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'4" Encryption/Decryption using Public Key Cryptography
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52"“ Public Key Cryptography

a General idea:
= Use two different keys
* aprivate key Ky,
* apublic key K,

= Given a ciphertext c = E(K m) and K, it should be infeasible to

compute the correspondin;uzlaintext without the private key K;,:

m = D(Kpyiy s €) = D(Kpriy » E(Kpyp s M))
» [t must also be infeasible to compute K
= The key K,
- called A’s private key K

oy When given K,

is only known to the owner entity A

priv-A

= The key K, can be publicly known and is called A’s public key K, o

iﬁ"“ Public Key Cryptography

o Applications:

= Encryption: If B encrypts a message with A’s public key K, o, he can be
sure that only A can decrypt it using K,

= Signing: digital signatures

a Important:

= |f B wants to communicate with A, he needs to verify that he really knows
A’s public key and does not accidentally use the key of an adversary

= Known as the “binding of a key to an identity”

» Not a trivial problem — so-called Public Key Infrastructures are one
“solution”

« X.509
* GnuPG Web of Trust




iﬁ".‘ Public Key Cryptography

0o Ingredients for a public key crypto system:

» One-way functions: It is believed that there are certain functions that are
easy compute, while the inverse function is very hard to compute
* Real-world analogon: phone book

= When we speak of easy and hard, we refer to certain complexity classes
- more about that in crypto lectures and complexity theorey

= For us: Hard means “infeasible on current hardware”

» We know candidates, but have no proof for the existence of such functions
» Existence would imply P I= NP

o Special variant: Trap door functions

= Same as one-way functions, but if a second (“secret”) information is
known, then the inverse is easy as well

a Blueprint: use a trap-door function in your crypto system
o Candidates:
» Factorization problem: basis of the RSA algorithm
» Complexity class unknown, but assumed to be outside P

= Discrete logarithm problem: basis of Diffie-Hellman and EIGamal
* No polynomial algorithms known, assumed to be outside P

| NeworkSeowriy,Ws209do,Chapierz2 s

52".‘ The RSA Public Key Algorithm

o Thg RSA algorithm was described in 1977 by R. Rivest, A. Shamir and L. Adleman
[RSA78]

Adi Shamir

Ron Rivest

o Note: Clifford Cocks in the UK came up with the same scheme
in 1973 — but he worked for the government and it was treated
classified and thus remained unknown to the scientific community.

Leonard Adleman

| NeworkSecwiy,Ws209do,Chapierz2 s




'Jv" Some Mathematical Background

o Definition: Euler's ® Function:

Let ®(n) denote the number of positive integers m < n, such that m is
relatively prime to n.

- “m is relatively prime to n” = the greatest common divisor (gcd)
of m and n is one.

a Let p prime, then {1,2,...,p-1} are relatively prime to p, = ®(p) = p-1

0 Let p and g distinct prime numbers and n = p x g, then

®(n) = (p-1) x (9-1)

a Euler's Theorem:

Let n and a be positive and relatively prime integers,

= a®M = 1 MOD n
* Proof: see [Niv80a]

i{"‘ The RSA Public Key Algorithm

o RSA Key Generation:

= Randomly choose p, q distinct and large primes
(really large: hundreds of bits = 100-200 digits each)

= Compute n = p x g, calculate @(n) = (p-1) x(g-1) (Euler’'s @ Function)
*» Pick e € Zsuchthat 1 <e < @(n) and e is relatively prime to &(n),
i.e. gcd(e,®(n)) =1
» Use the extended Euclidean algorithm to compute d such that
exd=1MOD ®(n)

» The public key is (n, e)

» The private key is d — this is the “trap door information”




i{"‘ The RSA Public Key Algorithm

a Definition: RSA function
= Letp and q be large primes; letn =p xq.
Let e € N be relatively prime to ®(n).
= Then RSA(e,n) :=x — x¢ MOD n
o Example:
» Let M be an integer that represents the message to be encrypted, with M
positive, smaller than n.

» Example: Encode with <blank>=99, A=10,B=11,...,Z2=35
So “HELLO” would be encoded as 1714212124.
If necessary, break M into blocks of smaller messages: 17142 12124

» To encrypt, compute: C=Me MOD n

a Decryption:
» To decrypt, compute: M’ = Cd MOD n

iﬁ"“ The RSA Public Key Algorithm

a Why does RSA work:

» Asdxe=1MOD ®(n)

=>3dkeZ (dxe)=1+kxd(n)

We sketch the “proof” for the case where M and n are relatively prime

M = CdMOD n

=(Me)dMOD n
= MEx IOMOD n
= MQ+kxa&(n) MOD n
=M x (M2(nN)kMOD n
=M x 1kMOD n (Euler’s theorem™)
=MMOD n=M

» |n case where M and n are not relatively prime, Euler’s theorem can not be
applied.

= See [Niv80a] for the complete proof in that case.




iﬁ".‘ Using RSA

a All public-key crypto systems are much slower and more resource-
consuming than symmetric cryptography
o Thus, RSA is usually used in a hybrid way:
» Encrypt the actual message with symmetric cryptography
» Encrypt the symmetric key with RSA
o Using RSA requires some precautions

= Careful with choosing p and q: there are factorization algorithms for certain
values that are very efficient

= Generally, one also needs a padding scheme to prevent certain types of
attacks against RSA

= E.g. attack via Chinese remainder theorem: if the same clear text message
is sent to e or more recipients in an encrypted way, and the receivers share
the same exponent e, it is easy to decrypt the original clear text message

» Padding also works against a Meet-in-the-middle attack
= OAEP (from PKCS#1) is a well-known padding scheme for RSA

Network Security, WS 2009/10, Chapter 2.2
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'lv" On the Security of RSA

o The security of the RSA algorithm lies in the presumed difficulty of
factoringn=p xq
o Itis known that computing the private key from the public key is as
difficult as the factorization
a Itis unknown if the private key is really needed for efficient decryption
(there might be a way without, only no-one knows it yet)
o RSA is one of the most widely used — and studied — algorithms
o We need to increase key length regularly, as computers become more
powerful
= 633 bit keys have already been factored
= Some claim 1024 bits may break in the near future (others disagree)
» Current recommendation is 2048 bit, should be on the safe side
= More is better, but slower

Network Security, WS 2009/10, Chapter 2.2
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Y .
;1{. Alternatives to RSA

a ElGamal (by Tahar EI Gamal)

a Can be used for encryption and digital signatures

o ElGamal is based on another important “difficult” computational
problem: Discrete logarithm (DLog)

o We discuss DLog soon

o We don'’t discuss ElGamal in detail here, but it has practical relevance:
= ElGamal is a default in GnuPG

= Digital Signature Algorithm (DSA) is based on ElIGamal

» As such, EIGamal/DSA is also part of Digital Signature Standard
(another NIST standard)

» |tis mathematically interesting because it adds a random
component to encryption

;4{'“ Digital Signatures

Z

Alice's
public key

9 AT
Mike
Bob's private Bob's public
key key

—_— Transmitted —_—
= o ciphertext =
— > e o [
L L
Plaintext Plaintext
ianmut Encryption algorithm Decryption algorithm a?:l ut

P (e.g., RSA) (reverse of encryption P

algorithm)

Q Signing = adding a proof of who has created a message, and that it has
not been altered on the way

« Who: authenticity

= Not altered: integrity




Y .. .
w4 Digital Signatures I

o A wants to sign a message. General idea:

» A computes a cryptographic hash value of her message: h(m)
« Hashes are one-way functions, i.e. given h(m) it's infeasible to obtain m
+ We'll discuss hash functions soon
= A encrypts h(m) with her private key K, o 2 _Sig = E¢ ,;,(h(m))
= Given m, everyone can now
+ compute h(m)
+ Decrypt signature: D(E(h(m))) = h(m) and check if hash values are the same

If they match, A must have been the creator as only A knows the private
key

B P

24 Digital Signatures in Practice I

o RSA

» As(dxe)=(exd), the operation also works in the opposite direction, i.e.
it is possible to encrypt with d and decrypt with e

= This property allows to use the two keys d and e for encryption and
signatures

o DSA: signature method based on EIGamal/Dlog

o Important: sign message first or encrypt first?
= Wrong: sign encrypted data only: with ¢ = E(m), send c,Sig(c)

» Attacker can just strip signature and replace it with his own — and receiver
cannot determine who has sent the message

+ Correct way: never sign ciphertexts — sign the message and send c,Sig(m)
= Wrong: send E(m,Sig(m)) without including destination

» “Surreptitious forwarding” becomes possible: receiver B can decrypt, re-encrypt
and replace receiver with some entity C and claim message was always for C

» Correct way: always include receiver in signature: E(B,m,Sig(B,m))
» Thus, use it correctly

o With current weaknesses in hash algorithms (MD5, SHA1), sending
E(B,m,Sig(B,m)) may currently be more secure

eemsrvsmmoceezs




52"“ The Discrete Logarithm: DLog

o In the following, we will discuss another popular one-way / trap-door function:
the discrete logarithm

0 DLog is used in a number of ways

= Diffie-Hellman Key Agreement Protocol

+ “Can | agree on a key with someone else if the attacker can read my
messages?”

= ElGamal

= DLog problems can be transformed to Elliptic Curve Cryptography
+ We'll discuss this later

a Now: more mathematics

i“? Some Mathematical Background
Z \

o Theorem/Definition: primitive root, generator

» Letpbeprime. Then3d g e {1,2,...,p-1} such that
{ga|1<a<(p-1)}={1,2,...,p-1} if everything is computed MOD p

i.e. by exponentiating g you can obtain all numbers between 1 and (p -1)

= For the proof see [Niv80a]

= g is called a primitive root (or generator) of {1,2,...,p-1}

o Example: Let p =7. Then 3 is a primitive root of {1,2,...,p-1}
1=3MOD 7,2=32MOD 7,3=3"MOD 7,4 =23*MOD 7,
5=3MOD 7,6=33MOD 7




iﬁv..‘ DLog: Some Mathematical Background I

a Definition: discrete logarithm
= Let p be prime, g be a primitive root of {1,2,...,p-1} and c be any element of
{1,2,...,p-1}. Then 3 z such that: g?=c MOD p
z is called the discrete logarithm of ¢ modulo p to the base g
= Example: 6 is the discrete logarithm of 1 modulo 7 to the base 3 as
36=1MOD 7

» The calculation of the discrete logarithm z when given g, ¢, and p is a
computationally difficult problem and the asymptotical runtime of the best
known algorithms for this problem is exponential in the bit-length of p

'Jv'. Diffie-Hellman Key Exchange (1) I

o The Diffie-Hellman key exchange was first published in the landmark
paper [DH76], which also introduced the fundamental idea of
asymmetric cryptography

a The DH exchange in its basic form enables two parties A and B to
agree upon a shared secret using a public channel:

» Public channel means, that a potential attacker can read all messages
exchanged between A and B

» |tis important that A and B can be sure that the attacker is not able to alter
messages as in this case he might launch a man-in-the-middle attack

» The mathematical basis for the DH exchange is the problem of finding
discrete logarithms in finite fields

» The DH exchange is not an encryption algorithm.

eerssmmoceze




52"“ Diffie-Hellman Key Exchange (2)

Martin E.
Hellman

Whitfield
Diffie

Generate random a < p
Compute X = g2 MOD p

Generate random b < p
Compute Y = gt MOD p

/ Compute K =Xt MOD p

Qampute K=YaMOD p/ K /

iﬁ"“ Diffie-Hellman Key Exchange (3)

a If Alice (A) and Bob (B) want to agree on a shared secret K and their only
means of communication is a public channel, they can proceed as follows:

A chooses a prime p, a primitive root g of {1,2,...,p-1} and a random number x

A and B can agree upon the values p and g prior to any communication, or A
can choose p and g and send them with his first message

A chooses a random number a:
A computes X = g2 MOD p and sends X to B
B chooses a random number b
B computes Y = g°> MOD p and sends Y to A
Both sides compute the common secret:
= A computes K=Y2MOD p
* B computes K’ = XP MOD p
= Asg@ -5 MOD p=g®-®MOD p, it holds: K = K’
0 An attacker Eve who is listening to the public channel can only compute the

secret K, if she is able to compute either a or b which are the discrete
logarithms of X and Y modulo p to the base g.

O In essence, A and B have agreed on a key without ever sending the key over
the channel

o This does not work anymore if an attacker is on the channel and can replace
the values with his own ones

0D

0000 DO




'Jv" Elliptic Curve Cryptography (ECC)

o Motivation: RSA is probably the most widely implemented algorithm for
Public Key Cryptography
= Does public key cryptography need long keys with 1024-8192 bits?

= Also, it is good to think of alternatives due to the developments in the area
of primality testing, factorization and computation of discrete logarithms

-> Elliptic Curve Cryptocraphy (ECC)
o ECC is based on a finite field of points.
o Points are presented within a 2-dimensional coordinate system: (x,y)

a All points within the elliptic curve satisfy an equation of this type:

y?=x3+ax+b

'Jv" Elliptic Curve Cryptography (ECC)

o Given this set of points an additive operator can be defined

A A
A N S E o e

o A multiplication of a point P by a number n is simply the addition of P to itself n
times

Q=nP=P+P+..+P

o The problem of determining n, given P and Q, is called the elliptic curve’s
discrete logarithm problem (ECDLP) 1

o The ECDLP is believed to be hard in the general class obtained from the
group of points on an elliptic curve over a finite field Q




'Jv" Elliptic Curve Cryptography (ECC)

o Any DLog-based algorithm can be turned into an ECC-based algorithm

a ECC problems are generally believed to be “harder”
(though there is a lack of mathematic proofs)

a Allows us to have shorter key sizes
—> good for storage and transmission over networks

a ECC is still “a new thing” - but there are more implementations now

'Jv‘ Key Length (1)

a Itis difficult to give good recommendations for appropriate and secure
key lengths

o Hardware is getting faster

o So key lengths that might be considered as secure this year, might
become insecure in 2 years

o Adi Shamir published in 2003 [Sham03] a concept for breaking 1024
bits RSA key with a special hardware within a year (hardware costs
were estimated at 10 Millions US Dollars)

0 Bruce Schneier recommends in [Fer03] a minimal length of 2048 bits
for RSA “if you want to protect your data for 20 years”

o He recommends also the use of 4096 and up to 8192 bits RSA keys




'lv'. Key Length (2)

a Comparison of the security of different cryptographic
algorithms with different key lengths

» Note: this is an informal way of comparing the complexity of
breaking an encryption algorithm

= So please be careful when using this table

* Note also: a symmetric algorithm is supposed to have no
significant better attack that breaks it than a brute-force attack

Symmetric RSA ECC
56 622 105
64 777 120
74 1024 139
103 2054 194
128 3214 256
192 7680 384
256 15360 512

Source [Bless05] page 89

Network Security, WS 2009/10, Chapter 2.2
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'l‘ Summary

o Public key cryptography allows to use two different keys for:
= Encryption / Decryption
= Digital Signing / Verifying
o Some practical algorithms that are still considered to be secure:
» RSA, based on the difficulty of factoring
= Diffie-Hellman (a key agreement protocol)

o As their security is entirely based on the difficulty of certain number
theory problems, algorithmic advances constitute their biggest threat

a Practical considerations:
= Public key cryptographic operations are magnitudes slower than symmetric
ones

= Public cryptography is often just used to exchange a symmetric session key
securely, which is on turn will be used for to secure the data itself.

Network Security, WS 2009/10, Chapter 2.2

28




ey ..
;ﬁ" Additional References

[Bless05] R. Bless, S. Mink, E.-O. Blaf3, M. Conrad, H.-J. Hof, K. Kutzner, M. Schéller: "Sichere
Netzwerkkommunikation", Springer, 2005, ISBN: 3-540-21845-9

[Bre88a] D. M. Bressoud. Factorization and Primality Testing. Springer, 1988.

[Cor90a] T. H. Cormen, C. E. Leiserson, R. L. Rivest. Introduction to Algorithms. The MIT Press,
1990.

[DH76] W. Diffie, M. E. Hellman. New Directions in Cryptography. IEEE Transactions on
Information Theory, IT-22 , pp. 644-654, 1976.

[DSS] National Institute of Standards and Technology (NIST). FIPS 186--3, DRAFT Digital
Signature Standard (DSS), March 2006.

[EIG85a] T. ElGamal. A Public Key Cryptosystem and a Signature Scheme based on Discrete
Logarithms. IEEE Transactions on Information Theory, Vol.31, Nr.4, pp. 469-472, July
1985.

[Ferg03] Niels Ferguson, B. Schneier: “Practical Cryptography”, Wiley, 1st edition, March 2003
[Kob87a] N. Koblitz. A Course in Number Theory and Cryptography. Springer, 1987.
[Men93a] A. J. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers,

1993.

[Niv80a] I. Niven, H. Zuckerman. An Introduction to the Theory of Numbers. John Wiley & Sons, 4t
edition, 1980.

[Resc00] Eric Rescorla, ,SSL and TLS: Designing and Building Secure Systems*, Addison-Wesley,
2000

[RSA78] R. Rivest, A. Shamir und L. Adleman. A Method for Obtaining Digital Signatures and Public
Key Cryptosystems. Communications of the ACM, February 1978.

[Sham03] Adi Shamir, Eran Tromer, “On the cost of factoring RSA-1024”, RSA Cryptobytes vol. 6,
2003

 eerservsmmocenzs =




