Network Security

Chapter 2 - Basics
2.2 Public Key Cryptography

Encryption/Decryption using Public Key Cryptography

General Idea: encrypt with a publicly known key, but decryption only possible with a secret = private key

Public Key Cryptography

- General idea:
- Use two different keys
- a private key $K_{p r i v}$
- a public key $K_{\text {pub }}$
- Given a ciphertext $c=E\left(K_{\text {pub }}, m\right)$ and $K_{\text {pub }}$ it should be infeasible to compute the corresponding plaintext without the private key $K_{\text {priv }}$:

$$
m=D\left(K_{\text {priv }}, c\right)=D\left(K_{\text {priv }}, E\left(K_{\text {pub }}, m\right)\right)
$$

- It must also be infeasible to compute $K_{\text {priv }}$ when given $K_{\text {pub }}$
- The key $K_{\text {priv }}$ is only known to the owner entity A
\rightarrow called A's private key $K_{\text {priv-A }}$
- The key $K_{\text {pub }}$ can be publicly known and is called A's public key $K_{\text {pub-A }}$

Public Key Cryptography

- Applications:
- Encryption: If B encrypts a message with A's public key $K_{\text {pub-A }}$, he can be sure that only A can decrypt it using $K_{\text {priv-A }}$
- Signing: digital signatures
- Important:
- If B wants to communicate with A, he needs to verify that he really knows A's public key and does not accidentally use the key of an adversary
- Known as the "binding of a key to an identity"
- Not a trivial problem - so-called Public Key Infrastructures are one "solution"
- X. 509
- GnuPG Web of Trust

Public Key Cryptography

- Ingredients for a public key crypto system:
- One-way functions: It is believed that there are certain functions that are easy compute, while the inverse function is very hard to compute
- Real-world analogon: phone book
- When we speak of easy and hard, we refer to certain complexity classes \rightarrow more about that in crypto lectures and complexity theorey
- For us: Hard means "infeasible on current hardware"
- We know candidates, but have no proof for the existence of such functions
- Existence would imply P != NP
- Special variant: Trap door functions
- Same as one-way functions, but if a second ("secret") information is known, then the inverse is easy as well
- Blueprint: use a trap-door function in your crypto system
- Candidates:
- Factorization problem: basis of the RSA algorithm
- Complexity class unknown, but assumed to be outside \mathbf{P}
- Discrete logarithm problem: basis of Diffie-Hellman and ElGamal
- No polynomial algorithms known, assumed to be outside P

The RSA Public Key Algorithm

- The RSA algorithm was described in 1977 by R. Rivest, A. Shamir and L. Adleman [RSA78]

Adi Shamir

Ron Rivest

- Note: Clifford Cocks in the UK came up with the same scheme

Leonard Adleman in 1973 - but he worked for the government and it was treated classified and thus remained unknown to the scientific community.

Some Mathematical Background

- Definition: Euler's Ф Function:

Let $\Phi(n)$ denote the number of positive integers $m<n$, such that m is relatively prime to n.
\rightarrow " m is relatively prime to n " = the greatest common divisor (gcd) of m and n is one.

- Let p prime, then $\{1,2, \ldots, p-1\}$ are relatively prime to $p, \Rightarrow \Phi(p)=p-1$
- Let p and q distinct prime numbers and $n=p \times q$, then $\Phi(\mathrm{n})=(\mathrm{p}-1) \times(\mathrm{q}-1)$
- Euler's Theorem:

Let n and a be positive and relatively prime integers,
$\Rightarrow a^{\Phi(n)} \equiv 1$ MOD n

- Proof: see [Niv80a]

The RSA Public Key Algorithm

- RSA Key Generation:
- Randomly choose p, q distinct and large primes (really large: hundreds of bits $=100-200$ digits each)
- Compute $n=p \times q$, calculate $\Phi(n)=(p-1) \times(q-1) \quad$ (Euler's Φ Function)
- Pick $e \in Z$ such that $1<e<\Phi(n)$ and e is relatively prime to $\Phi(n)$, i.e. $\operatorname{gcd}(e, \Phi(\mathrm{n}))=1$
- Use the extended Euclidean algorithm to compute d such that $\mathrm{e} \times \mathrm{d} \equiv 1$ MOD $\Phi(n)$
- The public key is (n, e)
- The private key is d - this is the "trap door information"

The RSA Public Key Algorithm

- Definition: RSA function
- Let p and q be large primes; let $n=p \times q$.

Let $e \in \mathrm{~N}$ be relatively prime to $\Phi(n)$.

- Then $\operatorname{RSA}(e, n):=x \rightarrow x^{e}$ MOD n
- Example:
- Let M be an integer that represents the message to be encrypted, with M positive, smaller than n.
- Example: Encode with <blank> = 99, A = 10, B = 11, $\ldots, Z=35$ So "HELLO" would be encoded as 1714212124.
If necessary, break M into blocks of smaller messages: 1714212124
- To encrypt, compute: $C \equiv M^{e}$ MOD n
- Decryption:
- To decrypt, compute: $M^{\prime} \equiv C^{d}$ MOD n

The RSA Public Key Algorithm

- Why does RSA work:
- As $d \times e \equiv 1$ MOD $\Phi(n)$
$\Rightarrow \exists \mathrm{k} \in \mathrm{Z}: \quad(d \times e)=1+\mathrm{k} \times \Phi(n)$
We sketch the "proof" for the case where M and n are relatively prime

$$
\begin{aligned}
M^{\prime} & \equiv \mathrm{C}^{d} M O D \mathrm{n} \\
& \equiv\left(M^{e}\right)^{d} \mathrm{MOD} \mathrm{n} \\
& \equiv M^{(e \times d)} M O D \mathrm{n} \\
& \equiv M^{(1+k \times \Phi(n))} \text { MOD } \mathrm{n} \\
& \equiv M \times\left(M^{\Phi(n)}\right)^{k} \text { MOD } \mathrm{n} \\
& \equiv M \times 1^{k} M O D \mathrm{n} \quad \text { (Euler's theorem*) } \\
& \equiv M M O D \mathrm{n}=\mathrm{M}
\end{aligned}
$$

- In case where M and n are not relatively prime, Euler's theorem can not be applied.
- See [Niv80a] for the complete proof in that case.

Using RSA

- All public-key crypto systems are much slower and more resourceconsuming than symmetric cryptography
- Thus, RSA is usually used in a hybrid way:
- Encrypt the actual message with symmetric cryptography
- Encrypt the symmetric key with RSA
- Using RSA requires some precautions
- Careful with choosing p and q : there are factorization algorithms for certain values that are very efficient
- Generally, one also needs a padding scheme to prevent certain types of attacks against RSA
- E.g. attack via Chinese remainder theorem: if the same clear text message is sent to e or more recipients in an encrypted way, and the receivers share the same exponent e, it is easy to decrypt the original clear text message
- Padding also works against a Meet-in-the-middle attack
- OAEP (from PKCS\#1) is a well-known padding scheme for RSA

On the Security of RSA

- The security of the RSA algorithm lies in the presumed difficulty of factoring $n=p \times q$
- It is known that computing the private key from the public key is as difficult as the factorization
- It is unknown if the private key is really needed for efficient decryption (there might be a way without, only no-one knows it yet)
- RSA is one of the most widely used - and studied - algorithms
- We need to increase key length regularly, as computers become more powerful
- 633 bit keys have already been factored
- Some claim 1024 bits may break in the near future (others disagree)
- Current recommendation is 2048 bit, should be on the safe side
- More is better, but slower

Alternatives to RSA

- ElGamal (by Tahar El Gamal)

- Can be used for encryption and digital signatures
- ElGamal is based on another important "difficult" computational problem: Discrete logarithm (DLog)
- We discuss DLog soon
- We don't discuss ElGamal in detail here, but it has practical relevance:
- ElGamal is a default in GnuPG
- Digital Signature Algorithm (DSA) is based on ElGamal
- As such, EIGamal/DSA is also part of Digital Signature Standard (another NIST standard)
- It is mathematically interesting because it adds a random component to encryption

Digital Signatures

- Signing = adding a proof of who has created a message, and that it has not been altered on the way
- Who: authenticity
- Not altered: integrity

Digital Signatures

- A wants to sign a message. General idea:
- A computes a cryptographic hash value of her message: $h(m)$
- Hashes are one-way functions, i.e. given $h(m)$ it's infeasible to obtain m
- We'll discuss hash functions soon
- A encrypts $\mathrm{h}(\mathrm{m})$ with her private key $K_{\text {priv-A }} \rightarrow$ _Sig $=\mathrm{E}_{\mathrm{K} _ \text {priv }}(\mathrm{h}(\mathrm{m})$)
- Given m, everyone can now
- compute h(m)
- Decrypt signature: $D(E(h(m)))=h(m)$ and check if hash values are the same
- If they match, A must have been the creator as only A knows the private key

Digital Signatures in Practice

- RSA
- As $(d \times e)=(e \times d)$, the operation also works in the opposite direction, i.e. it is possible to encrypt with d and decrypt with e
- This property allows to use the two keys d and e for encryption and signatures
- DSA: signature method based on ElGamal/Dlog
- Important: sign message first or encrypt first?
- Wrong: sign encrypted data only: with $c=E(m)$, send $c, \operatorname{Sig}(c)$
- Attacker can just strip signature and replace it with his own - and receiver cannot determine who has sent the message
- Correct way: never sign ciphertexts - sign the message and send $c, \operatorname{Sig}(m)$
- Wrong: send $E(m, \operatorname{Sig}(m))$ without including destination
- "Surreptitious forwarding" becomes possible: receiver B can decrypt, re-encrypt and replace receiver with some entity C and claim message was always for C
- Correct way: always include receiver in signature: $E(B, m, \operatorname{Sig}(B, m))$
- Thus, use it correctly
- With current weaknesses in hash algorithms (MD5, SHA1), sending $E(B, m, \operatorname{Sig}(B, m))$ may currently be more secure

The Discrete Logarithm: DLog

- In the following, we will discuss another popular one-way / trap-door function: the discrete logarithm
- DLog is used in a number of ways
- Diffie-Hellman Key Agreement Protocol
- "Can I agree on a key with someone else if the attacker can read my messages?"
- ElGamal
- DLog problems can be transformed to Elliptic Curve Cryptography
- We'll discuss this later
- Now: more mathematics

Some Mathematical Background

- Theorem/Definition: primitive root, generator
- Let p be prime. Then $\exists \mathrm{g} \in\{1,2, \ldots, \mathrm{p}-1\}$ such that

$$
\left\{g^{a} \mid 1 \leq a \leq(p-1)\right\}=\{1,2, \ldots, p-1\} \text { if everything is computed MOD } p
$$

i.e. by exponentiating g you can obtain all numbers between 1 and ($p-1$)

- For the proof see [Niv80a]
- g is called a primitive root (or generator) of $\{1,2, \ldots, p-1\}$
- Example: Let $p=7$. Then 3 is a primitive root of $\{1,2, \ldots, p-1\}$

$$
\begin{aligned}
& 1 \equiv 3^{6} \text { MOD } 7,2 \equiv 3^{2} \text { MOD } 7,3 \equiv 3^{1} \text { MOD } 7,4 \equiv 3^{4} \text { MOD } 7, \\
& 5 \equiv 3^{5} \operatorname{MOD~} 7,6 \equiv 3^{3} \text { MOD } 7
\end{aligned}
$$

DLog: Some Mathematical Background

- Definition: discrete logarithm
- Let p be prime, g be a primitive root of $\{1,2, \ldots, p-1\}$ and c be any element of $\{1,2, \ldots, p-1\}$. Then $\exists z$ such that: $\mathrm{g}^{z} \equiv c$ MOD p z is called the discrete logarithm of c modulo p to the base g
- Example: 6 is the discrete logarithm of 1 modulo 7 to the base 3 as $36 \equiv 1$ MOD 7
- The calculation of the discrete logarithm z when given g, c, and p is a computationally difficult problem and the asymptotical runtime of the best known algorithms for this problem is exponential in the bit-length of p

Diffie-Hellman Key Exchange (1)

- The Diffie-Hellman key exchange was first published in the landmark paper [DH76], which also introduced the fundamental idea of asymmetric cryptography
- The DH exchange in its basic form enables two parties A and B to agree upon a shared secret using a public channel:
- Public channel means, that a potential attacker can read all messages exchanged between A and B
- It is important that A and B can be sure that the attacker is not able to alter messages as in this case he might launch a man-in-the-middle attack
- The mathematical basis for the DH exchange is the problem of finding discrete logarithms in finite fields
- The DH exchange is not an encryption algorithm.

Diffie-Hellman Key Exchange (2)

Diffie-Hellman Key Exchange (3)

- If Alice (A) and Bob (B) want to agree on a shared secret K and their only means of communication is a public channel, they can proceed as follows:
- A chooses a prime p, a primitive root g of $\{1,2, \ldots, p-1\}$ and a random number x
- A and B can agree upon the values p and g prior to any communication, or A can choose p and g and send them with his first message
- A chooses a random number a:
- A computes $X=g^{a} M O D p$ and sends X to B
- B chooses a random number b
- B computes $Y=g^{b}$ MOD p and sends Y to A
- Both sides compute the common secret:
- A computes $K=Y^{a} M O D p$
- B computes $K^{\prime}=X^{b} M O D p$
- As $g^{(a \cdot b)} \operatorname{MOD} p=g^{(b \cdot a)}$ MOD p, it holds: $K=K^{\prime}$
- An attacker Eve who is listening to the public channel can only compute the secret K, if she is able to compute either a or b which are the discrete logarithms of X and Y modulo p to the base g.
- In essence, A and B have agreed on a key without ever sending the key over the channel
- This does not work anymore if an attacker is on the channel and can replace the values with his own ones

Elliptic Curve Cryptography (ECC)

- Motivation: RSA is probably the most widely implemented algorithm for Public Key Cryptography
- Does public key cryptography need long keys with 1024-8192 bits?
- Also, it is good to think of alternatives due to the developments in the area of primality testing, factorization and computation of discrete logarithms
\rightarrow Elliptic Curve Cryptocraphy (ECC)
- ECC is based on a finite field of points.
- Points are presented within a 2-dimensional coordinate system: (x,y)
- All points within the elliptic curve satisfy an equation of this type:

$$
y^{2}=x^{3}+a x+b
$$

Elliptic Curve Cryptography (ECC)

- Given this set of points an additive operator can be defined

- A multiplication of a point P by a number n is simply the addition of P to itself n times

$$
\mathrm{Q}=\mathrm{nP}=\mathrm{P}+\mathrm{P}+\ldots+\mathrm{P}
$$

- The problem of determining n, given P and Q, is called the elliptic curve's discrete logarithm problem (ECDLP)

1

- The ECDLP is believed to be hard in the general class obtained from the group of points on an elliptic curve over a finite field

Elliptic Curve Cryptography (ECC)

- Any DLog-based algorithm can be turned into an ECC-based algorithm
- ECC problems are generally believed to be "harder" (though there is a lack of mathematic proofs)
- Allows us to have shorter key sizes
\rightarrow good for storage and transmission over networks
- ECC is still "a new thing" \rightarrow but there are more implementations now

Key Length (1)

- It is difficult to give good recommendations for appropriate and secure key lengths
- Hardware is getting faster
- So key lengths that might be considered as secure this year, might become insecure in 2 years
- Adi Shamir published in 2003 [Sham03] a concept for breaking 1024 bits RSA key with a special hardware within a year (hardware costs were estimated at 10 Millions US Dollars)
- Bruce Schneier recommends in [Fer03] a minimal length of 2048 bits for RSA "if you want to protect your data for 20 years"
- He recommends also the use of 4096 and up to 8192 bits RSA keys

Key Length (2)

- Comparison of the security of different cryptographic algorithms with different key lengths
- Note: this is an informal way of comparing the complexity of breaking an encryption algorithm
- So please be careful when using this table
- Note also: a symmetric algorithm is supposed to have no significant better attack that breaks it than a brute-force attack

Symmetric	RSA	ECC
56	622	105
64	777	120
74	1024	139
103	2054	194
128	3214	256
192	7680	384
256	15360	512

Source [Bless05] page 89

Summary

- Public key cryptography allows to use two different keys for:
- Encryption / Decryption
- Digital Signing / Verifying
- Some practical algorithms that are still considered to be secure:
- RSA, based on the difficulty of factoring
- Diffie-Hellman (a key agreement protocol)
- As their security is entirely based on the difficulty of certain number theory problems, algorithmic advances constitute their biggest threat
- Practical considerations:
- Public key cryptographic operations are magnitudes slower than symmetric ones
- Public cryptography is often just used to exchange a symmetric session key securely, which is on turn will be used for to secure the data itself.

Additional References

[Bless05] R. Bless, S. Mink, E.-O. Blaß, M. Conrad, H.-J. Hof, K. Kutzner, M. Schöller: "Sichere Netzwerkkommunikation", Springer, 2005, ISBN: 3-540-21845-9
[Bre88a] D. M. Bressoud. Factorization and Primality Testing. Springer, 1988.
[Cor90a] T. H. Cormen, C. E. Leiserson, R. L. Rivest. Introduction to Algorithms. The MIT Press, 1990.
[DH76] W. Diffie, M. E. Hellman. New Directions in Cryptography. IEEE Transactions on Information Theory, IT-22 , pp. 644-654, 1976.
[DSS] National Institute of Standards and Technology (NIST). FIPS 186--3, DRAFT Digital Signature Standard (DSS), March 2006.
[EIG85a] T. ElGamal. A Public Key Cryptosystem and a Signature Scheme based on Discrete Logarithms. IEEE Transactions on Information Theory, Vol.31, Nr.4, pp. 469-472, July 1985.
[Ferg03] Niels Ferguson, B. Schneier: "Practical Cryptography", Wiley, 1st edition, March 2003
[Kob87a] N. Koblitz. A Course in Number Theory and Cryptography. Springer, 1987.
[Men93a] A. J. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers, 1993.
[Niv80a] I. Niven, H. Zuckerman. An Introduction to the Theory of Numbers. John Wiley \& Sons, $4^{\text {th }}$ edition, 1980.
[Resc00] Eric Rescorla, „SSL and TLS: Designing and Building Secure Systems", Addison-Wesley, 2000
[RSA78] R. Rivest, A. Shamir und L. Adleman. A Method for Obtaining Digital Signatures and Public Key Cryptosystems. Communications of the ACM, February 1978.
[Sham03] Adi Shamir, Eran Tromer, "On the cost of factoring RSA-1024", RSA Cryptobytes vol. 6, 2003

