

Network Security

Chapter 2 Basics 2.1 Symmetric Cryptography

- · Overview of Cryptographic Algorithms
- · Attacking Cryptographic Algorithms
- Historical Approaches
- Foundations of Modern Cryptography
- · Modes of Encryption
- Data Encryption Standard (DES)
- Advanced Encryption Standard (AES)

Cryptographic algorithms: overview

- During this course two main applications of cryptographic algorithms are of principal interest:
 - Encryption of data: transforms plaintext data into ciphertext in order to conceal its meaning
 - Signing of data: computes a check value or digital signature of a given plain- or ciphertext, that can be verified by some or all entities who are able to access the signed data
- □ Some cryptographic algorithms can be used for both purposes, some are only secure and / or efficient for one of them.
- Principal categories of cryptographic algorithms:
 - Symmetric cryptography using 1 key for en-/decryption or signing/checking
 - Asymmetric cryptography using 2 different keys for en-/decryption or signing/checking
 - Cryptographic hash functions using 0 keys (the "key" is not a separate input but "appended" to or "mixed" with the data).

Attacking cryptography (1): Cryptanalysis

- Cryptanalysis is the process of attempting to discover the plaintext and / or the key
- □ Types of cryptanalysis:
 - Ciphertext only: work on ciphertext only; hope that specific patterns of the plaintext have remained in the ciphertext (frequencies of letters, digraphs, etc.)
 - Known ciphertext / plaintext pairs
 - Chosen plaintext or chosen ciphertext
 - Newer developments: differential cryptanalysis, linear cryptanalysis
- Cryptanalysis of public key cryptography:
 - The fact that one key is publicly exposed may be exploited
 - Public key cryptanalysis is more aimed at breaking the cryptosystem itself and is closer to pure mathematical research than to classic cryptanalysis
 - Important directions:
 - · Computation of discrete logarithms
 - · Factorization of large integers

Attacking cryptography (2): brute force attack

- The brute force attack tries every possible key until it finds an intelligible plaintext:
 - Every cryptographic algorithm can in theory be attacked by brute force
 - On average, half of all possible keys will have to be tried

Average Time Required for Exhaustive Key Search

Key Size [bit]	Number of keys	Time required at 1 encryption / μs	Time required at 10 ⁶ encryption/μs				
32	2 ³² = 4.3 * 10 ⁹	$2^{31} \mu s = 35.8 \text{minutes}$	2.15 milliseconds				
56	$2^{56} = 7.2 * 10^{16}$	$2^{55} \mu s = 1142 \text{ years}$	10.01 hours				
128	$2^{128} = 3.4 * 10^{38}$	$2^{127} \mu s = 5.4 * 10^{24} \text{years}$	5.4 * 10 ¹⁸ years				

- 1 encryption / μs: 100 Clock cycles of a 100 MHz processor
- 10⁶ encryptions / μs: Clock cycles using 500 parallel 2GHz processors

Network Security, WS 2009/10, Chapter 2.1

5

Attacking cryptography (3): How large is large?

Reference Numbers Comparing Relative Magnitudes

Reference	Magnitude							
Seconds in a year		≈ 3	* 10 ⁷					
Seconds since creation of solar system		≈ 2	* 10 ¹⁷					
Clock cycles per year (3 GHz computer)		≈ 1	* 10 ¹⁷					
Binary strings of length 64	264	≈ 1.8	* 10 ¹⁹					
Binary strings of length 128	2128	≈ 3.4	* 10 ³⁸					
Binary strings of length 256	2 ²⁵⁶	≈ 1.2	* 10 ⁷⁷					
Number of 75-digit prime numbers		≈ 5.2	* 10 ⁷²					
Electrons in the universe		≈ 8.37	* 10 ⁷⁷					

Network Security, WS 2009/10, Chapter 2.1

Classification of modern encryption algorithms

- □ The type of operations used for transforming plaintext to ciphertext:
 - Substitution, which maps each element in the plaintext (bit, letter, group of bits or letters) to another element
 - Transposition, which re-arranges elements in the plaintext
- □ The number of keys used:
 - Symmetric ciphers, which use the same key for en- / decryption
 - Asymmetric ciphers, which use different keys for en- / decryption
- □ The way in which the plaintext is processed:
 - Stream ciphers work on bit streams and encrypt one bit after another
 - Block ciphers work on blocks of width b with b depending on the specific algorithm.

Basic Kryptographic Principles

- Substitution
 - Individual characters are exchanged by other characters

Types of substitution

- simple substitution: operates on single letters
- polygraphic substitution: operates on larger groups of letters
- monoalphabetic substitution: uses fixed substitution over the entire message
- polyalphabetic substitution: uses different substitutions at different sections of a message
- Transposition
 - The position of individual characters changes (Permutation)

Network Security, WS 2009/10, Chapter 2.1

7

Transposition: scytale

- □ Known as early as 7th century BC
- □ Principle:
 - Wrap parchment strip over a wooden rod of a fixed diameter and write letters along the rod.
 - Unwrap a strip and "transmit"
 - To decrypt, wrap a received over a wooden rod of the same diameter and read off the text.

troops headii nthewe stneed

⇒ thnsm predd opoah nrlod eeeis iedus

moresu pplies

- Weakness:
 - Easy to break by finding a suitable matrix transposition.

Network Security, WS 2009/10, Chapter 2.1

9

X

Monoalphabetic substitution: Atbash

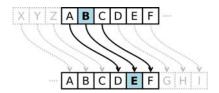
Jeremiah 25:25

And all the kings of the north, far and near, one with another, and all the kingdoms of the world, which are upon the face of the earth: and the king of Sheshach shall drink after them.

Atbash code: reversed Hebrew alphabet.

A Aleph x	B Beth	G Gimel	D Daleth	H He 7	WVFY Waw 1	Z Zajin ī	H Chet n	T Tet v	Jod ,	K Kaph	L <u>Lamed</u> ን	M Mem מם	N Nun 11	X Samech 0	O <u>Ajin</u> y	P <u>Pe</u> ๆ ว	Z <u>Sade</u> ציץ	Q Koph P	R Resch	S Sin	T Taw n
Т <u>Taw</u> л	S Sin v	R Resch	Q Koph P	Z <u>Sade</u> ציץ	P <u>Pe</u> ។១	O <u>Ajin</u> ע	X Samech b	N Nun 11	M Mem מם	L <u>Lamed</u> ን	K Kaph	Jod ,	T Tet v	Н <u>Chet</u> п	Z <u>Zajin</u> T	WVFY Waw 1	H He 7	D <u>Daleth</u> T	G <u>Gimel</u> ک	B Beth	A Aleph x

Sheshach ⇒ לבב ⇔ כך ש ש ⇒ Babel


Network Security, WS 2009/10, Chapter 2.1

40

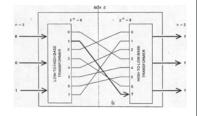
X

Monoalphabetic substitution: Caesar cipher

□ Caesar code: left shift of alphabet by 3 positions.

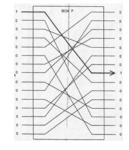
□ Example (letter of Cicero to Caesar):

MDEHV RSNQNRQNV PHDH XHVXNPRQNZP HABES OPINIONIS MEAE TESTIMONIUM


Weakness: a limited number of possible substitutions. Easy to break by brute force!

X

Modern cryptography: S and P-boxes


S-box:

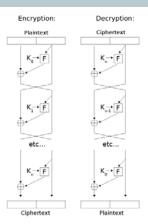
- Block-wise substitution of binary digits.
- Resistant to attacks for sufficiently large block size; e.g. for n=128 it provides 2¹²⁸ possible mappings.

P-box:

- Block-wise permutation of binary digits.
- Realizes a simple transposition cipher with maximal entropy.
- □ Problem: straightforward attacks exist.

Feistel network: a product cipher of S and P-boxes

- A revival of the idea of a product cipher.
 - A product cipher is a combination of simple ciphers (e.g. S-box and P-box) to make the cipher more secure.
 - Rounds: This combination may be applied multiple times.
- Multiple rounds provide a cryptographically strong polyalphabetic substitution.
- Combination of substitution with transposition provides protection against specific attacks (frequency analysis).
- Follows the theoretical principles outlined by C. Shannon in 1949: combines "confusion" with "diffusion" to attain maximal entropy of a cipher text.
 - Confusion: cipher text statistics depend in a very complex way on plaintext statistics (approach: substitution in different rounds)
 - Diffusion: each digit in plaintext and in key influence many digits of cipher text (approach: many rounds with transposition)


Network Security, WS 2009/10, Chapter 2.1

1:

A practical Feistel cipher

- A multiple-round scheme with separate keys per round.
- □ Goal: Encrypt plaintext block P = L₀ | R₀
- Function f(K_i,R_{i-1}) is algorithm-specific, usually a combination of permutations and substitutions.
- Invertible via a reverse order of rounds.
- 3 rounds suffice to achieve a pseudorandom permutation.
- 4 rounds suffice to achieve a strong pseudorandom permutation (i.e. it remains pseudorandom to an attacker with an oracle access to its inverse permutation).
- A foundation for a large number of modern symmetric ciphers: DES, Lucifer, Blowfish, RC5, Twofish, etc.

Feistel Cipher

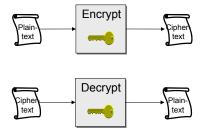
Network Security, WS 2009/10, Chapter 2.1

1/

X

Important properties of encryption algorithms

Consider, a sender is encrypting plaintext messages P_1 , P_2 , ... to ciphertext messages C_1 , C_2 , ...


Then the following properties of the encryption algorithm are of special interest:

- □ *Error propagation* characterizes the effects of bit-errors during transmission of ciphertext on reconstructed plaintext P₁′, P₂′, ...
 - Depending on the encryption algorithm there may be one or more erroneous bits in the reconstructed plaintext per erroneous ciphertext bit
- Synchronization characterizes the effects of lost ciphertext data units on the reconstructed plaintext
 - Some encryption algorithms cannot recover from lost ciphertext and need therefore explicit re-synchronization in case of lost messages
 - Other algorithms do automatically re-synchronize after 0 to n (n depending on the algorithm) ciphertext bits

Symmetric Encryption

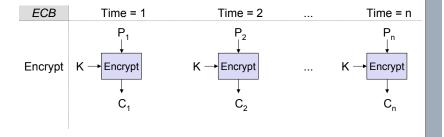
- General description:
 - The same key K_{AB} is used for enciphering and deciphering of messages:

- Notation
 - If P denotes the plaintext message, E(K_{A,B}, P) denotes the cipher text. The following holds: D(K_{A,B}, E(K_{A,B}, P)) = P
 - Alternatively we sometimes write $\{P\}_{K_{A,B}}$ or $E_{K_{A,B}}(P)$ for $E(K_{A,B},P)$
- Symmetric encryption
 - E_{KA B} is at least an injective, often a bijective function
 - $D_{K_{AB}}$ is the inverse function of $E_{K_{AB}}$: $D_{K_{AB}} = (E_{K_{AB}})^{-1}$
- Examples: DES, 3DES, AES, Twofish, RC4

14

Modes of Encryption

- □ Block ciphers operate on 128-256 bits. How can one encrypt longer messages? Answer:
 - A plaintext p is segmented in blocks p₁, p₂, ... each of length b or of length j
b when payload length is smaller or not a multiple of b. b denotes the block size of the encryption algorithm.
 - The ciphertext c is the combination of c_1 , c_2 , ... where c_i denotes the result of the encryption of the i^{th} block of the plaintext message
 - The entities encrypting and decrypting a message have agreed upon a key K.
- Modes where the plaintext is input to the block cipher. Examples:
 - Electronic Code Book Mode (ECB), Cipher Block Chaining Mode (CBC)
- Modes where the plaintext is XORed with the output of a block cipher
 - A pseudorandom stream of bits, called key stream is generated from the symmetric key K and a specific input per block,
 e.g. E(K, "Block 1"), E(K, "Block 2"), E(K, "Block 3"), ...
 - Examples
 - · Output Feedback Mode (OFB), Counter Mode (CTR)


Network Security, WS 2009/10, Chapter 2.1

17

Symmetric Block Ciphers - Modes of Encryption - ECB (1)

- □ Electronic Code Book Mode (ECB):
 - Every block p_i of length b is encrypted independently: $c_i = E(K, p_i)$
 - A bit error in one ciphertext block c_i results in a completely wrongly recovered plaintext block p_i (subsequent blocks are not affected)
 - Loss of synchronization does not have any effect if integer multiples of the block size b are lost.
 - If any other number of bits are lost, explicit re-synchronization is needed.
 - Drawback: identical plaintext blocks are encrypted to identical ciphertext!

Network Security, WS 2009/10, Chapter 2.1

40

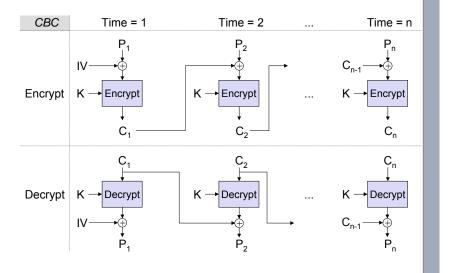
Symmetric Block Ciphers - Modes of Encryption - ECB (2)

Original

Encrypted using ECB mode

Encrypted using other modes

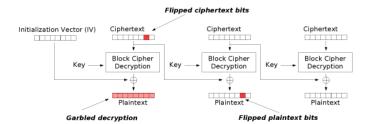
Source: http://www.wikipedia.org/



Symmetric Block Ciphers - Modes of Encryption - CBC (1)

- □ Cipher Block Chaining Mode (CBC):
 - Before encrypting a plaintext block p_i, it is XORed (⊕) with the preceding ciphertext block c_{i,i}:
 - $c_i = E(K, c_{i-1} \oplus p_i)$
 - $p_i' = c_{i-1} \oplus D(K, c_i)$
 - Both parties agree on an *initial value* for c_i called *Initialization Vector (IV)*
 - c₀ = IV
- Properties:
 - Advantage: identical plaintext blocks are encrypted to non-identical ciphertext.
 - Error propagation:
 - A distorted ciphertext block results in two distorted plaintext blocks, as p_i is computed using c_{i-1} and c_i
 - Synchronisation:
 - If the number of lost bits is a multiple integer of b, one additional block p_{i+1} is misrepresented before synchronization is re-established.
 If any other number of bits are lost explicit re-synchronization is needed.
 - Applicable for
 - · Encryption
 - Integrity check: use last block of CBC as Message Authentication Code (MAC)

Symmetric Block Ciphers - Modes of Encryption - CBC (2)


Network Security, WS 2009/10, Chapter 2.1

21

X

CBC Error Propagation

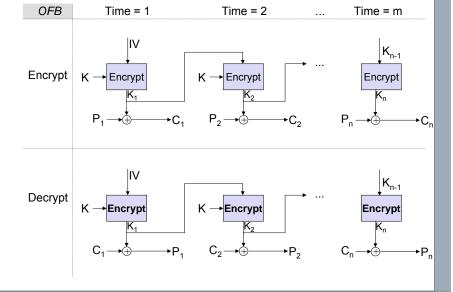
 \Box A distorted ciphertext block results in two distorted plaintext blocks, as p_i is computed using c_{i-1} and c_i

Modification attack or transmission error for CBC

Source: http://www.wikipedia.org/

Network Security, WS 2009/10, Chapter 2.1

22



Symmetric Block Ciphers - Modes of Encryption - OFB (1)

- □ Output Feedback Mode (OFB):
 - The block encryption algorithm is used to generate a key stream that depends only on *K* and *IV*
 - $K_0 = IV$
 - $K_i = E(K, K_{i-1})$
 - $C_i = P_i \oplus K_i$
 - The plaintext blocks are XORed with the pseudo-random sequence to obtain the ciphertext and vice versa

\nearrow

Symmetric Block Ciphers - Modes of Encryption - OFB (2)

Network Security, WS 2009/10, Chapter 2.1

Network Security, WS 2009/10, Chapter 2.1

| 2

Symmetric Block Ciphers - Modes of Encryption - OFB (3)

□ Properties of OFB:

- Error propagation:
 - Single bit errors result only in single bit errors ⇒ no error multiplication
- Synchronisation:
 - · If some bits are lost explicit re-synchronization is needed
- Advantage:
 - The pseudo-random sequence can be pre-computed in order to keep the impact of encryption to the end-to-end delay low
- Drawbacks:
 - · It is possible for an attacker to manipulate specific bits of the plaintext
 - → However, additional cryptographic means are can be used for message integrity

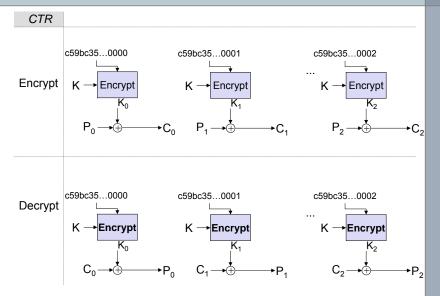
Network Security, WS 2009/10, Chapter 2.1

2

X

Symmetric Block Ciphers - Modes of Encryption - CTR (1)

□ Counter Mode (CTR)


- The block encryption algorithm is used to generate a key stream that depends on K and a counter function ctr_i.
- The counter function can be simply an increment modulo 2^w, where *w* is a convenient register width, e.g.
 - ctr_i= Nonce || i
- The counter function does not provide any security other than the uniqueness of the input to the block cipher function E
- The plaintext blocks are XORed with the pseudo-random sequence to obtain the ciphertext and vice versa
- Putting everything together:
 - $K_i = E(K, Nonce || i)$
 - $C_i = P_i \oplus K_i$

Network Security, WS 2009/10, Chapter 2.1

26

X

Symmetric Block Ciphers - Modes of Encryption - CTR (2)

X

Symmetric Block Ciphers - Modes of Encryption - CTR (3)

Properties of CTR:

- Error propagation:
 - Single bit errors result only in single bit errors ⇒ no error multiplication
- Synchronisation:
 - · If some bits are lost explicit re-synchronization is needed.
- Advantage:
 - The key stream can be pre-computed in order to keep the impact of encryption to the end-to-end delay low.
 - The computation of the key stream can be parallelized.
- Drawbacks:
 - · It is possible for an attacker to manipulate specific bits of the plaintext
 - → However, additional cryptographic means are required for message integrity

Network Security, WS 2009/10, Chapter 2.1

27