Chair for Network Architectures and Services
Department of Informatics

TU Minchen — Prof. Carle

Network Security
Chapter 10

WWW and
Application Layer Security
with friendly support by

P. Laskov, Ph.D.,
University of TUbingen

;ﬁ".‘ Recap: Internet Protocol Suite

Application protocols:

Azppllieeiten eyl e. g. HTTP, SIP, Instant Messengers, ...

End-to-end connectivity between

Transport Layer processes (port concept)

Network Layer Routing between networks

Data Link Layer Interface to physical media

Physical Layer

a TCP/IP stack has no specific representation for OSI layers 5, 6, 7
(,session®, representation®, ,application®):
the Application Layer is responsible for all three

;ﬁ".‘ Why Application Layer Security?

o So far, we were concerned with layers below the application layer:
= Cryptography (mathematics)

Link Layer security

Crypto protocols: IPSec, SSL, Kerberos...

Firewalls
= Intrusion Detection

o There are attacks where these defenses do not work:
= Cross-Site Scripting, Buffer Overflows, ...

o Possible because

» These attacks are not detectable on lower layers
(= cf. WWW Security), or

= The mechanisms do not secure the correct communication end-points
(= cf. Web Service Security, next lecture)
a In general, many applications need to provide their own security
mechanisms

= E. g. authentication, authorization

%@ Partl: Introduction to the WWW

o Partl: Introduction to the WWW and
Security Aspects
o Partll: Internet Crime

a Partlll: Vulnerabilities and Attacks

;ﬁ".‘ Introduction to the World Wide Web I

o You all know it — but what is it exactly?
o Conceived in 1989/90 by Tim Berners-Lee at CERN

o Hypermedia-based extension to the Internet on the
Application Layer

» Any information (chunk) or data item can be referenced by a
Uniform Resource Identifier (URI)

= URI syntax (defined in RFCs) :
<scheme>://<authority><path>?<query>#<fragment>

= Special case: URL (“Locator”)
http://www.net.in.tum.de/de/startseite/

= Special case: URN (“Name”)

urn:oasis:names:specification:docbook:dtd:xml:4.1.2

o Probably the best-known application of the Internet
a Currently, most vulnerabilities are found in Web applications

| NetworkSecuri,WSZ009f0.Chapterfo s

iﬁ"“ HTML and Content Generation I

o HTML is the lingua franca of the Web
= Content representation: structured hypertext documents

» HTML documents —i. e. Web pages — may include:
» JavaScript: script that is executed in browser
» Java Applets: Java program, executed by Java VM
» Flash: multimedia application, executed (played) by Flash player

o Today, much (if not most) content is created dynamically by
server-side programs

» (Fast-)CGl: interface between Web server and
such a server-side program

» Possible: include programs directly as modules in Web server
(e.g. Apache)
a Often, dynamic Web pages also interact with the user
= Examples: searches, input forms - think of online banking
o Examples of server-side technology/languages:
» PHP, Python, Perl, Ruby, ...
= Java (several technologies), ASP.NET
= Possible, but rare: C++ based programs

| NetworkSecuri,WSZ009f0.Chapterfo e

;ﬁ HTTP

a HTTP is the carrier protocol for HTML

= Conceived to be state-less: server does not keep state information about
connection to client

= Mostly simple GET/POST semantics (PUT is possible)
= HTML-specific encoding options
o OK for the beginnings — but the Web became the most important
medium for all kinds of purposes (e. g. e-commerce, forums, etc.)
- today: real work flows implemented with HTTP/HTML

- need to keep state between different pages
-> sessions

;ﬁ"“ Sessions Over HTTP

o Sessions: many work-arounds around the state-less property

= Cookies: small text files that the server makes the browser store

+ Client authenticates to server - receives cookie with a
“secret” value = use this value to keep the session alive (re-transmit)

= Session-IDs (passed in HTTP header)
= Parameters in URL

= Hidden variables in input forms (HTML-only solution)
o Session information is a valuable target
= E. g., online banking: credit card or account information

;ﬁ".‘ A Few More Aspects

o Cookies can be exploited to work against privacy
= User tracking: identify user and store information about browsing habits

= 3rd party cookies: cookies that are not downloaded from the site you are
visiting, but from another one
» Can be used to track users across sites

= Cookies can be set without the user knowing
(there are reasonably safe standard settings)

= Security trade-off: many Web pages require cookies to work,
disabling them completely may not be an option

o Cookies may also contain confidential session information
= Attacker may try to get at such information (= Cross-Site Scripting)

ey,
X | A Few More Aspects

o Session IDs in the URL can also be a weakness

= Can be guessed or involuntarily compromised (e. g. sending a link)
- “session hijacking”

O GET command may encode parameters in the URL
= Can be a weakness:

= Some URLs are used to trigger an action, e.g.
http://www.example.org/update.php?insert=user

= Attacker can craft certain URLs (= Cross-Site Request Forgery)

%@ HTTP Authentication

o HTTP Authentication

= Basic Authentication: not intended for security
» Server requests username + password
* Browser answers in plain text - relies on underlying SSL for security
* No logout! Browser keeps username and password in cache
= Digest Authentication: protects username + password
» Server also sends a nonce
* Browser reply is MD5 hash: md5(username,password,nonce)
* No mutual authentication — only client authentication

* More secure and avoids replay attacks, but MD5 is known
to have weaknesses

* S|P uses a similar method

o HTTP authentication often replaced with other methods
= Requires session management
= Complex task

;ﬁ"“ JavaScript

o Script language that is executed on client-side (not only in browsers!)
= Originally developed by Netscape; today more or less a standard
= Object-oriented with C-like syntax, but multi-paradigm
= Allows dynamic content for the WWW > AJAX etc.
= Allows a Web site to execute programs in the browser

o The Web is less attractive without JavaScript — but anything that is
downloaded and executed by a client may be a security risk

;ﬁ".‘ JavaScript

o Security Issues:
= Allows authors to write malicious code
= Allows cross-site attacks (we look at these a bit later in this lecture)

o Defenses:

= Sandboxing of JavaScript execution
+ Difficult to implement
= Same-origin policy: script may only access other resources on the Web
if it comes from the same origin
= Same-origin policy can be violated with Cross-Site Scripting

| X 0
;ix. Part II: Internet Crime

o Partl: Introduction to the WWW and
Security Aspects
o Partll: Internet Crime

a Partlll: Vulnerabilities and Attacks

'l'. Vulnerabilities: some numbers

o 3,462 vs 2,029 web/non-web application vulnerabilities were
discovered by Symantec in 2008

o Average exposure time: 60 days

o 12,885 site-specific XSS vulnerabilities submitted to XSSed
in 2008 alone

o Only 3% of site-specific vulnerabilities were fixed by the end of 2008

o The bad guys are not some hackers who “want to know how it works”
o These days, it's a business!
o “Symantec Underground Economy Report 2008”:

“Moreover, considerable evidence exists that organized crime is
involved in many cases ...“
[ed.: referring to cooperation between groups]

%@ From the Symantec Report 2008 (1/4)

Rank Rank Percentage Percentage
for Sale Requested Category for Sale Requested

Credit card informatien 31%
2 3 Financial accounts 20%
3 2 Spam and phishing information 19% 21%
4 4 Withdrawal service 7% 13%
5 5 Identity theft information 7% 10%
B T Server accounts 5% A%
7 b Compromised computers 4% A%
8 9 Website accounts 3% 2%
9 8 Malicious applications 2% 2%
10 10 Retail accounts 1% 1%

Table 1. Goods and services avallable for sale, by category’®
Source: Symantec Corporation

%@ From the Symantec Report 2008 (2/4)

Rank Rank Percentage | Percentage
for Sale Requested Goods and Services for Sale Requested Range of Prices
1 1 Bank account credentials 18% 14% $10-%$1,000
2 2 Credit cards with 16% 13% $0.50-%12
CVYV2 numbers
3 Credit cards 13% 8% $0.10-325
4 Email addresses &% 7% %0.30/MB-5340/MB
5 14 Email passwords &% 2% 34-%30
6 3 Full identities 5% 9% $0.90-%25
7 Cash-out services 5% 8% 8%-50% of total value
2 12 Proxies 4% 3% $0.30-%20
9 B Scams 3% 604 $2.50-3100/week for
hosting; $5-%20 for design
10 7 Mailers 3% 6% $1-%$25

Table 2. Breakdown of goods and services avallable for sale and requesteds*

;ﬁ"l‘ From the Symantec Report 2008 (3/4)

Site-specific vulnerability (financial site) $740 $100-%2,999
Remote file include exploit (500 links) $200 $150-%250
Shopadmin (50 exploitable shops) $150 $100-$200
Browser exploit 137 $5-360
Remote file include exploit (100 links) £34 $20-50
Remote file include exploit (200 links) 370 $50-%80
Remote operating system exploit %9 $8-310

Tahle 8. Explolt prices
Source: Symantec Corparation

;ﬁ".‘ From the Symantec Report 2008 (4/4)

Botnet 4225 $150-%300
Autorooter 370 $40-$100
SQL injection tools 363 $15-3150
Shopadmin exploiter $33 $20-3%45
RFI scanner 326 $5-%100
LFl scanner 323 $15-%30
XSS scanner 320 $10-330

Table 5. Attack kit prices
Source: Symantec Corporation

;ﬁ Part lll: Vulnerabilities and Attacks

o Partl: Introduction to the WWW and
Security Aspects
o Partll: Internet Crime

a Partlll: Vulnerabilities and Attacks

X . . egs
;ﬁi Comparison: two classic vulnerabilities

25

0L N\

15

pd

e

10
/\/ S~
T/
0 T T T T 1
2001 2002 2003 2004 2005 2006
— Web (XSS) — Buffer Overflow

Source: MITRE CVE trends

;ﬁ"“ Classification of Attacks (incomplete)

Client-side

Server-side

Common
implementation
languages

a C++ (e. g. Firefox)
a XULRunner
o Java

o Web Server:
C++, Java

a Script languages

Common attack
types

a Drive-by downloads
a Buffer overflows

0 Cross-Site scripting
0 Code Injection

0 SQL Injection

a (DoS and the like)

Result of attack

a Malware installation

a Computer
manipulation

Q Loss of private data

o Defacement
0 Loss of private data

0 Loss of corporate
secrets

't. One Step Back: why is the WWW so vulnerable?

a Many important business transactions take place

o Much functionality, much complexity in software
- many attack vectors, huge attack surface

o Even though we may implement protocols like TCP/IP really well, any (Web)
application that interacts with the outside world must be open by definition and
reachable even across a firewall

Attack Surfaces

Database

Firewall

't' Informal Definition: Contexts

a Context (in general): collection of information that belongs to a particular session or process
= Useful abstraction that helps us to classify the target of an attack
= Here: not a formal definition, nor a model of actual implementation
a User Context (in a browser):
= Collection of all information that “belongs” to a given session
= Cookies, session state variables, plugin-specific information...
= JavaScripts: downloaded and executed - obey same-origin policy!
= Information from session A should not be accessible from Session B
= Client and server must remain synchronized w.r.t. state information

User Context A User Context B User Context C

Cookies Cookies Cookies

Scripts Scripts Scripts

Plugin info Plugin info Plugin info
Etc... Etc... Etc...

;ﬁ".‘ Attack 1: Session Variables

o Target of attack:
Synchronization of state information between client and server
(in other words: the session management is attacked)

o Typical scenario:
Exchange between client and server that takes
several steps to complete

o Typical approach of attack:
Swap state information during one step

o Cause of vulnerability:
Server (or client) relies on information sent by the other party
instead of storing it itself

0 Best explained by example. Here:
Server: a CA that can issue X.509 certificates
Client: a Web browser that wants to acquire such a certificate

 wensemywsmorocwea om

iﬁ Attack 1: How the Work-Flow Should Be

. Browser = client CA = server
State: A: Request cert for domain xyz . de State:
A>CA A->CA
xyz.de xyz.de

e = 2) Background:
= e Ownership verification A owns
xyz.de
Offer CA: Offer cert for domain xyz.de
for N
xyz.de
by CA
A: Acknowledge request: cert for domain xyz.de
(A pays
for
xyz.de)
CA: Issue cert for domain xyz.de
Has N
cert
Question: where do you keep the session information?
If your answer is “in the cookie”: serious mistake.
In fact, the CA must NOT trust information by the browser. We show you why now.

wensemywsmorocwea

a'g Attack 1:
75| How to Attack the Synchronization of State Information

In this example, all state information is stored on client-side and retransmitted in
each step (e. g. by reading from a cookie). The server does not store state.
Browser = client CA = server
State: A: Request cert for domain xyz .de State:
xyz.de = I xyz.de
e 2) Background: I
e == Ownership verification A owns
xyz.de
Offer CA: Offer cert for domain xyz.de
for -
xyz.de ey
by CA = o Swap variables on the fly
A: Acknowledge request: cert for domain mozilla.com (A pays
for
xyz.de)
CA: Issue cert for domain
Has mozilla.com
cert!!!)

iﬁ".‘ Why Was the Attack Possible?

o In our example, all state information was kept on client-side in a cookie
o All the attacker did was to swap mozilla.com for xyz.de inthe
second HTTP request
a The server issued a cert for the wrong domain because it failed to notice that
the domain name in the first request was not the same as the name in the
second request.
o That was possible because the relevant information was not stored
on server-side
a Do you think this is too easy and will not happen “in the real world™?
= |n fact, something like this may have happened in the
beginning of 2009 to a CA that is included in Firefox’s root store.
= Background info:

» The attack did not succeed — because there was a second line of defense:
all “high-value” domain names are double-checked by human personnel.

= The CA publicly acknowledged there was an intrusion.
+ The CA described an attack pattern that hinted at what we have just seen.
» The CA contacted the attacker — it was a White Hat

 hwesewsmmsowen

iﬁ".‘ Defense / Mitigation

a

Guideline 1: For each entity in the protocol:
= Everything that is relevant for the correct outcome must be stored locally

= |t can be difficult to identify this information if you have
complex work-flows...

Guideline 2: All Input Is Evil
= Always treat all input as untrusted
= Never use it without verification

Nota bene: what if the server uses Javascript/Java to “force” browser
to behave correctly? - just use a HTTP proxy - NOT a defense!

This was just a simple attack because an entity failed to obey these
rules.

In particular, Guideline 1 was violated.

However, in the following, we show you that attacks are possible even
if state is stored correctly and only Guideline 2 is violated.

Network Security, WS 2009/10, Chapter 10

29

iﬁ".‘ Cross-Site Scripting (XSS)

a

Target of attack:
Attempt to access user context from outside the session
Goal is to obtain confidential information from the user context

Typical scenario:
User surfing the Web and accessing a Web site
while having (Java)script enabled

Typical approach to attack:
Attacker plants a malicious script on a Web page;
the script is then executed by the user’s browser

Cause of vulnerability: two-fold

1) Attacker is able to plant malicious script on a Web page
- flaw in Web software needed

2) User browser executes script from a Web page

- user’s “trust” in Web site is exploited

XSS is one of the most common attacks today

Network Security, WS 2009/10, Chapter 10

30

;ﬁ".‘ Cross-Site Scripting: Typical Attack

Login to post new content in the forum.

o Stage 1: Attacker injects malicious script Topic
= Here: in a Web forum where you can) LR 2 e e - R BRI

.Js ¢
post messages BMW N
= |n addition to normal text, the attacker writes: ; & ==

<script>[malicious function]</script>

= The server accepts and stores this input

a Stage 2: Unaware user accesses Web forum
= Here: reads poisoned message from attacker

= User receives:
<p>Hello, this is a harmless message
<script>[malicious function]</script>
</p>

= Everything within <script> is executed by
browser in the user’s context

a Possible Consequences:
= Script reads information from cookies etc.
and sends it to attacker’s server

= Script redirects to other site
- download trojan etc.

%@ Cross-Site Scripting: Why Does it Work?

o Why was the attack possible?

o Reason 1: The Web application did not sanitize input it received
= Remember: all input is evil; and the attacker can choose his input

= |f the Web app had just dropped all HTML input, there would be no script uploaded
- and none executed in the browser

= Unfortunately, many Web sites allow users to post at least some HTML
- a nice feature, but dangerous
0 Reason 2:
The user had trusted the Web site and did not assume
malicious content could be downloaded and executed
- abuse of trust

a Nota bene: none of the mechanisms you know so far is a defense!
= Crypto protocols: encrypting/signing does not help here
= Firewalls: work on TCP/IP level

= XSS is a particularly useful example to show why there is a need
for application layer security

hwesewsmmowsnn

;ﬁ".‘ Cross-Site Request Forgery

o Target of attack:

User-Server context: session of client A with a server B

o Typical scenario:

Authenticated user on a Web page on B which is OK and trusted;

then the user surfs to server M which is malicious

o Typical approach to attack:

= Attacker knows that user is logged in
- crafts a URL to server B that executes an action

= Attacker causes victim to call that URL

o Cause of vulnerability:

= Attacker URL is called by user; within his user context
- abuse of server’s trust into requests from

= Browser cannot recognise that request to the URL is malicious

—> it seems to be in the correct context
-> instance of “Confused Deputy” problem (browser is deputy):
authority of deputy (login to B) is abused

iﬁ".‘ Cross-Site Request Forgery

o Stage 1: user logs into Web site
= Authenticated user
= Session with server B
= User keeps this session open

0 Stage 2: attacker tricks user to surf
to his own site, server M. Methods:
= Phishing
= XSS

0 Stage 3: user surfs to malicious server M

= |n the HTML he receives, a malicious
link is embedded
<p>harmless text</p>
<img
src=“https://www.serverb.com/
myApp?cmd=sell&item=f450&
price=1eur” />

Server B

Server M

. |

<p>more harmless text</p> - undesired action executed

| NetworkSecui,WsZ009M0.Chaptero

;ﬁ".‘ SQL Injection

o Target of attack:
Server context

o Typical scenario:
Web server runs with an SQL database in the background;
attacker wants to extract or inject information to/from the database

o Typical approach to attack:
Attacker writes SQL code into an input form, which is then passed to
the SQL database; evaluated and output returned

o Cause of vulnerability:
Web server does not sanitize the input and accepts SQL code

o SAQL Injection is a real classic attack

;ﬁ"“ SQL Injection

o Attacker injects SQL into search form:

Mein Amazon.de | Sonderangebote | Wunschzettel | Gutscheine | Geschenke

Suche | Alle Kategorien o] | " SELECT * FROM CUSTOMERS; DROP TABLE hooks; --'

o The author of the Web page may have intended to execute:
SELECT author,book FROM books WHERE book = ‘$title’;

a Through the SQL injection, this has become something like:
SELECT author,book FROM books
WHERE book = ‘’; SELECT * FROM CUSTOMERS; DROP TABLE
books;

O You just lost your catalogue and compromised your customers data

o Amazon, of course, is too clever not too sanitize their input — but it is
amazing how many other Web sites fail to do so!

X/ o
74 Sanitize or Be Sorry

HI, THIS 1S

YOUR SON'S SCHOOL.
WERE HAVING SOME
(OMPUTER TROUBLE.

\%m

OH, DEAR - DID HE
BREAK SOMETHING?

IN A WAY - /

2

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students; -~ 7

- OH.YES UITTLE
ROBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
T HOPE YOURE HAPPY.
AND I HOPE
~~ YOUVE LEARNED
TO SANMIZE YOUR
DATABASE INPUTS,

;ﬁ"“ Defenses For XSS, XSRF, SQL Injection

o Some options on client-side against XSS/XSRF:

= JavaScript is often a must for many “good” Web pages
- turning it off is not an option

- better sandboxing? - very complex

= Turning on some security settings can provide some security
- unfortunately, these are often not activated by default

o Better protection can be achieved on server-side:

= Treat all input as untrusted
= Sanitize your input and output: proper escaping
» Escape (certain) HTML tags and JavaScript
» Exceedingly difficult and complex task!
* Whitelisting is better than blacklisting — the black list may grow
o Do not write your own escaping routines
= Modern script languages offer this functionality

»ay,
|/
,'Q. Buffer Overflows

a

Target of attack:

Running process on a server (process has a context!)
Typical scenario:

An application that is accessible on the Internet and
has a certain built-in flaw

Vulnerable C(++)-based application on the Internet

Typical approach to attack:

= Attacker sends byte stream to vulnerable application;
either causing it to crash or to execute attacker code in the
process context of the application

Cause of vulnerability: two-fold

= Buffer overflow in application - serious programming mistake
(root cause: von Neumann machine)

= Application does not check its input

Y
|/
,'q. Buffer Overflows

a

von Neumann machine:
program and data share memory

Applies to all kinds of software
Memory segments:
= _text — program code
» _data — initialized static data —
» _bss — unitialized static data
. bss
» heap — dynamically allocated memory
» stack — program call stack

The vulnerability is in the code: text

= Programmer creates buffer on the stack and does not
check its size when writing to it
char* buffer; readFromInput (buffer) ;
Exploit:
= Because of the way the stack is handled, you can
overwrite the return address

Higher memory addresses

stack
)

unused memory

data

Lower memory addresses

»ay
VA%
,'q. Buffer Overflows

o Stack is composed of frames
= Frames are pushed on the stack

— Previous frames

during function invocation, and
popped back after returning
. Function
o Each frame comprises arguments

= functions arguments Return address Stack
= return address L] Frame pointer frame
= frame pointer: the address of the

start of the previous frame Local variables

= J|ocal variables

v
o Without proper bound checking, a buffer content Unused stack
can overspill into adjacent area space

o Attacker:
= Find out the offset to the return address

= Write data to the buffer: overwrite return address,
add your own code

= Application continues to run from the new address,
executing the new code

= Essentially, you take over the control flow

;ﬁ"“ Simple Code Example

#include <stdio.h>
#include <string.h>
int vulnerable (char* param)
{

char buffer[100];

strcpy (buffer, param) ;

int main(int argc, char* argv[])
{

vulnerable (argv[1l]) ;

printf (“Everything's fine\n”);

(from [ISec2010])

;ﬁ".‘ Buffer Overflows I

o Buffer overflows are mostly a problem for applications written in
languages with direct control over memory (like C++)

o These are becoming less frequent on Web servers, and checks have
become better: correspondingly, we observe a switch to other attacks

o Mitigation of this kind of exploit:
= Data execution protection:
mark certain areas in memory as non-executable

= Address space layout randomization: choose stack memory
allocation at random (“hardened kernels” do this)
- Support by operating system helps

= Canaries: preceed the return value with a special value:
before following the return value, check if is still the same

= Be careful when writing in C/C++ etc. and/or do not
trade (perceived) speed-ups for clean code

erserwsmmomen .

X/
24q Summary I

o Web applications have a natural attack surface:
they must accept input from outside
o Very complex interactions between protocols, client+server:
= Difficult to find all weaknesses in advance
= In part due to the many mechanisms for session management

o Typical attacks:
= Cross-Site Scripting (XSS): violation of user context, abuse of user trust
= Cross-Site Request Forgery: confused deputy
= SQL injection
= Buffer overflows

0 Defenses:
= Most important defense is to sanitize and validate input data
= Allinputis evil
= Also, be aware of your {user,server,process} contexts
= Conventional defenses like cryptography or firewalls are no protection

ekserwsmmmowen

ey,
VA%
74 References

[RFC3986]
[RFC2965]
[ECMA262]

[Sym2009]

[HoENnFr2008]

[HoLe2002]
[Wil2009]
[1Sec2010]
[M02010]

Uniform Resource Identifier (URI): Generic Syntax.
RFC 3986. http://tools.ietf.org/html/rfc3986

HTTP State Management Mechanism. RFC 2965.
http://tools.ietf.org/html/rfc2965

ECMAScript Language Specification.
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf

Symantec. Symantec Report on the Underground Economy. Symantec. 2009.
http://www.symantec.com

T. Holz, M. Engelberth, F. Freiling. Learning More About the Underground
Economy: a Case Study of Keyloggers and Dropzones. Technical Report TR-
2008-006. Universitat Mannheim. 2008.

M. Howard, D. LeBlanc. Writing Secure Code. Microsoft Press. 2002.
T. Wilhelm. Professional Penetration Testing. Syngress Media. 2009.
International Secure Systems Lab. http://www.iseclab.org. 2010.

Timothy D. Morgan. Weaning the Web off of Session Cookies: Making Digest
Authentication Viable.

http://www.vsecurity.com/download/papers/WeaningTheWebOffOfSessionCookies.pdf

