’s server
Script redirects to other site

download trojan etc.

.js

Network Security, WS 2009/10, Chapter 10 32

Cross-Site Scripting: Why Does it Work?

Why was the attack possible?
Reason 1: The Web application did not sanitize input it received

Remember: all input is evil; and the attacker can choose his input
If the Web app had just dropped all HTML input, there would be no script uploaded

and none executed in the browser
Unfortunately, many Web sites allow users to post at least some HTML

a nice feature, but dangerous
Reason 2:
The user had trusted the Web site and did not assume
malicious content could be downloaded and executed

abuse of trust

Nota bene: none of the mechanisms you know so far is a defense!
Crypto protocols: encrypting/signing does not help here
Firewalls: work on TCP/IP level
XSS is a particularly useful example to show why there is a need
for application layer security

Network Security, WS 2009/10, Chapter 10 33

Cross-Site Request Forgery

Target of attack:
User-Server context: session of client A with a server B
Typical scenario:
Authenticated user on a Web page on B which is OK and trusted;
then the user surfs to server M which is malicious
Typical approach to attack:

Attacker knows that user is logged in
crafts a URL to server B that executes an action

Attacker causes victim to call that URL
Cause of vulnerability:

Attacker URL is called by user; within his user context
abuse of server’s trust into requests from

Browser cannot recognise that request to the URL is malicious
it seems to be in the correct context
instance of “Confused Deputy” problem (browser is deputy):
authority of deputy (login to B) is abused

Network Security, WS 2009/10, Chapter 10 34

Cross-Site Request Forgery

Stage 1: user logs into Web site
Authenticated user
Session with server B
User keeps this session open

Stage 2: attacker tricks user to surf
to his own site, server M. Methods:

Phishing
XSS

Stage 3: user surfs to malicious server M
In the HTML he receives, a malicious
link is embedded
<p>harmless text</p>
<img
src=“https://www.serverb.com/
myApp?cmd=sell&item=f450&
price=1eur” />
<p>more harmless text</p>

Server B

Server M

undesired action executed

Network Security, WS 2009/10, Chapter 10 35

SQL Injection

Target of attack:
Server context
Typical scenario:
Web server runs with an SQL database in the background;
attacker wants to extract or inject information to/from the database
Typical approach to attack:
Attacker writes SQL code into an input form, which is then passed to
the SQL database; evaluated and output returned
Cause of vulnerability:
Web server does not sanitize the input and accepts SQL code

SQL Injection is a real classic attack

Network Security, WS 2009/10, Chapter 10 36

SQL Injection

Attacker injects SQL into search form:

The author of the Web page may have intended to execute:
SELECT author,book FROM books WHERE book = ‘$title’;

Through the SQL injection, this has become something like:
SELECT author,book FROM books
WHERE book = ‘’; SELECT * FROM CUSTOMERS; DROP TABLE
books;

You just lost your catalogue and compromised your customers data
Amazon, of course, is too clever not too sanitize their input – but it is
amazing how many other Web sites fail to do so!

Network Security, WS 2009/10, Chapter 10 37

Sanitize or Be Sorry

Network Security, WS 2009/10, Chapter 10 38

Defenses For XSS, XSRF, SQL Injection

Some options on client-side against XSS/XSRF:
JavaScript is often a must for many “good” Web pages

turning it off is not an option
better sandboxing? very complex

Turning on some security settings can provide some security
unfortunately, these are often not activated by default

Better protection can be achieved on server-side:
Treat all input as untrusted
Sanitize your input and output: proper escaping

• Escape (certain) HTML tags and JavaScript
• Exceedingly difficult and complex task!
• Whitelisting is better than blacklisting – the black list may grow

Do not write your own escaping routines
Modern script languages offer this functionality

Network Security, WS 2009/10, Chapter 10 39

Buffer Overflows

Target of attack:
Running process on a server (process has a context!)
Typical scenario:
An application that is accessible on the Internet and
has a certain built-in flaw
Vulnerable C(++)-based application on the Internet
Typical approach to attack:

Attacker sends byte stream to vulnerable application;
either causing it to crash or to execute attacker code in the
process context of the application

Cause of vulnerability: two-fold
Buffer overflow in application serious programming mistake
(root cause: von Neumann machine)
Application does not check its input

Network Security, WS 2009/10, Chapter 10 40

Buffer Overflows

von Neumann machine:
program and data share memory
Applies to all kinds of software
Memory segments:

.text – program code

.data – initialized static data

.bss – unitialized static data
heap – dynamically allocated memory
stack – program call stack

The vulnerability is in the code:
Programmer creates buffer on the stack and does not
check its size when writing to it
char* buffer; readFromInput(buffer);

Exploit:
Because of the way the stack is handled, you can
overwrite the return address

Network Security, WS 2009/10, Chapter 10 41

Buffer Overflows

Stack is composed of frames
Frames are pushed on the stack
during function invocation, and
popped back after returning

Each frame comprises
functions arguments
return address
frame pointer: the address of the
start of the previous frame
local variables

Without proper bound checking, a buffer content
can overspill into adjacent area
Attacker:

Find out the offset to the return address
Write data to the buffer: overwrite return address,
add your own code
Application continues to run from the new address,
executing the new code
Essentially, you take over the control flow

Network Security, WS 2009/10, Chapter 10 42

Simple Code Example

#include <stdio.h>
#include <string.h>
int vulnerable(char* param)
{

char buffer[100];
strcpy(buffer, param);

}

int main(int argc, char* argv[])
{

vulnerable(argv[1]);
printf(“Everything's fine\n”);

}

(from [ISec2010])

Network Security, WS 2009/10, Chapter 10 43

Buffer Overflows

Buffer overflows are mostly a problem for applications written in
languages with direct control over memory (like C++)
These are becoming less frequent on Web servers, and checks have
become better: correspondingly, we observe a switch to other attacks

Mitigation of this kind of exploit:
Data execution protection:
mark certain areas in memory as non-executable
Address space layout randomization: choose stack memory
allocation at random (“hardened kernels” do this)

Support by operating system helps
Canaries: preceed the return value with a special value:
before following the return value, check if is still the same
Be careful when writing in C/C++ etc. and/or do not
trade (perceived) speed-ups for clean code

Network Security, WS 2009/10, Chapter 10 44

Summary

Web applications have a natural attack surface:
they must accept input from outside
Very complex interactions between protocols, client+server:

Difficult to find all weaknesses in advance
In part due to the many mechanisms for session management

Typical attacks:
Cross-Site Scripting (XSS): violation of user context, abuse of user trust
Cross-Site Request Forgery: confused deputy
SQL injection
Buffer overflows

Defenses:
Most important defense is to sanitize and validate input data
All input is evil
Also, be aware of your {user,server,process} contexts
Conventional defenses like cryptography or firewalls are no protection

Network Security, WS 2009/10, Chapter 10 45

References

[RFC3986] Uniform Resource Identifier (URI): Generic Syntax.
RFC 3986. http://tools.ietf.org/html/rfc3986

[RFC2965] HTTP State Management Mechanism. RFC 2965.
http://tools.ietf.org/html/rfc2965

[ECMA262] ECMAScript Language Specification.
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf

[Sym2009] Symantec. Symantec Report on the Underground Economy. Symantec. 2009.
http://www.symantec.com

[HoEnFr2008] T. Holz, M. Engelberth, F. Freiling. Learning More About the Underground
Economy: a Case Study of Keyloggers and Dropzones. Technical Report TR-
2008-006. Universität Mannheim. 2008.

[HoLe2002] M. Howard, D. LeBlanc. Writing Secure Code. Microsoft Press. 2002.
[Wil2009] T. Wilhelm. Professional Penetration Testing. Syngress Media. 2009.
[ISec2010] International Secure Systems Lab. http://www.iseclab.org. 2010.
[Mo2010] Timothy D. Morgan. Weaning the Web off of Session Cookies: Making Digest

Authentication Viable.
http://www.vsecurity.com/download/papers/WeaningTheWebOffOfSessionCookies.pdf

