
Chair for Network Architectures and Services
Department of Informatics
TU München – Prof. Carle

Network Security
Chapter 2 – Basics

2.2 Public Key Cryptography

Network Security, WS 2009/10, Chapter 2.2 2

Encryption/Decryption using Public Key Cryptography

General Idea: encrypt with a publicly known key, but decryption
only possible with a secret = private key

Network Security, WS 2009/10, Chapter 2.2 3

Public Key Cryptography

General idea:
Use two different keys

• a private key Kpriv

• a public key Kpub

Given a ciphertext c = E(Kpub , m) and Kpub it should be infeasible to
compute the corresponding plaintext without the private key Kpriv:

m = D(Kpriv , c) = D(Kpriv , E(Kpub , m))

It must also be infeasible to compute Kpriv when given Kpub

The key Kpriv is only known to the owner entity A
called A’s private key Kpriv-A

The key Kpub can be publicly known and is called A’s public key Kpub-A

Network Security, WS 2009/10, Chapter 2.2 4

Public Key Cryptography

Applications:
Encryption: If B encrypts a message with A’s public key Kpub-A , he can be
sure that only A can decrypt it using Kpriv-A

Signing: digital signatures

Important:
If B wants to communicate with A, he needs to verify that he really knows
A’s public key and does not accidentally use the key of an adversary
Known as the “binding of a key to an identity”
Not a trivial problem – so-called Public Key Infrastructures are one
“solution”

• X.509
• GnuPG Web of Trust

Network Security, WS 2009/10, Chapter 2.2 5

Public Key Cryptography

Ingredients for a public key crypto system:
One-way functions: It is believed that there are certain functions that are
easy compute, while the inverse function is very hard to compute

• Real-world analogon: phone book
When we speak of easy and hard, we refer to certain complexity classes

more about that in crypto lectures and complexity theorey
For us: Hard means “infeasible on current hardware”
We know candidates, but have no proof for the existence of such functions

• Existence would imply P != NP
Special variant: Trap door functions

Same as one-way functions, but if a second (“secret”) information is
known, then the inverse is easy as well

Blueprint: use a trap-door function in your crypto system
Candidates:

Factorization problem: basis of the RSA algorithm
• Complexity class unknown, but assumed to be outside P

Discrete logarithm problem: basis of Diffie-Hellman and ElGamal
• No polynomial algorithms known, assumed to be outside P

Network Security, WS 2009/10, Chapter 2.2 6

The RSA Public Key Algorithm

The RSA algorithm was described in 1977 by R. Rivest, A. Shamir and L. Adleman
[RSA78]

Note: Clifford Cocks in the UK came up with the same scheme
in 1973 – but he worked for the government and it was treated
classified and thus remained unknown to the scientific community.

Ron Rivest

Adi Shamir

Leonard Adleman

Network Security, WS 2009/10, Chapter 2.2 7

Some Mathematical Background

Definition: Euler’s Φ Function:
Let Φ(n) denote the number of positive integers m < n, such that m is
relatively prime to n.

“m is relatively prime to n” = the greatest common divisor (gcd)
of m and n is one.

Let p prime, then {1,2,…,p-1} are relatively prime to p, ⇒ Φ(p) = p-1
Let p and q distinct prime numbers and n = p × q, then

Φ(n) = (p-1) × (q-1)

Euler’s Theorem:

Let n and a be positive and relatively prime integers,

⇒ aΦ(n) ≡ 1 MOD n
• Proof: see [Niv80a]

Network Security, WS 2009/10, Chapter 2.2 8

The RSA Public Key Algorithm

RSA Key Generation:
Randomly choose p, q distinct and large primes
(really large: hundreds of bits = 100-200 digits each)

Compute n = p × q, calculate Φ(n) = (p-1) × (q-1) (Euler’s Φ Function)

Pick e ∈ Z such that 1 < e < Φ(n) and e is relatively prime to Φ(n),
i.e. gcd(e,Φ(n)) = 1

Use the extended Euclidean algorithm to compute d such that

e × d ≡ 1 MOD Φ(n)

The public key is (n, e)

The private key is d – this is the “trap door information”

Network Security, WS 2009/10, Chapter 2.2 9

The RSA Public Key Algorithm

Definition: RSA function
Let p and q be large primes; let n = p × q.
Let e ∈ N be relatively prime to Φ(n).
Then RSA(e,n) := x → xe MOD n

Example:
Let M be an integer that represents the message to be encrypted, with M
positive, smaller than n.

• Example: Encode with <blank> = 99, A = 10, B = 11, ..., Z = 35
So “HELLO” would be encoded as 1714212124.
If necessary, break M into blocks of smaller messages: 17142 12124

To encrypt, compute: C ≡ Me MOD n

Decryption:
To decrypt, compute: M’ ≡ Cd MOD n

Network Security, WS 2009/10, Chapter 2.2 10

The RSA Public Key Algorithm

Why does RSA work:
As d × e ≡ 1 MOD Φ(n)

⇒ ∃ k ∈ Z: (d × e) = 1 + k × Φ(n)
We sketch the “proof” for the case where M and n are relatively prime

M’ ≡ Cd MOD n
≡ (Me) d MOD n
≡ M(e× d) MOD n
≡ M(1 + k × Φ(n)) MOD n
≡ M × (MΦ (n))k MOD n
≡ M × 1k MOD n (Euler’s theorem*)
≡ M MOD n = M

In case where M and n are not relatively prime, Euler’s theorem can not be
applied.
See [Niv80a] for the complete proof in that case.

Network Security, WS 2009/10, Chapter 2.2 11

Using RSA

All public-key crypto systems are much slower and more resource-
consuming than symmetric cryptography
Thus, RSA is usually used in a hybrid way:

Encrypt the actual message with symmetric cryptography
Encrypt the symmetric key with RSA

Using RSA requires some precautions
Careful with choosing p and q: there are factorization algorithms for certain
values that are very efficient
Generally, one also needs a padding scheme to prevent certain types of
attacks against RSA
E.g. attack via Chinese remainder theorem: if the same clear text message
is sent to e or more recipients in an encrypted way, and the receivers share
the same exponent e, it is easy to decrypt the original clear text message
Padding also works against a Meet-in-the-middle attack
OAEP (from PKCS#1) is a well-known padding scheme for RSA

Network Security, WS 2009/10, Chapter 2.2 12

On the Security of RSA

The security of the RSA algorithm lies in the presumed difficulty of
factoring n = p × q
It is known that computing the private key from the public key is as
difficult as the factorization
It is unknown if the private key is really needed for efficient decryption
(there might be a way without, only no-one knows it yet)
RSA is one of the most widely used – and studied – algorithms
We need to increase key length regularly, as computers become more
powerful

633 bit keys have already been factored
Some claim 1024 bits may break in the near future (others disagree)
Current recommendation is 2048 bit, should be on the safe side
More is better, but slower

Network Security, WS 2009/10, Chapter 2.2 13

Alternatives to RSA

ElGamal (by Tahar El Gamal)

Can be used for encryption and digital signatures
ElGamal is based on another important “difficult” computational
problem: Discrete logarithm (DLog)
We discuss DLog soon
We don’t discuss ElGamal in detail here, but it has practical relevance:

ElGamal is a default in GnuPG
Digital Signature Algorithm (DSA) is based on ElGamal
As such, ElGamal/DSA is also part of Digital Signature Standard
(another NIST standard)
It is mathematically interesting because it adds a random
component to encryption

Network Security, WS 2009/10, Chapter 2.2 14

Digital Signatures

Signing = adding a proof of who has created a message, and that it has
not been altered on the way

Who: authenticity
Not altered: integrity

Network Security, WS 2009/10, Chapter 2.2 15

Digital Signatures

A wants to sign a message. General idea:
A computes a cryptographic hash value of her message: h(m)

• Hashes are one-way functions, i.e. given h(m) it’s infeasible to obtain m
• We’ll discuss hash functions soon

A encrypts h(m) with her private key Kpriv-A Sig = EK_priv(h(m))
Given m, everyone can now

• compute h(m)
• Decrypt signature: D(E(h(m))) = h(m) and check if hash values are the same

If they match, A must have been the creator as only A knows the private
key

Network Security, WS 2009/10, Chapter 2.2 16

Digital Signatures in Practice

RSA
As (d × e) = (e × d) , the operation also works in the opposite direction, i.e.
it is possible to encrypt with d and decrypt with e
This property allows to use the two keys d and e for encryption and
signatures

DSA: signature method based on ElGamal/Dlog

Important: sign message first or encrypt first?
Wrong: sign encrypted data only: with c = E(m), send c,Sig(c)

• Attacker can just strip signature and replace it with his own – and receiver
cannot determine who has sent the message

• Correct way: never sign ciphertexts – sign the message and send c,Sig(m)
Wrong: send E(m,Sig(m)) without including destination

• “Surreptitious forwarding” becomes possible: receiver B can decrypt, re-encrypt
and replace receiver with some entity C and claim message was always for C

• Correct way: always include receiver in signature: E(B,m,Sig(B,m))
Thus, use it correctly

With current weaknesses in hash algorithms (MD5, SHA1), sending
E(B,m,Sig(B,m)) may currently be more secure

Network Security, WS 2009/10, Chapter 2.2 17

The Discrete Logarithm: DLog

In the following, we will discuss another popular one-way / trap-door function:
the discrete logarithm
DLog is used in a number of ways

Diffie-Hellman Key Agreement Protocol
• “Can I agree on a key with someone else if the attacker can read my

messages?”
ElGamal
DLog problems can be transformed to Elliptic Curve Cryptography

• We’ll discuss this later

Now: more mathematics

Network Security, WS 2009/10, Chapter 2.2 18

Some Mathematical Background

Theorem/Definition: primitive root, generator

Let p be prime. Then ∃ g ∈ {1,2,…,p-1} such that

{ga | 1 ≤ a ≤ (p-1) } = {1,2,…,p-1} if everything is computed MOD p

i.e. by exponentiating g you can obtain all numbers between 1 and (p -1)

For the proof see [Niv80a]

g is called a primitive root (or generator) of {1,2,…,p-1}

Example: Let p = 7. Then 3 is a primitive root of {1,2,…,p-1}

1 ≡ 36 MOD 7, 2 ≡ 32 MOD 7, 3 ≡ 31 MOD 7, 4 ≡ 34 MOD 7,

5 ≡ 35 MOD 7, 6 ≡ 33 MOD 7

Network Security, WS 2009/10, Chapter 2.2 19

DLog: Some Mathematical Background

Definition: discrete logarithm
Let p be prime, g be a primitive root of {1,2,…,p-1} and c be any element of
{1,2,…,p-1}. Then ∃ z such that: gz ≡ c MOD p
z is called the discrete logarithm of c modulo p to the base g
Example: 6 is the discrete logarithm of 1 modulo 7 to the base 3 as
36 ≡ 1 MOD 7
The calculation of the discrete logarithm z when given g, c, and p is a
computationally difficult problem and the asymptotical runtime of the best
known algorithms for this problem is exponential in the bit-length of p

Network Security, WS 2009/10, Chapter 2.2 20

Diffie-Hellman Key Exchange (1)

The Diffie-Hellman key exchange was first published in the landmark
paper [DH76], which also introduced the fundamental idea of
asymmetric cryptography

The DH exchange in its basic form enables two parties A and B to
agree upon a shared secret using a public channel:

Public channel means, that a potential attacker can read all messages
exchanged between A and B
It is important that A and B can be sure that the attacker is not able to alter
messages as in this case he might launch a man-in-the-middle attack
The mathematical basis for the DH exchange is the problem of finding
discrete logarithms in finite fields
The DH exchange is not an encryption algorithm.

Network Security, WS 2009/10, Chapter 2.2 21

Diffie-Hellman Key Exchange (2)

Generate random a < p
Compute X = ga MOD p

Generate random b < p
Compute Y = gb MOD p

Compute K = Xb MOD p

Compute K = Ya MOD p

(p, g, X)

Y

Whitfield
Diffie

Martin E.
Hellman

Network Security, WS 2009/10, Chapter 2.2 22

Diffie-Hellman Key Exchange (3)

If Alice (A) and Bob (B) want to agree on a shared secret K and their only
means of communication is a public channel, they can proceed as follows:
A chooses a prime p, a primitive root g of {1,2,…,p-1} and a random number x
A and B can agree upon the values p and g prior to any communication, or A
can choose p and g and send them with his first message
A chooses a random number a:
A computes X = ga MOD p and sends X to B
B chooses a random number b
B computes Y = gb MOD p and sends Y to A
Both sides compute the common secret:

A computes K = Ya MOD p
B computes K’ = Xb MOD p
As g(a . b) MOD p = g(b . a) MOD p, it holds: K = K’

An attacker Eve who is listening to the public channel can only compute the
secret K, if she is able to compute either a or b which are the discrete
logarithms of X and Y modulo p to the base g.
In essence, A and B have agreed on a key without ever sending the key over
the channel
This does not work anymore if an attacker is on the channel and can replace
the values with his own ones

Network Security, WS 2009/10, Chapter 2.2 23

Elliptic Curve Cryptography (ECC)

Motivation: RSA is probably the most widely implemented algorithm for
Public Key Cryptography

Does public key cryptography need long keys with 1024-8192 bits?

Also, it is good to think of alternatives due to the developments in the area
of primality testing, factorization and computation of discrete logarithms

Elliptic Curve Cryptocraphy (ECC)

ECC is based on a finite field of points.
Points are presented within a 2-dimensional coordinate system: (x,y)

All points within the elliptic curve satisfy an equation of this type:
y2 = x3 + ax + b

Network Security, WS 2009/10, Chapter 2.2 24

Elliptic Curve Cryptography (ECC)

Given this set of points an additive operator can be defined

A multiplication of a point P by a number n is simply the addition of P to itself n
times

Q = nP = P + P + … + P

The problem of determining n, given P and Q, is called the elliptic curve’s
discrete logarithm problem (ECDLP)

The ECDLP is believed to be hard in the general class obtained from the
group of points on an elliptic curve over a finite field

Network Security, WS 2009/10, Chapter 2.2 25

Elliptic Curve Cryptography (ECC)

Any DLog-based algorithm can be turned into an ECC-based algorithm

ECC problems are generally believed to be “harder”
(though there is a lack of mathematic proofs)

Allows us to have shorter key sizes
good for storage and transmission over networks

ECC is still “a new thing” but there are more implementations now

Network Security, WS 2009/10, Chapter 2.2 26

Key Length (1)

It is difficult to give good recommendations for appropriate and secure
key lengths
Hardware is getting faster
So key lengths that might be considered as secure this year, might
become insecure in 2 years
Adi Shamir published in 2003 [Sham03] a concept for breaking 1024
bits RSA key with a special hardware within a year (hardware costs
were estimated at 10 Millions US Dollars)
Bruce Schneier recommends in [Fer03] a minimal length of 2048 bits
for RSA “if you want to protect your data for 20 years”
He recommends also the use of 4096 and up to 8192 bits RSA keys

Network Security, WS 2009/10, Chapter 2.2 27

Key Length (2)

Comparison of the security of different cryptographic
algorithms with different key lengths

Note: this is an informal way of comparing the complexity of
breaking an encryption algorithm
So please be careful when using this table
Note also: a symmetric algorithm is supposed to have no
significant better attack that breaks it than a brute-force attack

51215360256

3847680192

2563214128

1942054103

139102474

12077764

10562256

ECCRSASymmetric

Source [Bless05] page 89

Network Security, WS 2009/10, Chapter 2.2 28

Summary

Public key cryptography allows to use two different keys for:
Encryption / Decryption
Digital Signing / Verifying

Some practical algorithms that are still considered to be secure:
RSA, based on the difficulty of factoring
Diffie-Hellman (a key agreement protocol)

As their security is entirely based on the difficulty of certain number
theory problems, algorithmic advances constitute their biggest threat
Practical considerations:

Public key cryptographic operations are magnitudes slower than symmetric
ones
Public cryptography is often just used to exchange a symmetric session key
securely, which is on turn will be used for to secure the data itself.

Network Security, WS 2009/10, Chapter 2.2 29

Additional References

[Bless05] R. Bless, S. Mink, E.-O. Blaß, M. Conrad, H.-J. Hof, K. Kutzner, M. Schöller: "Sichere
Netzwerkkommunikation", Springer, 2005, ISBN: 3-540-21845-9

[Bre88a] D. M. Bressoud. Factorization and Primality Testing. Springer, 1988.
[Cor90a] T. H. Cormen, C. E. Leiserson, R. L. Rivest. Introduction to Algorithms. The MIT Press,

1990.
[DH76] W. Diffie, M. E. Hellman. New Directions in Cryptography. IEEE Transactions on

Information Theory, IT-22 , pp. 644-654, 1976.
[DSS] National Institute of Standards and Technology (NIST). FIPS 186--3, DRAFT Digital

Signature Standard (DSS), March 2006.
[ElG85a] T. ElGamal. A Public Key Cryptosystem and a Signature Scheme based on Discrete

Logarithms. IEEE Transactions on Information Theory, Vol.31, Nr.4, pp. 469-472, July
1985.

[Ferg03] Niels Ferguson, B. Schneier: “Practical Cryptography”, Wiley, 1st edition, March 2003
[Kob87a] N. Koblitz. A Course in Number Theory and Cryptography. Springer, 1987.
[Men93a] A. J. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers,

1993.
[Niv80a] I. Niven, H. Zuckerman. An Introduction to the Theory of Numbers. John Wiley & Sons, 4th

edition, 1980.
[Resc00] Eric Rescorla, „SSL and TLS: Designing and Building Secure Systems“, Addison-Wesley,

2000
[RSA78] R. Rivest, A. Shamir und L. Adleman. A Method for Obtaining Digital Signatures and Public

Key Cryptosystems. Communications of the ACM, February 1978.
[Sham03] Adi Shamir, Eran Tromer, “On the cost of factoring RSA-1024”, RSA Cryptobytes vol. 6,

2003

