Network Security

Chapter 2 Basics
 2.1 Symmetric Cryptography

- Overview of Cryptographic Algorithms
- Attacking Cryptographic Algorithms
- Historical Approaches
- Foundations of Modern Cryptography
- Modes of Encryption
- Data Encryption Standard (DES)
- Advanced Encryption Standard (AES)

Cryptographic algorithms: outline

- During this course two main applications of cryptographic algorithms are of principal interest:
- Encryption of data: transforms plaintext data into ciphertext in order to conceal its meaning
- Signing of data: computes a check value or digital signature of a given plain- or ciphertext, that can be verified by some or all entities who are able to access the signed data
- Some cryptographic algorithms can be used for both purposes, some are only secure and / or efficient for one of them.
- Principal categories of cryptographic algorithms:
- Symmetric cryptography using 1 key for en-/decryption or signing/checking
- Asymmetric cryptography using 2 different keys for en-/decryption or signing/checking
- Cryptographic hash functions using 0 keys (the "key" is not a separate input but "appended" to or "mixed" with the data).

Attacking cryptography (1): Cryptanalysis

- Cryptanalysis is the process of attempting to discover the plaintext and / or the key
- Types of cryptanalysis:
- Ciphertext only: work on ciphertext only; hope that specific patterns of the plaintext have remained in the ciphertext (frequencies of letters, digraphs, etc.)
- Known ciphertext / plaintext pairs
- Chosen plaintext or chosen ciphertext
- Newer developments: differential cryptanalysis, linear cryptanalysis
- Cryptanalysis of public key cryptography:
- The fact that one key is publicly exposed may be exploited
- Public key cryptanalysis is more aimed at breaking the cryptosystem itself and is closer to pure mathematical research than to classic cryptanalysis
- Important directions:
- Computation of discrete logarithms
- Factorization of large integers

Attacking cryptography (2): brute force attack

- The brute force attack tries every possible key until it finds an intelligible plaintext:
- Every cryptographic algorithm can in theory be attacked by brute force
- On average, half of all possible keys will have to be tried

Average Time Required for Exhaustive Key Search

Key Size [bit]	Number of keys	Time required at 1 encryption $/ \mu \mathrm{s}$	Time required at 10^{6} encryption $/ \mu \mathrm{s}$
32	$2^{32}=4.3 * 10^{9}$	$2^{31} \mu \mathrm{~s}=35.8$ minutes	2.15 milliseconds
56	$2^{56}=7.2 * 10^{16}$	$2^{55} \mu \mathrm{~s}=1142$ years	10.01 hours
128	$2^{128}=3.4 * 10^{38}$	$2^{127} \mu \mathrm{~s}=5.4 * 10^{24}$ years	$5.4 * 10^{18}$ years

- 1 encryption / $\mu \mathrm{s}$: 100 Clock cycles of a 100 MHz processor
- 10^6 encryptions / $\mu \mathrm{s}$: Clock cycles using 500 parallel 2 GHz processors

Attacking cryptography (3): How large is large?

Reference Numbers Comparing Relative Magnitudes

Reference	Magnitude
Seconds in a year	$\approx 3 * 10^{7}$
Seconds since creation of solar system	$\approx 2 * 10^{17}$
Clock cycles per year (3 GHz computer)	$\approx 1 * 10^{17}$
Binary strings of length 64	$2^{64} \approx 1.8 * 10^{19}$
Binary strings of length 128	$2^{128} \approx 3.4 * 10^{38}$
Binary strings of length 256	$2^{256} \approx 1.2 * 10^{77}$
Number of $75-$ digit prime numbers	$\approx 5.2 * 10^{72}$
Electrons in the universe	$\approx 8.37 * 10^{77}$

Classification of modern encryption algorithms

- The type of operations used for transforming plaintext to ciphertext:
- Substitution, which maps each element in the plaintext (bit, letter, group of bits or letters) to another element
- Transposition, which re-arranges elements in the plaintext
- The number of keys used:
- Symmetric ciphers, which use the same key for en- / decryption
- Asymmetric ciphers, which use different keys for en- / decryption
- The way in which the plaintext is processed:
- Stream ciphers work on bit streams and encrypt one bit after another
- Block ciphers work on blocks of width b with b depending on the specific algorithm.

Basic Kryptographic Principles

- Substitution
- Individual characters are exchanged by other characters

Types of substitution

- simple substitution: operates on single letters
- polygraphic substitution: operates on larger groups of letters
- monoalphabetic substitution: uses fixed substitution over the entire message
- polyalphabetic substitution: uses different substitutions at different sections of a message
- Transposition
- The position of individual characters changes (Permutation)

Transposition: scytale

- Known as early as $7^{\text {th }}$ century BC
- Principle:
- Wrap parchment strip over a wooden rod of a fixed diameter and write letters along the rod.
- Unwrap a strip and "transmit"
- To decrypt, wrap a received over a wooden rod of the same diameter and read off the text.

- Example:
troops
headii
nthewe \Rightarrow thnsm predd opoah nrlod eeeis iedus
stneed
moresu
pplies
- Weakness:
- Easy to break by finding a suitable matrix transposition.

Monoalphabetic substitution: Atbash

Jeremiah 25:25
And all the kings of the north, far and near, one with another, and all the kingdoms of the world, which are upon the face of the earth: and the king of Sheshach shall drink after them.

Atbash code: reversed Hebrew alphabet.

$\begin{gathered} \text { A } \\ \frac{\text { Aleph }}{x} \end{gathered}$	$\begin{gathered} \text { B } \\ \frac{\text { Beth }}{2} \end{gathered}$			$\begin{gathered} H \\ \frac{H e}{3} \end{gathered}$	WVFY Waw 1	$\begin{gathered} \text { Z } \\ \frac{\text { Zaiin }}{i} \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \frac{\text { Chet }}{\pi} \end{gathered}$	$\begin{gathered} \mathrm{T} \\ \frac{\mathrm{Tet}}{\mathrm{v}} \end{gathered}$	$\begin{gathered} \mathrm{IJ} \\ \mathrm{Jod} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{K} \\ \frac{\text { Kaph }}{7 כ} \end{gathered}$	$\left\lvert\, \begin{gathered} \mathrm{L} \\ \frac{\text { Lamed }}{3} \end{gathered}\right.$	$\begin{gathered} M \\ \frac{\mathrm{Mem}}{\square \Delta} \end{gathered}$	$\begin{gathered} \mathrm{N} \\ \mathrm{Nun} \\ \hline 1 \mathrm{j} \end{gathered}$	Samech 0	$\begin{gathered} \mathrm{O} \\ \frac{\text { Ajin }}{y} \end{gathered}$	$\begin{gathered} \mathrm{P} \\ \frac{\mathrm{Pe}}{7} \end{gathered}$	$\begin{gathered} Z \\ \frac{\text { Sade }}{\gamma^{3}} \end{gathered}$	Q Koph P		$\begin{gathered} S \\ \frac{S i n}{w} \end{gathered}$	$\begin{gathered} \mathrm{T} \\ \frac{\text { Taw }}{\mathrm{r}} \end{gathered}$
$\begin{gathered} \mathrm{T} \\ \frac{\text { Taw }}{\pi} \end{gathered}$	$\begin{gathered} S \\ \frac{S i n}{w} \end{gathered}$		Q Koph P	$\frac{\text { Sade }}{\frac{\text { S }}{}}$	P Pe 7 D	$\begin{gathered} \mathrm{O} \\ \frac{\text { Ajin }}{y} \end{gathered}$	Samech	$\begin{gathered} \mathrm{N} \\ \mathrm{Nun} \\ \hline 1 \end{gathered}$	$\begin{gathered} \text { M } \\ \text { Mem } \\ \hline \square \end{gathered}$	$\begin{gathered} \mathrm{L} \\ \frac{\text { Lamed }}{3} \end{gathered}$	$\begin{gathered} \mathrm{K} \\ \frac{\text { Kaph }}{7 \nu} \end{gathered}$	$\begin{aligned} & \text { IJ } \\ & \text { Jod } \end{aligned}$	$\begin{gathered} \mathrm{T} \\ \frac{\mathrm{Tet}}{\mathrm{v}} \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \frac{\text { Chet }}{\pi} \end{gathered}$	$\begin{gathered} \text { Z } \\ \frac{\text { Zaijn }}{i} \end{gathered}$	WVFY Waw 1	$\begin{gathered} \mathrm{H} \\ \frac{\mathrm{He}}{3} \end{gathered}$	$\begin{gathered} \text { D } \\ \frac{\text { Daleth }}{T} \end{gathered}$		$\begin{gathered} B \\ \frac{B e t h}{2} \end{gathered}$	$\begin{gathered} \text { A } \\ \frac{\text { Aleph }}{x} \end{gathered}$

- Caesar code: left shift of alphabet by 3 positions.

- Example (letter of Cicero to Caesar):

MDEHV RSNQNRQNV PHDH XHVXNPRQNZP
HABES OPINIONIS MEAE TESTIMONIUM

- Weakness: a limited number of possible substitutions. Easy to break by brute force!

Modern cryptography: S and P-boxes

S-box:

- Block-wise substitution of binary digits.
- Resistant to attacks for sufficiently large block size; e.g. for $n=128$ it provides 2^{128} possible mappings.

P-box:

- Block-wise permutation of binary digits.
- Realizes a simple transposition cipher with maximal entropy.
- Problem: straightforward attacks exist.

Feistel network: a product cipher of S and P-boxes

- A revival of the idea of a product cipher.
- A product cipher is a combination of simple ciphers (e.g. S-box and P-box) to make the cipher more secure.
- Rounds: This combination may be applied multiple times.
- Multiple rounds provide a cryptographically strong polyalphabetic substitution.
- Combination of substitution with transposition provides protection against specific attacks (frequency analysis).
- Follows the theoretical principles outlined by C. Shannon in 1949: combines "confusion" with "diffusion" to attain maximal entropy of a cipher text.
- Confusion: cipher text statistics depend in a very complex way on plaintext statistics (approach: substitution in different rounds)
- Diffusion: each digit in plaintext and in key influence many digits of cipher text (approach: many rounds with transposition)

A practical Feistel cipher

- A multiple-round scheme with separate keys per round.
- Goal: Encrypt plaintext block $P=L_{0} \mid R_{0}$
- Function $f\left(\mathrm{~K}_{\mathrm{i}}, \mathrm{R}_{\mathrm{i}-1}\right)$ is algorithm-specific, usually a combination of permutations and substitutions.
- Invertible via a reverse order of rounds.
- 3 rounds suffice to achieve a pseudorandom permutation.
- 4 rounds suffice to achieve a strong pseudorandom permutation (i.e. it remains pseudorandom to an attacker with an oracle access to its inverse permutation).
- A foundation for a large number of modern symmetric ciphers: DES, Lucifer, Blowfish, RC5, Twofish, etc.

Important properties of encryption algorithms

Consider, a sender is encrypting plaintext messages $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots$ to ciphertext messages $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots$
Then the following properties of the encryption algorithm are of special interest:

- Error propagation characterizes the effects of bit-errors during transmission of ciphertext on reconstructed plaintext $\mathrm{P}_{1}{ }^{\prime}, \mathrm{P}_{2}{ }^{\prime}, \ldots$
- Depending on the encryption algorithm there may be one or more erroneous bits in the reconstructed plaintext per erroneous ciphertext bit
- Synchronization characterizes the effects of lost ciphertext data units on the reconstructed plaintext
- Some encryption algorithms cannot recover from lost ciphertext and need therefore explicit re-synchronization in case of lost messages
- Other algorithms do automatically re-synchronize after 0 to n (n depending on the algorithm) ciphertext bits

Symmetric Encryption

- General description:
- The same key $K_{A, B}$ is used for enciphering and deciphering of messages:

- Notation
- If P denotes the plaintext message, $E\left(K_{A, B}, P\right)$ denotes the cipher text. The following holds: $D\left(K_{A, B}, E\left(K_{A, B}, P\right)\right)=P$
- Alternatively we sometimes write $\{P\}_{K_{A, B}}$ or $E_{K_{A, B}}(P)$ for $E\left(K_{A, B}, P\right)$
- Symmetric encryption
- $E_{K_{A, B}}$ is at least an injective, often a bijective function
- $D_{K_{A, B}}$ is the inverse function of $E_{K_{A, B}}: D_{K_{A, B}}=\left(E_{K_{A, B}}\right)^{-1}$
- Examples: DES, 3DES, AES, Twofish, RC4

Modes of Encryption

- Block ciphers operate on 128-256 bits. How can one encrypt longer messages? Answer:
- A plaintext p is segmented in blocks p_{1}, p_{2}, \ldots each of length b or of length $j<b$ when payload length is smaller or not a multiple of b. b denotes the block size of the encryption algorithm.
- The ciphertext c is the combination of c_{1}, c_{2}, \ldots where c_{i} denotes the result of the encryption of the $i^{\text {th }}$ block of the plaintext message
- The entities encrypting and decrypting a message have agreed upon a key K.
- Modes where the plaintext is input to the block cipher. Examples:
- Electronic Code Book Mode (ECB), Cipher Block Chaining Mode (CBC)
- Modes where the plaintext is XORed with the output of a block cipher
- A pseudorandom stream of bits, called key stream is generated from the symmetric key K and a specific input per block, e.g. E(K,"Block 1"), E(K,"Block 2"), E(K,"Block 3"), ...
- Examples
- Output Feedback Mode (OFB), Counter Mode (CTR)

Symmetric Block Ciphers - Modes of Encryption - ECB (1)

- Electronic Code Book Mode (ECB):
- Every block p_{i} of length b is encrypted independently: $c_{i}=E\left(K, p_{i}\right)$
- A bit error in one ciphertext block c_{i} results in a completely wrongly recovered plaintext block p_{i}^{\prime} (subsequent blocks are not affected)
- Loss of synchronization does not have any effect if integer multiples of the block size b are lost.
If any other number of bits are lost, explicit re-synchronization is needed.
- Drawback: identical plaintext blocks are encrypted to identical ciphertext!

Original

Encrypted using ECB mode

Encrypted using other modes

Source: http://www.wikipedia.org/

Symmetric Block Ciphers - Modes of Encryption - CBC (1)

- Cipher Block Chaining Mode (CBC):
- Before encrypting a plaintext block p_{i}, it is $\operatorname{XORed}(\oplus)$ with the preceding ciphertext block c_{i-1} :
- $c_{i}=E\left(K, c_{i-1} \oplus p_{i}\right)$
- $p_{i}^{\prime}=c_{i-1} \oplus D\left(K, c_{i}\right)$
- Both parties agree on an initial value for c_{i} called Initialization Vector (IV) - $c_{0}=\mathrm{IV}$
- Properties:
- Advantage: identical plaintext blocks are encrypted to non-identical ciphertext.
- Error propagation:
- A distorted ciphertext block results in two distorted plaintext blocks, as p_{i}^{\prime} is computed using c_{i-1} and c_{i}
- Synchronisation:
- If the number of lost bits is a multiple integer of b, one additional block p_{i+1} is misrepresented before synchronization is re-established.
If any other number of bits are lost explicit re-synchronization is needed.
- Applicable for
- Encryption
- Integrity check: use last block of CBC as Message Authentication Code (MAC)

CBC	Time $=1$	Time $=2$	\ldots	Time $=\mathrm{n}$
Encrypt			\ldots	

CBC Error Propagation

- A distorted ciphertext block results in two distorted plaintext blocks, as p_{i}^{\prime} is computed using c_{i-1} and c_{i}

Flipped ciphertext bits

Modification attack or transmission error for CBC

Symmetric Block Ciphers - Modes of Encryption - OFB (1)

- Output Feedback Mode (OFB):
- The block encryption algorithm is used to generate a key stream that depends only on K and $I V$
- $K_{0}=I V$
- $K_{i}=E\left(K, K_{i-1}\right)$
- $C_{i}=P_{i} \oplus K_{i}$
- The plaintext blocks are XORed with the pseudo-random sequence to obtain the ciphertext and vice versa

Symmetric Block Ciphers - Modes of Encryption - OFB (2)

Symmetric Block Ciphers - Modes of Encryption - OFB (3)

- Properties of OFB:
- Error propagation:
- Single bit errors result only in single bit errors \Rightarrow no error multiplication
- Synchronisation:
- If some bits are lost explicit re-synchronization is needed
- Advantage:
- The pseudo-random sequence can be pre-computed in order to keep the impact of encryption to the end-to-end delay low
- Drawbacks:
- It is possible for an attacker to manipulate specific bits of the plaintext
\rightarrow However, additional cryptographic means are can be used for message integrity

Symmetric Block Ciphers - Modes of Encryption - CTR (1)

- Counter Mode (CTR)
- The block encryption algorithm is used to generate a key stream that depends on K and a counter function ctr $_{i}$.
- The counter function can be simply an increment modulo 2^{w}, where w is a convenient register width, e.g.
- ctr $_{i}=$ Nonce $|\mid i$
- The counter function does not provide any security other than the uniqueness of the input to the block cipher function E
- The plaintext blocks are XORed with the pseudo-random sequence to obtain the ciphertext and vice versa
- Putting everything together:
- $K_{i}=E(K$, Nonce || $i)$
- $C_{i}=P_{i} \oplus K_{i}$

Symmetric Block Ciphers - Modes of Encryption - CTR (2)

Symmetric Block Ciphers - Modes of Encryption - CTR (3)

- Properties of CTR:
- Error propagation:
- Single bit errors result only in single bit errors \Rightarrow no error multiplication
- Synchronisation:
- If some bits are lost explicit re-synchronization is needed.
- Advantage:
- The key stream can be pre-computed in order to keep the impact of encryption to the end-to-end delay low.
- The computation of the key stream can be parallelized.
- Drawbacks:
- It is possible for an attacker to manipulate specific bits of the plaintext
\rightarrow However, additional cryptographic means are required for message integrity

