
Chair for Network Architectures and Services
Institute of Informatics
TU München – Prof. Carle

Network Security
Chapter 2 Basics

2.4 Random Number
Generation for Cryptographic

Protocols

Network Security, WS 2009/10, Chapter 2.4 2

Motivation

It is crucial to security that cryptographic keys are generated with a
truly random or at least a pseudo-random generation process
(see subsequently)
Otherwise, an attacker might reproduce the key generation process
and easily find the key used to secure a specific communication
Generation of pseudo-random numbers is required in cryptographic
protocols for the generation of

Cryptographic keys
Nonces (Numbers Used Once)

Example usages
Key generation and peer authentication in IPSec and SSL
Authentication with challenge-response-mechanism, e.g. GSM and UMTS
authentication

Network Security, WS 2009/10, Chapter 2.4 3

Random Number Generators

Definition:
A random bit generator is a device or algorithm which outputs a
sequence of statistically independent and unbiased binary digits.
Remark:

A random bit generator can be used to generate uniformly distributed
random numbers
e.g. a random integer in the interval [0, n] can be obtained by generating a
random bit sequence of length ⎣lg2 n⎦ + 1 and converting it into a number.
If the resulting integer exceeds n it can be discarded and the process is
repeated until an integer in the desired range has been generated.

Network Security, WS 2009/10, Chapter 2.4 4

Entropy

(c.f. Niels Ferguson, Bruce Schneier: Practical Cryptography, pp. 155ff)
The measure for „randomness“ is called „entropy“
Let X a random variable which outputs a sequence of n bits
The Shannon information entropy is defined by:

E.g. if all possible outputs are equally probable, then

A secure cryptographic key of length n bits should have n bits of entropy.
If k from the n bits become known to an attacker and the attacker has no
information about the remaining (n – k) bits, then the key has an entropy of
(n– k) bits
A bits sequence of arbitrary large length that takes only 4 different values has
only 2 bits of entropy
Passwords that can be remembered by human beings have usually a much
lower entropy than their length.
Entropy can be understood as the average number of bits required to specify a
bit-sequence if an ideal compression algorithm is used.

∑ ==−=
x

xXPxXPXH))((ln)()(2

nnXH n
n

i
nn

n

=−−=−= ∑
−

=

)(*
2
1*2)

2
1(ln)

2
1()(

12

0
2

Network Security, WS 2009/10, Chapter 2.4 5

Pseudo-Random Number Generators (1)

Definition:
A pseudo-random bit generator (PRBG) is a deterministic algorithm which,
given a truly random binary sequence of length k (“seed”), outputs a binary
sequence of length m >> k which “appears” to be random.
The input to the PRBG is called the seed and the output is called a
pseudo-random bit sequence.

Remarks:
The output of a PRBG is not random, in fact the number of possible output
sequences of length m with 2k sequences is at most a small fraction of 2m,
as the PRBG produces always the same output sequence for one (fixed)
seed
The motivation for using a PRBG is that it is generally too expensive to
produce true random numbers of length m, e.g. by coin flipping, so just a
smaller amount of random bits is produced and then a pseudo-random bit
sequence is produced out of the k truly random bits
In order to gain confidence in the “randomness” of a pseudo-random
sequence, statistical tests are conducted on the produced sequences

Network Security, WS 2009/10, Chapter 2.4 6

Pseudo-Random Number Generators (2)

Example:
A linear congruential generator produces a pseudo-random sequence of
numbers y1, y2, ... According to the linear recurrence

yi = a × yi-1 + b MOD q
with a, b, q being parameters characterizing the PRBG
Unfortunately, this generator is predictable even when a, b and q are
unknown, and should, therefore, not be used for cryptographic purposes

Network Security, WS 2009/10, Chapter 2.4 7

Random and Pseudo-Random Number Generation (3)

Security requirements of PRBGs for use in cryptography:
As a minimum security requirement the length k of the seed to a PRBG
should be large enough to make brute-force search over all seeds
infeasible for an attacker

The output of a PRBG should be statistically indistinguishable from truly
random sequences

The output bits should be unpredictable for an attacker with limited
resources, if he does not know the seed

Definition:
A PRBG is said to pass all polynomial-time statistical tests, if no
polynomial-time algorithm can correctly distinguish between an output
sequence of the generator and a truly random sequence of the same
length with probability significantly greater than 0.5

Polynomial-time algorithm means, that the running time of the algorithm is
bound by a polynomial in the length m of the sequence

Network Security, WS 2009/10, Chapter 2.4 8

Random and Pseudo-Random Number Generation (4)

Definition:
A PRBG is said to pass the next-bit test, if there is no polynomial-time
algorithm which, on input of the first m bits of an output sequence s, can
predict the (m + 1)st bit sm+1 of the output sequence with probability
significantly greater than 0.5

Theorem (universality of the next-bit test):
A PRBG passes the next-bit test

⇔
it passes all polynomial-time statistical tests

For the proof, please see section 12.2 in [Sti95a]

Definition:
A PRBG that passes the next-bit test – possibly under some plausible but
unproved mathematical assumption such as the intractability of the
factoring problem for large integers – is called a cryptographically secure
pseudo-random bit generator (CSPRBG)

Network Security, WS 2009/10, Chapter 2.4 9

Hardware-Based Random Number Generation

Hardware-based random bit generators are based on physical
phenomena, as:

elapsed time between emission of particles during radioactive decay,
thermal noise from a semiconductor diode or resistor,
frequency instability of a free running oscillator,
the amount a metal insulator semiconductor capacitor is charged during a
fixed period of time,
air turbulence within a sealed disk drive which causes random fluctuations
in disk drive sector read latencies, and
sound from a microphone or video input from a camera

A hardware-based random bit generator should ideally be enclosed in
some tamper-resistant device and thus shielded from possible
attackers

Network Security, WS 2009/10, Chapter 2.4 10

Software-Based Random Number Generation

Software-based random bit generators, may be based upon processes
as:

the system clock,
elapsed time between keystrokes or mouse movement,
content of input- / output buffers
user input, and
operating system values such as system load and network statistics

Ideally, multiple sources of randomness should be “mixed”, e.g. by
concatenating their values and computing a cryptographic hash value
for the combined value, in order to avoid that an attacker might guess
the random value

If, for example, only the system clock is used as a random source, than an
attacker might guess random-numbers obtained from that source of
randomness if he knows about when they were generated

Usually, such generators are used to initialize PRNGs, i.e. to set their
seed.

Network Security, WS 2009/10, Chapter 2.4 11

De-skewing

Consider a random generator that produces biased but uncorrelated
bits, e.g. it produces 1’s with probability p ≠ 0.5 and 0’s with probability
1 - p, where p is unknown but fixed
The following technique can be used to obtain a random sequence
that is uncorrelated and unbiased:

The output sequence of the generator is grouped into pairs of bits
All pairs 00 and 11 are discarded
For each pair 10 the unbiased generator produces a 1 and for each pair 01
it produces a 0

Another practical (although not provable) de-skewing technique is to
pass sequences whose bits are correlated or biased through a
cryptographic hash function such as MD-5 or SHA-1

Network Security, WS 2009/10, Chapter 2.4 12

Statistical Tests for Random Numbers

The following tests allow to check if a generated random or pseudo-
random sequence inhibits certain statistical properties:

Monobit Test: Are there equally many 1’s as 0’s?
Serial Test (Two-Bit Test): Are there equally many 00-, 01-, 10-, 11-pairs?
Runs Test: Are the numbers of runs (sequences containing only either 0’s
or 1’s) of various lengths as expected for random numbers?
Autocorrelation Test: Are there correlations between the sequence and
(non-cyclic) shifted versions of it?
Maurer’s Universal Test: Can the sequence be compressed?

The above descriptions just give the basic ideas of the tests. For a
more detailed and mathematical treatment, please refer to sections
5.4.4 and 5.4.5 in [Men97a]

Network Security, WS 2009/10, Chapter 2.4 13

Addtional References

[Ferg03] Niels Ferguson, Bruce Schneier, „Practical
Cryptography“, John Wiley & Sons, 2003

[Men97a] A. J. Menezes, P. C. Van Oorschot, S. A. Vanstone.
Handbook of Applied Cryptography. CRC Press Series
on Discrete Mathematics and Its Applications, Hardcover,
816 pages, CRC Press, 1997.

[Sti95a] D. R. Stinson. Cryptography: Theory and Practice
(Discrete Mathematics and Its Applications). Hardcover,
448 pages, CRC Press, 1995.

